REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

JUHA KINNUNEN AND EERO SAKSMAN

ABSTRACT. The purpose of this work is to show that the fractional maximal oper-
ator has somewhat unexpected regularity properties. Our main result shows that
the fractional maximal operator maps LP-spaces boundedly into certain first order
Sobolev spaces. We also prove that the fractional maximal operator preserves first
order Sobolev spaces. This extends known results for the Hardy-Littlewood maximal
operator.

1. INTRODUCTION

Let 0 < a < n. The fractional maximal function of a locally integrable function
f: R™ = [—00,00] is defined by

>0

(11) Mo f(z) = supra][B( W)y

For @ = 0 we obtain the Hardy-Littlewood maximal function. The fractional maxi-
mal operator has applications in potential theory and partial differential equations.
In the case 0 < a < n there is a close connection between the fractional maximal
function and the Riesz potential

Losto) - [ )

" |$ _ y|n—a
It is easy to see that
(1.2) Maf(z) < QM o f ()

for every x € R", where 2,, is the volume of the unit ball in R™, but there is no
pointwise inequality in the reverse direction. However, such an inequality holds in
average by a result of Muckenhoupt and Wheeden. Indeed, for every 1 < p < oo
there is a constant ¢ = ¢(n, p) so that

(1.3) cHMafllp < Hafllp < clMafllp

for every locally integrable f. The first inequality is an obvious consequence of
(1.2), but the second inequality is more involved, see [5].
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On the other hand, the fractional maximal function of the gradient bounds the
oscillation of the function. To be more precise, suppose that u € C§°(R™) and let
0 < a < p. Then we can show that there is a constant ¢ = ¢(n) such that

[u(z) — u(y)| < |z — y|"~*P (Mayp|Dul(z) + Mayp| Dul(y))

for every z,y € R™. The proof of this inequality is due to Hedberg, see [3].

Let us recall the standard boundedness properties of the Riesz potential. If
1 <p< ooand 0 < a < n/p, the Hardy-Littlewood-Polya theorem of fractional
integration gives

(1.4) 1 aflly < c(n,p,) £,

with ¢ = np/(n — ap) and if p =1 then we have the weak type estimate

(1.5) Hx e R": I, f(x) > A} < (c)\—lnf”l)n/(n—a)

for every A > 0, see [9]. Using (1.2) we observe that the corresponding results hold
for the fractional maximal operator as well. If &« = 0 then we have the classical
maximal function theorem of Hardy, Littlewood and Wiener.

The purpose of this work is to show that the fractional maximal operator has
somewhat unexpected regularity properties. Our motivation is the following exam-
ple: If f € LP(R™) with 1 < p < oo, then the Riesz potential I; has the first weak
partial derivatives and they are given almost everywhere by

DI, f(z) = —R;f(z),

where
. Yi
Rif(@) = lime(n) [ s f@ ) dy,
’ €0 ly|>e ‘y|n+1
1=1,2,...,n, are the Riesz transforms. Since the Riesz transforms are bounded in

LP? when 1 < p < oo, we see that I, maps LP(R"™) into a first order Sobolev space.

Keeping in mind the close connection between the Riesz potential and the frac-
tional maximal operator it is natural to ask whether the fractional maximal operator
has similar properties. Our main result shows that the fractional maximal operator
is smoothing in the sense that it maps LP-spaces into certain first order Sobolev
spaces. We also show that the fractional maximal operator is bounded on first or-
der Sobolev spaces. This latter fact is a simple consequence of (1.3) and (1.4) and
extends known results for the Hardy-Littlewood maximal operator in [4]. We close
the paper by recording boundedness results for the fractional spherical maximal
operator. These results are closely related to the regularity problems studied in
this paper.

2. FRACTIONAL MAXIMAL OPERATOR ON SOBOLEV SPACES

Recall that the Sobolev space W1P(R"), 1 < p < oo, consists of functions in
LP(R™) whose first distributional partial derivatives are also in LP(R"), see [2] or
[9]. The following result shows that the fractional maximal operator preserves the
first order Sobolev spaces.



REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION 3

2.1. Theorem. Suppose that 1 < p < oo and let 0 < a < n/p. If u € WLP(R"),
then Mou € WH4(R™) with ¢ = np/(n — ap). Moreover, there is ¢ = c(n,p, a)
such that

[Maullr,g < cllull1p

Proof. We use the characterization of Sobolev spaces by integrated difference quo-
tients, see 7.11 of [2]. Denote fr(x) = f(x + h) for h € R™. We observe that the
fractional maximal operator commutes with translations and is sublinear. Thus
(1.3) and (1.4) give
Mt~ Maul], = [ Malun) = Mo, < [ Malun - )],
< cllun —ullp < c||Dullp|hl.

This proves the claim. a

2.2. Remark. A slightly more careful analysis would yield the pointwise estimate
|D;Myu| < MyDju, 1=1,2,...,n,

almost everywhere in R™. The proof is an easy modification of the argument in [4].

Observe that ¢ > p if @ > 0 in the previous theorem. Hence M,u belongs to a
higher Sobolev space than u. This shows that the fractional maximal operator has
certain smoothing properties. The most basic example of this phenomenon is that
Mquf, a > 0, is continuous for every f € L>°(R™) which has a compact support.
This is clearly not true when o = 0. We leave the details to the interested reader.

3. FRACTIONAL MAXIMAL OPERATOR ON LEBESGUE SPACES

The following theorem is our main result.

3.1. Theorem. Suppose that f € LP(R"™) with1 <p<n andlet 1 < a < n/p.

(i) Then the weak partial derivatives DiMyf, i =1,2,...,n, erist almost ev-
erywhere and there is a constant ¢ = c¢(n,a) such that

|DiMaf| < CMa_1f, 1= 1,2,...,71,,
almost everywhere in R™.
(i) Let ¢ = np/(n — (a — 1)p) and ¢* = np/(n — ap). Then Myf € LT (R™)
1,2,.

and D;M,f € LY(R"), i = ..,n. Moreover, there is ¢ = c(n,p, )
such that

Mo f

e <clfll, and ID:Mafly <clflly i=1,2....n.

Proof. Suppose first that f € Cg°(R™) and f # 0. We verify that M,, f is Lipschitz
continuous on any compact subset K C R"™. Since f is bounded and not identically
zero we easily deduce that there are constants ry and Ry, with 0 < r9 < Ry,
depending only on f and K such that

Mo f(z) = sup ra][B( wlay

ro<r<Rg
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for all z € K. On the other hand, it is obvious that xpo, - *f is Lipschitz continuous
with a constant that stays bounded for ry < r < Ry. The claim follows, since the
Lipschitz constant of a supremum does not exceed the supremum of the individual
Lipschitz constants.

Let us fix x € R™ and h € R™ such that |h| < 1. Let K = B(x,2) and let 7o
and Ry be as above corresponding to this particular set K. We denote

Dt Mg f(z) = limsup Maf(@+ }|li)l\_ Maf(m).
h—0

Since M, f is Lipschitz continuous, we have DT M, f(z) < oo.
We want to deduce an upper bound for D* M, f(z). There is a sequence hy €
R™ k=1,2,..., such that hy — 0 as k — oo and

Mo f(x+ hg) — Mo f(z)

> Dt S —
|| 2 D" Maf(@) k
Let us fix hi. Then
h
M (@4 hi) > g D M f (@) ~ 504, p )

Choose r; >0, j =1,2,..., such that

1
it fldy > Maf(e+ he) - .
B(z+hg,ry) J

We may assume that 7o < r; < Ry. Since B(x + hy,r;) C B(z,rj + |hg|), we have
Maf (@) > (ry + ) $1dy

B(z,rj+|hk|)

> Q74 (ry + [hi)o " / £ dy.

B(.Z-l—hk ,’I“J')
By combining the last three estimates we obtain
h
D Maf () < B 57 = g4 e)*™) [ gy L
B(z+hy,rj)

By the mean value theorem there is (jx, r; < (jx < rj + |hg| such that

P = (g o+ )T < (0= @)

This implies that

e h
|hie| DY Mo f () < €™ B If| dy + . \kk|
B(z+hg,r;)
h
< erf fldy+ +' ]
B(z,rj+|hy|) J k

a—n—1 |hk‘

<C(L
T \rj+ |y
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where ¢ = ¢(n, ). We choose j so large that 1/j < |hg|/k. Then

rs a—n—1 2
DI Maf() <e(—p) T Manaf(@)+
J

< C(L)a_n_lj\/ta_lf(x) +

2
T‘o+|hk| k

Letting k — oo we arrive at

(3.2) DY My f(z) < eMa_1f(2),

where ¢ = ¢(n,a). Since x € R™ was arbitrary, inequality (3.2) holds for every
rz € R".

Suppose then that f € LP(R"™). Let f; € C°(R"), j = 1,2,..., be such that
fi — fin LP(R™) as j — oo. Since M, f; is Lipschitz, it is differentiable at almost
every £ € R™. At each point of differentiability, and hence almost everywhere in
R”, (3.2) yields the inequality

|DiMafi| < DY Mafj < eMaifj
for each partial derivative D; M, f;. By (1.4) we have

[1DiMafilly < clMa-1fillg < cllfillp,

where ¢ = ¢(n, p, «). Hence (D; M, f;) is a bounded sequence in LI(R™) for every
i=1,2,...,n. On the other hand, (1.4) implies that

||Mafj - Maf

¢ < [[Malf; = f)

q* < C”f] - f||p7

where ¢ = ¢(n,p, o), and therefore M, f; = Mqyf in LT (R™) as j — oco. From
this we conclude that D;M,f € LY(R"™), i = 1,2,...,n, and, by extracting a
subsequence if needed, we may assume that D;,M,f; — D;M,f, ¢ = 1,2,...,
weakly in LY(R™) as j — oc. Hence foranyi =1,... ,n we have D;M,f € LI(R"™).
Moreover, it is easy to see that the almost everywhere pointwise estimate

|IDiMofil < cMa_1f;
is preserved up to the weak limit and we have
IDiMuofl < eMea-1f
almost everywhere in R™. This completes the proof. a

3.3. Remark. Observe that in the definition of the fractional maximal function
balls can be replaced, for example, by cubes and Theorem 3.1 is still true with an

analoguous proof. This observation is interesting when it is combined with remark
4.5 below.
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4. FRACTIONAL SPHERICAL MAXIMAL OPERATOR

Suppose that f: R™ — (—o00, 00) is a continuous function and let 0 < a < n—1.
The fractional spherical maximal function of f is defined as

Saf(z) = supr® f e T

r>0

Here the bar on the integral sign denotes the average with respect to the normalized
(n — 1)-dimensional Hausdorff measure

1
wn—lrn_l

f o i) - / )| dHm (),
8B (z,r) 8B(z,r)

where w,,_1 = H" Y (0B(z,r)). If @ = 0, we have the spherical maximal function
studied originally by E.M. Stein, see [10] and [11]. In general it is much more
difficult to obtain bounds for S, than for M,. This difficulty is visible already
when a = 0. It is clear that

n

(4.1) Mo f(z) < aSaf(x), 0<a<n-1,

n _
for every z € R"”, but there is no inequality in the reverse direction. However, the
the following result is true.

4.2. Theorem. Letn >3, n/(n—1) <p<n and0 < a <n/p—1. Then there
exists ¢ = c¢(n,p, ) such that

1Safllg < cllfllp

with ¢ = np/(n — ap) for all f € LP(R"™).

For a = 0, this was proved by by Stein [10] (see also [11]) when n > 3 and by
Bourgain [1] in the case n = 2. For o > 0 this result is due to Schlag when n = 2, see
Theorem 1.3 in [6], and Schlag and Sogge when n > 3, see Theorem 4.1 in [7]. The
result actually holds for a slightly larger range of a’s, but we do not consider this
refinement here. Both references state the analogue of Theorem 4.2 for maximal
means over radii 1 < r < 2 only but the result for the corresponding fractional
maximal operator can be obtained from this result by the Littlewood-Paley theory,
see pages 71-73 of [1] or pages 72-74 of [8].

For readers’ convenience we sketch here a different argument in the easier case
n > 3. This proof interpolates between (1.4) and an estimate from [11]. We stress
that the proof of Stein’s estimate only uses simple g-function techniques in contrast
with more intrigue Theorem 4.1 in [7].

Proof of Theorem 4.2. Let n > 3 be the dimension of the underlying space R",
r > 0, a,8 be complex numbers and f be a smooth function. We define the
operator Mgm as

(ME . 1)(€) = roms (rE) F(€),

and
mg(€) = 2" 27T (n/2 4 1) (20) T o 01 (2E),
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see page 1270 of [11]. Here J denotes the Bessel function. The corresponding
maximal function M¥2 f is defined as

MPE f(x) = sup Mg’rf(a:).
>0

Notice that the values f = 0 and 8 = 1 correspond to the fractional spherical
and the fractional Hardy-Littlewood maximal functions, respectively. According to
Theorem 9 on p. 1270 of [11] we have

(4.3) IMG Fll2 < cpll ]Iz

for Re 8 > 1 —n/2 and smooth f . Moreover, (1.4) can be rewritten as

(4.4) IM&fllq < cllfllp

forl<p<gand a=n(l/p—1/q).

We next apply Stein’s analytic interpolation theorem, see page 205 of [12], in a
standard way to estimates (4.3) and (4.4). For this end, let 1 < pg < gp < o0 and
denote ag = n(1/po — 1/qo). Assume that the measurable function r defined on
R™ is strictly positive and takes only finitely many values. For € > 0 consider the
linear operator G(3), where

(G(B)F) () = (M}g) iy (@),

where g(8) = ap(B8+n/2—1—¢)/(n/2—¢). Clearly G(f) is analytic with respect to
B and obeys bounds similar to (4.3) and (4.4). Since cg grows moderately enough
as Im 3 — +oo we may interpolate in the strip e + 1 — n/2 < Ref < 1. Observe
that the norm bounds do not depend on the function r. The claim is obtained at
B = 0, however, for a smaller range for the indexes. The stated range is obtained
by letting ¢ — 0. a

4.5. Remark. We may also use the method of [4] to establish directly that
(46) |D1Maf| S Csa_1f, 1= 1,2,...,71,,

almost everywhere in R™. Let us sketch the idea. We compute the derivative of the
convolutions corresponding to the integral averages and observe that the derivative
of the supremums is bounded by the supremum of the individual derivatives. By
(4.1) this is weaker than the estimate in Theorem 3.1, but we feel that this observa-
tion is of independent interest. In particular, if & = 1, then on the right hand side
of (4.6) we have Stein’s spherical maximal function, which is known to be bounded
in LP(R™) if and only if n/(n — 1) < p < co. Hence by this argument we obtain
a smaller range of exponents. In addition, this method fails if ball are replaced by
cubes (compare to Remark 3.3), since Theorem 4.2 is obviously not true for the
boundaries of cubes.
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