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HARDY’S INEQUALITIES FOR SOBOLEV FUNCTIONS

Juha Kinnunen and Olli Martio

Abstract. The fractional maximal function of the gradient gives a pointwise inter-

pretation of Hardy’s inequality for functions u ∈ W 1,p
0 (Ω). With mild assumptions

on Ω Hardy’s inequality holds for a function u ∈ W 1,p(Ω) if and only if u ∈ W 1,p
0 (Ω).

1. Introduction

The fractional maximal function of a locally integrable function f : Rn → [−∞,∞]
is defined by

(1.1) Mαf(x) = sup
r>0

rα−n

∫

B(x,r)

|f(y)| dy, 0 ≤ α ≤ n.

The fractional maximal function is a classical tool in harmonic analysis, but it is
also useful in studying Sobolev functions and partial differential equations. The
fundamental fact is that the oscillation of a Sobolev function is controlled by the
fractional maximal function of the gradient. To be more precise, suppose that
u ∈ W 1,p(Rn) and let 0 ≤ α < p. Then there is a constant c, depending only on n,
such that

(1.2) |u(x) − u(y)| ≤ c |x − y|1−α/p
(
Mα/p|Du|(x) + Mα/p|Du|(y)

)

for every x, y ∈ Rn\N with |N | = 0. The proof of this elegant inequality essentially
is due to Hedberg [He]. Recently Bojarski and Haj lasz have employed (1.2) in
studying Sobolev functions, see [BH], [Ha1] and [Ha3]. Lewis [Le1] has also used
(1.2) to construct a Lipschitz continuous test function for elliptic systems of partial
differential equations. Several properties of Sobolev functions, including pointwise
behaviour, approximation by Hölder continuous functions, Sobolev’s, Poincaré’s
and Morrey’s lemmas, follow from (1.2). We discuss some of these applications in
Section 2.

In Section 3 we apply (1.2) to Sobolev functions with zero boundary values. To
this end, let Ω be an open set such that Rn \ Ω is uniformly p−fat. This means
that there is a constant γ > 0 such that

Cp

(
(Rn \ Ω) ∩ B(x, r), B(x, 2r)

)
≥ γ Cp

(
B(x, r), B(x, 2r)

)
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for every x ∈ Rn \ Ω and for all radii r > 0. Here Cp refers to the variational
p−capacity, see [HKM, Ch. 2]. This requirement is not very restrictive, since all
Lipschitz domains or domains satisfying the exterior cone condition are uniformly
p−fat for every p, 1 < p < ∞. If p > n, then the complement of every open set
Ω 6= Rn is uniformly p−fat. Suppose that u ∈ W 1,p

0 (Ω). If Rn \ Ω is uniformly
p−fat and 0 ≤ α < p, then we show that there is a constant c, depending only on
p and n and the geometry of Ω, such that

(1.3) |u(x)| ≤ c dist(x, ∂Ω)1−α/p
(
Mα|Du|p(x)

)1/p

for almost every x ∈ Ω. In particular, if p > n, then (1.3) holds provided Ω 6=
Rn. By integrating (1.3) over Ω and using the Hardy–Littlewood–Wiener maximal
theorem we obtain a new proof for Hardy’s inequality

(1.4)
∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx ≤ c

∫

Ω

|Du(x)|p dx.

The constant c depends only on p and n and the geometry of Ω. It has come
to our attention that Piotr Haj lasz [Ha2] has obtained another proof for Hardy’s
inequality (1.4) using similar ideas.

We also show that Hardy’s inequality is a necessary and sufficient condition for
a function in W 1,p(Ω) to belong to W 1,p

0 (Ω) provided Rn \ Ω is uniformly p−fat.
In fact, we prove a stronger result which generalizes results in [K, p. 74] and [EE, p.
223]. Hardy’s inequalities have been studied extensively under various conditions
on Ω. The classical one–dimensional Hardy’s inequality can be found in [HLP, p.
240]. Higher dimensional versions have been investigated in [A], [EH], [Le2], [K],
[Maz, 2.3.3], [Mi], [OK], [W1] and [W2].

Our notation is standard. The function u belongs to the Sobolev space W 1,p(Ω),
Ω ⊂ Rn open, 1 ≤ p ≤ ∞, provided u ∈ Lp(Ω) and the first weak partial derivatives
also belong to Lp(Ω). We endow the Sobolev space W 1,p(Ω) with the norm

‖u‖1,p,Ω = ‖u‖p,Ω + ‖Du‖p,Ω .

If Ω = Rn, we denote ‖u‖1,p,Rn = ‖u‖1,p. We recall that W 1,p
0 (Ω) is the completion

of C∞
0 (Ω) in the norm ‖u‖1,p,Ω. For properties of the Sobolev functions we refer to

the monograph [Z]. Various positive constants throughout the paper are denoted
by c and they may differ even on the same line. The dependence on parameters is
expressed, for example, by c = c(n, p).

2. Maximal function inequalities

Let 0 ≤ α ≤ n and suppose that f : Rn → [0,∞] is locally integrable. The
fractional maximal function of a locally integrable function f : Rn → [−∞,∞] is
defined by

Mαf(x) = sup
r>0

rα−n

∫

B(x,r)

|f(y)| dy, 0 ≤ α ≤ n.

For α = 0 we obtain the Hardy–Littlewood maximal function and we write M0 =
M. The set

Eλ =
{
x ∈ Rn : Mαf(x) > λ

}
, λ ≥ 0,
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is open and hence the fractional maximal function is lower semicontinuous. Next we
give some estimates for the measure of Eλ. To this end, the Hausdorff d−measure,
0 < d < ∞, of E ⊂ Rn is

Hd(E) = lim
δ→0

Hd
δ (E),

where

Hd
δ (E) = inf

{ ∞∑

i=1

rd
i : E ⊂

∞⋃

i=1

B(xi, ri), ri ≤ δ
}

, 0 < δ ≤ ∞.

Hd
∞(E) is the Hausdorff d−content of E. Clearly Hd

∞(E) ≤ Hd
δ (E) ≤ Hd(E) for

every 0 < δ ≤ ∞.
The standard Vitali covering argument, see [BZ, Lemma 3.2], yields the following

weak type inequality for the fractional maximal function.

2.1. Lemma. Suppose that f ∈ L1(Rn) and 0 ≤ α < n. Then there is a constant
c = c(n, α) such that

(2.2) Hn−α
∞ (Eλ) ≤ c

λ

∫

Rn

|f(x)| dx, λ > 0.

If α = 0, then the Hausdorff content may be replaced by the Lebesgue measure.
Next we recall a pointwise inequality for a smooth function in terms of the

fractional maximal function. This estimate is well–known, the proof relies on an
argument due to Hedberg, see [He] and [Ha1].

2.3. Theorem. Suppose that u ∈ C∞(Rn) and let 1 ≤ p < ∞, 0 ≤ α < p.
Let χ be the characteristic function of the ball B(x0, R). Then there is a constant
c = c(n) such that

(2.4) |u(x) − u(y)| ≤ c |x − y|1−α/p
(
Mα/p(|Du|χ)(x) + Mα/p(|Du|χ)(y)

)

for every x, y ∈ B(x0, R).

Sketch of the proof. The proof follows easily from inequalities

(2.5)

1
|B(x0, R)|

∫

B(x0,R)

|u(x) − u(y)| dy ≤ c(n)
∫

B(x0,R)

|Du(y)|
|x − y|n−1

dy

≤ c(n) R1−α/pMα/p(|Du|χ)(x),

for every x ∈ B(x0, R).

Inequality (2.4) has turned out to be very useful in studying the Sobolev spaces.
We take an opportunity to briefly describe some of the main developments here;
some of our observations are folklore, but there are also new aspects.

Since smooth functions are dense in W 1,p(Ω), we see that for an arbitrary
Sobolev function u ∈ W 1,p(Rn) inequality (2.4) holds whenever x, y ∈ B(x0, R)\N
with |N | = 0. In this case we say that (2.4) holds for almost every x and y.
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The Sobolev embedding theorems and the Poincaré inequalities are easy conse-
quences of (2.4), see [He] and [Z]. Suppose that u ∈ W 1,p(Rn). Hölder’s inequality
implies

(2.6) Mα/p|Du|(x) ≤ c(n, p)
(
Mα|Du|p(x)

)1/p
, x ∈ Rn.

If n < p < ∞, then we may take α = n and

(2.7)
(
Mn|Du|p(x)

)1/p ≤ ‖Du‖p < ∞, x ∈ Rn.

By combining this observation to (2.4) we see that

(2.8) |u(x) − u(y)| ≤ c(n, p)‖Du‖p |x − y|1−n/p

for almost every x, y ∈ Rn. This shows that u ∈ C1−n/p(Rn) after redefinition on a
set of measure zero. This is the Sobolev embedding theorem in the case n < p < ∞.

Suppose that 0 ≤ α < min(p, n). If Mα|Du|p is bounded, then after redefinition
on a set of measure zero, u ∈ C1−α/p(Rn) by (2.4). This is Morrey’s lemma [Mo,
Theorem 3.5.2]. Even if Mα|Du|p is unbounded, then

(2.9) |u(x) − u(y)| ≤ c(n, p)λ |x− y|1−α/p,

for almost every x, y ∈ Rn \ Eλ, where

Eλ =
{
x ∈ Rn : Mα|Du|p(x) > λp

}
, λ ≥ 0.

This means that the function u ∈ W 1,p(Rn) is Hölder continuous with in the set
Rn \ Eλ after redefinition on a set of measure zero. Then we may extend it to a
Hölder continuous function in Rn with the same exponent and the same constant
by defining

uλ(x) = inf
y∈Rn\Eλ

(
u(y) + c(n, p)λ |x− y|1−α/p

)
, x ∈ Rn.

Here c(n, p) is the constant in (2.9). This is the classical McShane extension [Mc]
of u|Rn\Eλ

. Using estimate (2.2) we see that for every λ > 0 there is an open set
Eλ and a function uλ such that

(1) uλ ∈ C1−α/p(Rn),
(2) uλ(x) = u(x) for a.e. x ∈ Rn \ Eλ,
(3) Hn−α

∞ (Eλ) ≤ c(n, α)λ−p ‖Du‖p
p.

In particular, if α = 0, then the function uλ is Lipschitz. This has been previously
studied by Malý [Mal]. His proof is based on the representation of Sobolev functions
as Bessel potentials.

Usually a Sobolev function u ∈ W 1,p(Rn) is defined only up to a set of measure
zero, but following [BH] we define u pointwise by

(2.10) ũ(x) = lim sup
r→0

1
|B(x, r)|

∫

B(x,r)

u(y) dy.
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By Lebesgue’s theorem not only limit superior but limit exists and equals to u
almost everywhere. In fact, the limit exists except on a set of capacity zero, but
we do not need this refinement here. Hence the pointwise definition coincides with
u almost everywhere and represents the same element in W 1,p(Rn). Then we
may proceed as in [BH] and show that inequality (2.4) holds everywhere for every
function u ∈ W 1,p(Rn) defined pointwise by (2.10). If p > n, then by (2.7) every
ũ ∈ W 1,p(Rn) belongs to C1−n/p(Rn) and hence all points are Lebesgue points
for ũ. Suppose then that 1 ≤ p ≤ n and 0 ≤ α < p. Using (2.4) it is easy to see
that x is a Lebesgue point of ũ provided Mα/p|Du|(x) < ∞. This observation is a
sharpening of [BH, Lemma 4]. The set of non-Lebesgue points of ũ is contained in

E∞ =
{
x ∈ Rn : Mα|Du|p(x) = ∞

}
.

The weak type estimate (2.2) implies that

Hn−α
∞ (E∞) ≤ c(n, α)λ−p ‖Du‖p

p, λ > 0.

Letting λ → ∞ we see that Hn−α
∞ (E∞) = 0. Hence the set of non-Lebesgue points

has (n − α)−Hausdorff content zero for any α < p. Since the Hausdorff content
and the Hausdorff measure have the same null sets, also the (n − α)−dimensional
Hausdorff measure of E∞ is zero. In general, a function u ∈ W 1,p(Rn) has Lebesgue
points outside a set of capacity zero, which is of course a stronger result, but our
approach gives a concrete method to check whether a given point is a Lebesgue
point.

For further applications of (2.4) we refer to [BH], [Ha1], [Ha3] and [Le1].

3. Hardy’s inequality

Suppose first that p > n, n < q < p, 0 ≤ α < q, and let Ω 6= Rn be an open set.
Let u ∈ C∞

0 (Ω). Fix x ∈ Ω and take x0 ∈ ∂Ω such that |x−x0| = dist(x, ∂Ω) = R.
Then we use (2.4) together with (2.6) and obtain

(3.1)

|u(x)| ≤ c(n, q) |x− x0|1−n/q
( ∫

B(x,2R)

|Du(y)|q dy
)1/q

≤ c(n, q) R1−α/q
(
Rα−n

∫

B(x,2R)

|Du(y)|q dy
)1/q

≤ c(n, q) dist(x, ∂Ω)1−α/q
(
Mα|Du|q(x)

)1/q
, x ∈ Rn.

For u ∈ W 1,p
0 (Ω) inequality (3.1) holds almost everywhere. Integrating (3.1) with

α = 0 over Ω and using the Hardy–Littlewood–Wiener maximal function theorem
[S, Theorem I.1] we arrive at

(3.2)

∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx ≤ c

∫

Ω

(
M|Du|q(x)

)p/q
dx

≤ c

∫

Ω

|Du(x)|p dx, c = c(n, p, q).
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Since the constant in (3.2) is independent of u ∈ C∞
0 (Ω), a simple approximation

argument shows that (3.2) holds for every u ∈ W 1,p
0 (Ω).

This gives a proof for the well–known Hardy’s inequality for all open sets with
non-empty complements if n < p < ∞. The case 1 < p ≤ n is more involved, since
then extra conditions must be imposed on Ω, see [Le2, Theorem 3]. However, there
is a sufficient condition in terms of the capacity density of the complement.

3.3. Definition. A closed set E ⊂ Rn is uniformly p−fat, 1 < p < ∞, if there is
a constant γ > 0 such that

(3.4) Cp

(
E ∩ B(x, r), B(x, 2r)

)
≥ γ Cp

(
B(x, r), B(x, 2r)

)

for every x ∈ E and for all radii r > 0.

Here Cp(K, Ω) denotes the variational p−capacity

Cp(K, Ω) = inf
{ ∫

Ω

|Du(x)|p dx : u ∈ C∞
0 (Ω), u(x) ≥ 1 for x ∈ K

}

of the condenser (K, Ω). Here Ω is open and K is a compact subset of Ω. For
information on the capacity we refer to [HKM, Ch. 2]. We recall that

(3.5) Cp

(
B(x, r), B(x, 2r)

)
= c(n, p) rn−p.

3.6. Examples. (1) If p > n, then all non–empty closed sets are uniformly p−fat.
(2) All closed sets satisfying the interior cone condition are uniformly p−fat for

every p, 1 < p < ∞.
(3) The complements of the Lipschitz domains are uniformly p−fat for every p,

1 < p < ∞.
(4) If there is a constant γ > 0 such that

|B(x, r)∩ E| ≥ γ |B(x, r)|

for every x ∈ E and r > 0, then E is uniformly p−fat for every p, 1 < p < ∞.

The fundamental property of uniformly fat sets is the following deep result due
to Lewis [Le2, Theorem 1]. For another proof see [Mi, Theorem 8.2].

3.7. Theorem. Let E ⊂ Rn be a closed uniformly p−fat set. Then there is q,
1 < q < p such that E is uniformly q−fat.

If Ω ⊂ Rn is an open set such that Rn \ Ω is uniformly p−fat, then Lewis
proved [Le2, Theorem 2] that Hardy’s inequality holds. We have already seen
that Hardy’s inequality follows from pointwise inequalities involving the Hardy–
Littlewood maximal function if p > n. We show that this is the case also when
1 < p ≤ n. In the proof we need the following version of Poincaré’s inequality. For
the proof see [Mi, Lemma 8.11], [KK, 3.1] or [Maz, Ch. 10].
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3.8. Lemma. Suppose that 1 < p < ∞, let u ∈ C∞(Rn) and denote

Z =
{
x ∈ Rn : u(x) = 0

}
.

Then there is c = c(n, p) such that

( 1
|B(x0, 2R)|

∫

B(x0,R)

|u(y)|p dy
)1/p

≤ c
(

Cp

(
Z ∩ B(x0, R), B(x0, 2R)

)−1
∫

B(x0,2R)

|Du(y)|p dy
)1/p

.

Now we are ready to prove a pointwise Hardy’s inequality.

3.9. Theorem. Let 1 < p ≤ n, 0 ≤ α < p, let Ω ⊂ Rn be an open set such that
Rn \Ω is uniformly p−fat and suppose that u ∈ C∞

0 (Ω). Then there is a constant
c, depending only on p, n and γ in (3.4), such that

(3.10) |u(x)| ≤ c dist(x, ∂Ω)1−α/p
(
Mα|Du|p(x)

)1/p
, x ∈ Ω.

Proof. Let x ∈ Ω and choose x0 ∈ ∂Ω such that |x − x0| = dist(x, ∂Ω) = R. We
define u and Du to be zero in the complement of Ω. Then by (2.5) and (2.6) we
have

|u(x) − uB(x0,2R)| ≤ c(n, p) R1−α/p
(
Mα|Du|p(x)

)1/p
, x ∈ B(x0, 2R),

and hence

|u(x)| ≤ |u(x) − uB(x0,2R)| + |uB(x0,2R)|

≤ c R1−α/p
(
Mα|Du|p(x)

)1/p + |u|B(x0,2R), x ∈ B(x0, 2R).

Here we use the familiar notation

uB(x,r) =
1

|B(x, r)|

∫

B(x,r)

u(y) dy.

Using Lemma 3.8, (3.4) and (3.5) we arrive at

1
|B(x0, 2R)

∫

B(x0,2R)

|u(y)| dy

≤ c
(

Cp

(
Z ∩ B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du(y)|p dy
)1/p

≤ c
(

Cp

(
(Rn \ Ω) ∩ B(x0, 2R), B(x0, 4R)

)−1
∫

B(x0,4R)

|Du(y)|p dy
)1/p

≤ c
(
Rp−n

∫

B(x,8R)

|Du(y)|p dy
)1/p

≤ c R1−α/p
(
Mα|Du|p(x)

)1/p
, c = c(n, p, γ).
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This completes the proof.

If Rn \ Ω is p−fat, then by Theorem 3.7 it is q−fat for some 1 < q < p ≤ n.
Using (3.10) with α = 0 we get

|u(x)| ≤ c(n, q) dist(x, ∂Ω)
(
M|Du|q(x)

)1/q
, x ∈ Ω.

Integrating and using the Hardy–Littlewood–Wiener theorem exactly the same way
as in (3.2), we get the proof for Hardy’s inequality also in the case 1 < p ≤ n.
Again, an approximation argument shows that Hardy’s inequality holds for every
u ∈ W 1,p

0 (Ω). Observe that the existence of q < p given by Theorem 3.7 is essential
here, since the Hardy–Littlewood–Wiener theorem does not hold in L1(Rn). Thus
we have given a new proof for the following result.

3.11. Corollary. Let 1 < p < ∞ and suppose that Ω ⊂ Rn is an open set
such that Rn \ Ω is uniformly p−fat. If u ∈ W 1,p

0 (Ω), then there is a constant c,
depending on p, n and γ in (3.4), such that

(3.12)
∫

Ω

( |u(x)|
dist(x, ∂Ω)

)p

dx ≤ c

∫

Ω

|Du(x)|p dx.

In particular, if p > n, then (3.12) holds provided Ω 6= Rn.

For different proofs of Corollary 3.11 we refer to [A] (in the case p = n = 2) [Le2]
and [Mi]. If p = n, then Hardy’s inequality is equivalent to the fact that Rn \Ω is
uniformly p−fat, see [Le2, Theorem 3]. Another necessary and sufficient condition
is given in [Maz 2.3.3].

It is known that u ∈ W 1,p(Ω) belongs to W 1,p
0 (Ω) if u(x)/ dist(x, ∂Ω) ∈ Lp(Ω)

without any restrictions on Ω, see [EE, p. 223]. In particular, if Hardy’s inequality
holds, this is true. We improve this result here. For this end, we record that a
function f : Ω → [−∞,∞] belongs to the weak Lp(Ω) if there is a constant c so
that ∣∣{x ∈ Ω : |f(x)| > λ}

∣∣ ≤ c λ−p, λ > 0.

3.13. Theorem. Let Ω be an open set and suppose that u ∈ W 1,p(Ω) with

1 < p < ∞. Then u ∈ W 1,p
0 (Ω) provided u(x)/ dist(x, ∂Ω) belongs to the weak

Lp(Ω).

Proof. First we suppose that Ω is bounded. Then it is easy to see that u(x)/ dist(x, ∂Ω)
belongs to Lq(Ω) for every q < p. Using Theorem 3.4 in [EE, p. 223] we conclude
that u ∈ W 1,q

0 (Ω) for every q < p. In particular, this implies that u has the general-
ized gradient Du. Moreover, u(x) = 0 and Du(x) = 0 for almost every x ∈ Rn \Ω.
We define u and Du to be zero in Rn \ Ω and the above discussion implies that
u ∈ W 1,p(Rn). One can also check directly, without using the result in [EE], that
the zero extension to the complement belongs to W 1,p(Rn). This can be done, for
example, by using the ACL–characetrization of the Sobolev functions.

Let N ⊂ Rn, |N | = 0, be the exceptional set for inequality (2.4) and denote

(3.14)
Fλ =

{
x ∈ Ω \ N : |u(x)| ≤ λ, M|Du|p(x) ≤ λp

and |u(x)|/ dist(x, ∂Ω) ≤ λ
}
∪ (Rn \ Ω), λ > 0.
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We show that u|Fλ
is c(n, p)λ−Lipschitz continuous.

Suppose that x, y ∈ Ω ∩ Fλ. Then by (2.4) and (3.14) we get

|u(x) − u(y)| ≤ c(n, p) |x− y|
(
(M|Du|p(x))1/p + (M|Du|p(y))1/p

)

≤ c(n, p)λ |x − y|.

If x ∈ Ω ∩ Fλ and y ∈ Rn \ Ω, we have

|u(x) − u(y)| = |u(x)| ≤ λ dist(x, ∂Ω) ≤ λ |x − y|.

If x, y ∈ Rn\Ω, then the claim is clear. Since all the other cases follow by symmetry,
it follows that u|Fλ

is Lipschitz continuous with the constant c(n, p)λ.
Then we extend u|Fλ

to a Lipschitz continuous function uλ to Rn with the same
constant by defining

uλ(x) = inf
y∈Fλ

(
u(y) + c(n, p)λ |x− y|

)

and finally we set uλ(x) = sgn u(x) min(|uλ(x)|, λ). This is a slight modification of
the classical McShane extension [Mc]. Then uλ enjoys the following properties:

(1) uλ(x) = u(x) for every x ∈ Fλ.
(2) |uλ(x)| ≤ λ for every x ∈ Rn.
(3) |Duλ(x)| ≤ c(n, p)λ for every x ∈ Rn.
(4) uλ(x) = 0 when x ∈ Rn \ Ω.
(5) Duλ(x) = Du(x) for almost every x ∈ Fλ.

We write

F 1
λ =

{
x ∈ Ω : |u(x)| > λ

}
,

F 2
λ =

{
x ∈ Ω : M|Du|p(x) > λp

}
,

F 3
λ =

{
x ∈ Ω : |u(x)|/ dist(x, ∂Ω) > λ

}
.

Then

(3.15)

∫

Ω

|Duλ(x)|p dx ≤
∫

Fλ∩Ω

|Du(x)|p dx +
∫

F 1
λ

|Duλ(x)|p dx

+
∫

F 2
λ

|Duλ(x)|p dx +
∫

F 3
λ

|Duλ(x)|p dx.

We estimate the integrals on the right side separately. Using the fact that |Duλ(x)| ≤
c(n, p)λ we see that

∫

F 1
λ

|Duλ(x)|p dx ≤ c(n, p)λp
∣∣{x ∈ Ω : |u(x)| > λ}

∣∣

≤ c(n, p)
∫

Ω

|u(x)|p dx
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and by the weak type inequality (2.2) we find
∫

F 2
λ

|Duλ(x)|p dx ≤ c(n, p)λp
∣∣{x ∈ Rn : M|Du|p(x) > λp}

∣∣

≤ c(n, p)
∫

Ω

|Du(x)|p dx.

Finally, using the definition of F 3
λ and the hypothesis that u(x)/ dist(x, ∂Ω) belongs

to the weak Lp(Ω) we obtain
∫

F 3
λ

|Duλ(x)|p dx ≤ c(n, p)λp
∣∣{x ∈ Ω : |u(x)|/ dist(x, ∂Ω) > λ}

∣∣ ≤ c(n, p, u) < ∞.

The obtained estimates and (3.15) imply

(3.16)
∫

Ω

|Duλ(x)|p dx ≤ c

∫

Ω

|u(x)|p dx+ c

∫

Ω

|Du(x)|p dx+ c, c = c(n, p, u),

for every λ > 0 and hence the family Duλ is bounded in Lp(Ω) uniformly in λ.
Using the weak type inequality (2.2) in the same manner as in estimating the
gradient we see that also uλ is bounded in Lp(Ω) uniformly in λ and

(3.17)
∫

Ω

|uλ(x)|p dx ≤ c

∫

Ω

|u(x)|p dx + c

∫

Ω

|Du(x)|p dx + c, c = c(n, p, u),

for every λ > 0. Since uλ is Lipschitz and uλ(x) = 0 when x ∈ Rn \Ω we conclude
that uλ ∈ W 1,p

0 (Ω) for every λ > 0. Estimates (3.16) and (3.17) show that uλ is
uniformly bounded family in W 1,p

0 (Ω) and

‖uλ‖1,p,Ω ≤ c(n, p) ‖u‖1,p,Ω + c(n, p, u)

for every λ > 0. Finally, since |Ω\Fλ| → 0 as λ → ∞ and uλ coincides with u in Fλ,
we see that uλ → u almost everywhere in Ω. Since uλ is uniformly bounded family
in W 1,p

0 (Ω) and uλ → u almost everywhere in Ω, a weak compactness argument
shows that u ∈ W 1,p

0 (Ω).
Suppose then that Ω is unbounded. Let x0 ∈ ∂Ω. Choose a cutt–off function

φi ∈ C∞
0 (Ω), i = 1, 2, . . . , be such that 0 ≤ φi(x) ≤ 1 for every x ∈ Rn, φi(x) = 1 if

x ∈ B(x0, i), φi(x) = 0 if x ∈ Rn \B(x0, 2i) and |Dφi(x)| ≤ c with c independent of
i. Let vi = φiu and denote Ωi = Ω ∩ B(x0, 4i) for i = 1, 2, . . . Then vi ∈ W 1,p(Ω)
and vi → u in W 1,p(Ω) as i → ∞. Clearly |vi(x)|/ dist(x, ∂Ωi) belongs to the
weak Lp(Ωi), i = 1, 2, . . . Since Ωi is bounded, we obtain vi ∈ W 1,p

0 (Ωi) and hence
vi ∈ W 1,p

0 (Ω). Since vi → u in W 1,p(Ω), we conclude that u ∈ W 1,p
0 (Ω). This

completes the proof.

3.18. Remark. It is known, [K, p. 74], that if Ω is a Lipschitz-domain, then u ∈
W 1,p(Ω) belongs to W 1,p

0 (Ω) if and only if u(x)/ dist(x, ∂Ω) belongs to Lp(Ω). We
show that the condition on Ω can be considerably weakened.

Let p > n, Ω 6= Rn and u ∈ W 1,p(Ω). Then by (3.2) and Theorem 3.13
u ∈ W 1,p

0 (Ω) if and only if u satisfies Hardy’s inequality with the exponent p.
If 1 < p ≤ n and Rn \ Ω is uniformly p−fat, then u ∈ W 1,p(Ω) belongs to

W 1,p
0 (Ω) if and only if u(x)/ dist(x, ∂Ω) is in weak Lp(Ω).
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