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Abstract. This note investigates weaker conditions than a Poincaré inequality in
analysis on metric measure spaces. We discuss two resistance conditions which are stated
in terms of capacities. We show that these conditions can be characterized by versions
of Sobolev–Poincaré inequalities. As a consequence, we obtain so-called Lip-lip condition
related to pointwise Lipschitz constants. Moreover, we show that the pointwise Hardy
inequalities and uniform fatness conditions are equivalent under an appropriate resistance
condition.

1. Introduction
Rather standard assumptions in analysis on a metric measure space

pX, d, µq are that the measure is doubling and that the space supports a
Poincaré inequality, see [3] and [5]. The space is said to support a weak
p1, pq-Poincaré inequality with 1 ≤ p ă 8, if there exist cP ą 0 and σ ≥ 1
such that for any x P X and r ą 0, and for every locally integrable function
f in X,

ż

Bpx,rq
|f ´ fBpx,rq| dµ ≤ cP r

˜

ż

Bpx,σrq
plip fqp dµ

¸1{p

,

where
fBpx,rq “

ż

Bpx,rq
f dµ “

1

µpBpx, rqq

ż

Bpx,rq
f dµ

denotes the integral average over the ball Bpx, rq and lip f is the pointwise
Lipschitz constant of f . The precise definitions will be given later. These
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conditions imply, for example, the Sobolev embedding theorem, which is a
central tool in analysis on metric measure spaces, see [3] and [5].

The goal of this note is to consider weaker conditions than the Poincaré
inequality. More precisely, the weak p1, pq-Poincaré inequality implies so-
called resistance condition

1

cR

µpBpx, rqq

rp
≤ capLip,ppBpx, rq, Bpx, 2rqq ≤ cR

µpBpx, rqq

rp
,(1.1)

for every x P X and r ą 0 with a uniform constant cR ≥ 1. Here we consider
the capacity defined as

capLip,ppBpx, rq, Bpx, 2rqq “ inf

ż

X
plip fqp dµ,

where the infimum is taken over all Lipschitz continuous functions f in X
with f ≥ 1 in Bpx, rq and f “ 0 in XzBpx, 2rq. The resistance condition is
considerably weaker than the Poincaré inequality. Even in the case when
the space is complete, the resistance condition does not imply quasiconvexity
of the space and, as a consequence, it is not equivalent with the Poincaré
inequality, see [9]. A similar condition has been previously employed, for
example in [1] and [4] in connection with the Dirichlet forms on metric
measure spaces.

Several versions of the resistance condition are available and it is not obvi-
ous which is the best approach. In this note, we discuss two conditions called
the p-resistance conductor condition and the p-strong resistance conductor
condition. These conditions seem to be stronger than (1.1) and, as we shall see,
they can be characterized by versions of Sobolev–Poincaré inequalities in the
same way as in [11]. For results in metric measure spaces, see also [8]. Using
the results of [7], we conclude that if X is a metric space with µ doubling and
that satisfies a p-strong resistance conductor condition, then so-called Lip-lip
condition related to pointwise Lipschitz constants holds true. Moreover, we
show that the pointwise Hardy inequalities and uniform fatness conditions
are equivalent in our context. This is closely related to results of [10] .

2. Preliminaries
From now on, let pX, d, µq be a metric measure space. Here µ is a doubling

measure, that is, there exists cD ≥ 1, called the doubling constant of µ, such
that for all x P X and r ą 0,

µpBpx, 2rqq ≤ cDµpBpx, rqq,
where Bpx, rq “ ty P X : dpx, yq ă ru.

Let us recall that a function f : X Ñ R is said to be Lipschitz continuous
if there exists c ą 0 such that

|fpxq ´ fpyq| ≤ cdpx, yq,(2.1)
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for every x, y P X. In this case the Lipchitz constant of f is defined to be the
infimum over all constants c ą 0 for which (2.1) holds and LippXq denotes
the class of Lipschitz functions on X.

We denote
Dεfpxq “ sup

yPBpx,εq

|fpxq ´ fpyq|

ε
,

where x P X. If f P LippXq, then for every x P X the lower local Lipschitz
constant of u is defined by

lip fpxq “ lim inf
εÑ0

Dεfpxq(2.2)

and the upper local Lipschitz constant by

Lip fpxq “ lim sup
εÑ0

Dεfpxq.(2.3)

Remark 2.4. It is useful to note that for f P LippXq, we have

Lip fpxq “ lim sup
yÑx

|fpxq ´ fpyq|

dpx, yq

for every x P X, see [7, Remark 4.2.2].

3. Sobolev–Poincaré inequalities and resistance conditions
Let 1 ≤ p ă 8 and pE,Gq be a pair of sets inX, where E is a µ-measurable

subset of an open set G. We define the capacity of pE,Gq in X as

capLip,ppE,Gq “ inf

ż

X
plip fqp dµ,

where the infimum is taken over all f P LippXq with f ≥ 1 in E and f “ 0
in XzG.

Let Ω be an open and bounded subset of X. We want to consider Poincaré
inequalities for functions that are not necessary zero on the boundary of the
domain. To this end, we shall need the concept of conductivity. Let G be an
open subset of Ω and E Ă G a µ-measurable set. Then

capLip,ppE,G; Ωq “ inf

ż

Ω
plip fqp dµ,

where the infimum is taken over all f P LippΩq with f ≥ 1 in E and f “ 0 in
ΩzG. We also denote capLip,ppE,G;Xq “ capLip,ppE,Gq.

Definition 3.1. The spaceX satisfies the p-resistance conductor condition,
if there exists cR ≥ 1 such that for any x P X, 0 ă r ă diampXq{2 and
E Ĺ Bpx, rq, we have

1

cR

µpEq

rp
≤ capLip,ppE,Bpx, rqq.(3.2)
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The following capacitary strong type estimate will be useful later.

Lemma 3.3. Let x P X, 0 ă r ă diampXq{2 and assume that f P

LippBpx, 2rqq with f “ 0 in Bpx, 2rqzBpx, rq. Then
ż 8

0
tp´1capLip,ppEt, Bpx, rqq dt ≤ 22p´1

ż

Bpx,rq
plip fqp dµ,

where Et “ tz P Bpx, rq : |fpzq| ≥ tu.

Proof. If Et “ ∅ for every t ą 0, then there is nothing to prove. Hence, we
may assume that Et ‰ ∅ for some t ą 0. In this case

(3.4)
ż 8

0
tp´1capLip,ppEt, Bpx, rqq dt

“

8
ÿ

j“´8

ż 2j

2j´1

tp´1 capLip,ppEt, Bpx, rqq dt

≤
8
ÿ

j“´8

2jpp´1qp2j ´ 2j´1q capLip,ppE2j´1 , Bpx, rqq

≤ 1

2

8
ÿ

j“´8

2jp capLip,ppE2j´1 , Bpx, rqq.

Note that Et Ĺ Bpx, rq for every t ą 0. We define fj by

fjpzq “ min

"

|fpzq| ´ 2j´1

2j´1
, 1

*

`

and we have tfj ‰ 0u Ă E2j´1 Ă Bpx, rq. Since lip fj´1 is zero in a set where
fj´1 is constant, we conclude that

(3.5) capLip,ppE2j´1 , Bpx, rqq ≤
ż

E
2j´2

plip fj´1q
p dµ

“

ż

E
2j´2zE2j´1

plip fj´1q
p dµ ≤ 2p2´jqp

ż

E
2j´2zE2j´1

plip fqp dµ.

Hence, by (3.4) and (3.5), we arrive at
ż 8

0
tp´1 capLip,ppEt, Bpx, rqq dt ≤

1

2

8
ÿ

j“´8

2jp2p2´jqp
ż

E
2j´2zE2j´1

plip fqp dµ

≤ 22p´1

ż

Bpx,rq
plip fqp dµ.
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The next result shows that the p-resistance conductor condition can
be characterized by a Sobolev type inequality for functions vanishing on a
relatively large set.

Theorem 3.6. The space X satisfies the p-resistance conductor condition
if and only if for any x P X, 0 ă r ă diampXq{2 and f P LippBpx, 2rqq, for
which f “ 0 in Bpx, 2rqzBpx, rq, we have

ˆ
ż

Bpx,rq
|f |p dµ

˙1{p

≤ cr
ˆ
ż

Bpx,rq
plip fqp dµ

˙1{p

.

Proof. If Et “ tz P Bpx, rq : |fpzq| ≥ tu “ ∅ for every t ą 0, then
the inequality is trivial. Assume then that there exists t ą 0 such that
∅ ‰ Et Ĺ Bpx, rq. The Cavalieri principle and the previous lemma imply that

ˆ
ż

Bpx,rq
|f |p dµ

˙1{p

“

ˆ

p

ż 8

0
tp´1µpEtq dt

˙1{p

≤ ppcRq1{pr
ˆ
ż 8

0
tp´1capLip,ppEt, Bpx, rqq dt

˙1{p

≤ ppcRq1{pr 22´1{p

ˆ
ż

Bpx,rq
plip fqp dµ

˙1{p

.

Conversely, let x P X, 0 ă r ă diampXq{2 and E Ĺ Bpx, rq. For any
f P LippBpx, 2rqq such that f “ 0 in Bpx, 2rqzBpx, rq and f ≥ 1 in E, we
have that

cr

ˆ
ż

Bpx,rq
plip fqp dµ

˙1{p

≥
ˆ
ż

Bpx,rq
|f |p dµ

˙1{p

≥ µpEq1{p.

Raising both sides to the power p and taking infimum over all such functions,
we arrive at

capLip,ppE,Bpx, rqq ≥
µpEq

crp
.

The proof of the following capacitary strong type estimate is similar to
Lemma 3.3.

Lemma 3.7. Let x P X, 0 ă r ă diampXq{2 and f P LippBpx, 2rqq such
that f “ 0 in Bpx, 2rqzG, where G is an open set with G Ĺ Bpx, 2rq. Then

ż 8

0
tp´1capLip,ppEt, G;Bpx, 2rqq dt ≤ 22p´1

ż

G
plip fqp dµ,

where Et “ tz P Bpx, rq : |fpzq| ≥ tu for t ą 0.

Next, we introduce another resistance condition.
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Definition 3.8. The space X satisfies the p-strong resistance conductor
condition if there exists cR ≥ 1 such that for any x P X, 0 ă r ă diampXq{2
and E Ĺ Bpx, rq, we have

1

cR

µpEq

rp
≤ inf

 

capLip,ppE,Bpx, rqq, capLip,ppE,G;Bpx, 2rqq
(

,

where the infimum is taken over all open sets G such that E Ă G Ĺ Bpx, 2rq
and GX pBpx, 2rqzBpx, rqq ‰ ∅.

We obtain a similar characterization of the p-strong resistance conductor
condition as in Theorem 3.6.

Theorem 3.9. The space X satisfies the p-strong resistance conductor
condition if and only if, for any x P X, 0 ă r ă diampXq{2 and f P
LippBpx, 2rqq with f “ 0 in Bpx, 2rqzG for G is an open set in Bpx, 2rq, we
have

ˆ
ż

Bpx,rq
|f |p dµ

˙1{p

≤ cr
ˆ
ż

G
plip fqp dµ

˙1{p

.

Proof. Let us start with the sufficiency. If f “ 0 in Bpx, rq, there is nothing
to prove. Hence, we may assume that Et “ tz P Bpx, rq : |fpzq| ≥ tu ‰ ∅
for some t ą 0. If G Ď Bpx, rq, then the result follows from Theorem 3.6.
If not, GX pBpx, 2rqzBpx, rqq ‰ ∅ and by the p-strong resistance conductor
condition,

µpEtq ≤ cRrpcapLip,ppEt, G;Bpx, 2rqq.

Hence, by the Cavalieri principle and Lemma 3.7, we have
ˆ
ż

Bpx,rq
|f |p dµ

˙1{p

“

ˆ

p

ż 8

0
tp´1µpEtq dt

˙1{p

≤
ˆ

cRp

ż 8

0
rptp´1capLip,ppEt, G;Bpx, 2rqq dt

˙1{p

≤ cr
ˆ
ż

G
plip fqp dµ

˙1{p

.

Conversely, let x P X, 0 ă r ă diampXq{2, E Ĺ Bpx, rq and G be an
open set such that E Ă G Ĺ Bpx, 2rq and GX pBpx, 2rqzBpx, rqq ‰ ∅. Given
δ ą 0, there exists f P LippBpx, 2rqq such that f “ 0 in Bpx, 2rqzG, f ≥ 1
in E and

capLip,ppE,G;Bpx, 2rqq ` δ ≥
ż

G
plip fqp dµ ≥ 1

crp

ż

Bpx,rq
|f |p dµ

≥ 1

crp

ż

E
1 dµ “

µpEq

crp
.
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By letting δ Ñ 0, we arrive at
µpEq

crp
≤ inf capLip,ppE,G;Bpx, 2rqq,(3.10)

where the infimum is taken over all open G that E Ă G Ĺ Bpx, 2rq, G X
pBpx, 2rqzBpx, rqq ‰ ∅. Moreover, taking G “ Bpx, rq, by Theorem 3.6, the
space X satisfies the p-resistance conductor condition. Therefore, the fact
that X satisfies this condition, together with (3.10), implies that the space
X satisfies the p-strong resistance conductor condition.

Theorem 3.11. If X satisfies the p-strong resistance conductor condition,
then for any f P LippBpx, 2rqq, x P X and 0 ă r ă diampXq{2, we have

ˆ
ż

Bpx,rq
|f ´ fBpx,rq|

p dµ

˙1{p

≤ cr
ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

,

where c depends only on p and cR.

Proof. Let f P LippBpx, 2rqq and take α P R such that

µptz P Bpx, 2rq : fpzq ≥ αuq ≥ µpBpx, 2rqq

2
(3.12)

and
µptz P Bpx, 2rq : fpzq ą αuq ≤ µpBpx, 2rqq

2
.

Set v “ pf ´ αq`. Then v P LippBpx, 2rqq, v “ pf ´ αq` “ 0 in Bpx, 2rqzG,
whereG “ tz P Bpx, 2rq : fpzq ą αu and µpGq ≤ µpBpx, 2rqq{2. Theorem 3.9
implies that
ˆ
ż

Bpx,rq
pf ´ αqp` dµ

˙1{p

≤ cr
ˆ
ż

G
plip vqp dµ

˙1{p

“ cr

ˆ
ż

G
plip fqp dµ

˙1{p

.

Set g “ pα´ fq`. Then g P LippBpx, 2rqq, g “ pα´ fq` “ 0 in Bpx, 2rqzH,
where H “ tz P Bpx, 2rq : α ą fpzqu and by (3.12) we have

µpHq “ µpBpx, 2rqq ´ µptz P Bpx, 2rq : fpzq ≥ αuq ≤ µpBpx, 2rqq{2.
Theorem 3.9 implies that

ˆ
ż

Bpx,rq
pα´ fqp` dµ

˙1{p

≤ cr
ˆ
ż

H
plip fqp dµ

˙1{p

≤ cr
ˆ
ż

tzPBpx,2rq:fpzq≤αu
plip fqp dµ

˙1{p

.

By adding up both inequalities, we obtain
ˆ
ż

Bpx,rq
|f ´ α|p dµ

˙1{p

≤ cr
ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

.(3.13)



Resistance conditions 57

On the other hand,

inf
aPR

ˆ
ż

Bpx,rq
|f ´ a|p dµ

˙1{p

≤
ˆ
ż

Bpx,rq
|f ´ fBpx,rq|

p dµ

˙1{p

≤ 2 inf
aPR

ˆ
ż

Bpx,rq
|f ´ a|p dµ

˙1{p

.

Hence, by (3.13), we arrive at
ˆ
ż

Bpx,rq
|f ´ fBpx,rq|

p dµ

˙1{p

≤ cr
ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

.

Let us show that the p-strong resistance conductor condition implies the
Poincaré inequality.

Corollary 3.14. Let f P LippBpx, 2rqq, x P X and 0 ă r ă diampXq{2.
If X satisfies the p-strong resistance conductor condition, then

ż

Bpx,rq
|f ´ fBpx,rq| dµ ≤ cr

ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

,

where c depends only on p, cD and cR.

Proof. It follows from Theorem 3.11 and Hölder’s inequality.

To finish this section let us observe that the 1-strong resistance con-
ductor condition implies, by Corollary 3.14 and Hölder’s inequality, the
p1, pq-Poincaré inequality for any locally Lipschitz function. That is, X
satisfies a p1, pq-Poincaré inequality for any locally Lipschitz function in the
sense of [3, Chapter 4]. Therefore, in a similar way as in [3, Corollary 4.19], it
follows that X satisfies the pp, pq-Poincaré inequality for any locally Lipschitz
function. Finally, as in [6], we can see that X satisfies the p-strong resistance
condition.

4. Lip-lip condition, p-fatness and Hardy inequalities
It is shown in [7] that the Poincaré inequality implies the Lip-lip condition

when the space is complete. In this section, we show first that the Lip-lip
condition follows when the space satisfies a p-strong resistance conductor
condition even without completeness. Our argument is similar to the one
used in [7, Section 4.3] with minor changes.

Let x P X. Since µ is doubling, there exists a measurable set A in X
containing x where Lipf is a continuous function. Moreover, by the Lebesgue
differentiation theorem (see [5, Theorem 1.8] or [7, Proposition 3.2.2]) for
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µ-almost every y P A,

lim
rÑ0

µpBpy, rq XAq

µpBpy, rqq
“ 1.(4.1)

The proof of the next lemma follows from a straight forward adaption
the argument in [7, Section 4.3] applying (4.1) and Remark 2.4.

Lemma 4.2. Let ε ą 0 and x P X. There exists 0 ă rxε ≤ ε such that for
any 0 ă r ă rxε and y P Bpx, 4rq

|fpyq ´ fBpy,rq| ≤ rpLipfpxq ` εq.

As in [7, Section 4.3] applying Corollary 3.14 we obtain the following
result.

Theorem 4.3. If X satisfies the p-strong resistance conductor condition,
then for any x P X and f P LippXq,

Lipfpxq ≤ clip fpxq,

where c depends only on p, cD and cR.

Next we recall two definitions.

Definition 4.4. A set E Ă X is said to be uniformly p-fat if there exists
a constant cf ≥ 1 such that for every point x P E and for all 0 ă r ă
diampXq{4, we have

capLip,ppBpx, rq X E,Bpx, 2rqq ≥ cfcapLip,ppBpx, rq, Bpx, 2rqq.

Definition 4.5. The set Ω Ă X satisfies the pointwise p-Hardy inequality,
if there exists cH ă 8 and L ≥ 1 such that for all u P LippXq with u “ 0 in
XzΩ,

|upxq|

dΩpxq
≤ cH

ˆ

sup
0ăr≤LdΩpxq

ż

Bpx,rq
plipuqp dµ

˙1{p

(4.6)

“ cH
`

MLdΩpxqplipuq
ppxq

˘1{p

holds for almost every x P Ω. Here dΩpxq “ dpx,XzΩq andMLdΩpxq denotes
the Hardy-Littlewood maximal function with the restricted radii.

The following result is a modification of the corresponding result for
spaces satisfying a Poincaré inequality, see [10].

Theorem 4.7. Let Ω Ă X be open and let X satisfy a p-resistance conductor
condition. If Ω satisfies the pointwise p-Hardy’s inequality, then XzΩ is
uniformly p-fat.
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Proof. Let Bpx, rq, where x P XzΩ and 0 ă r ă diampXq{4. Let

fpzq “ min

"

2r ´ dpz, xq

r
, 1

*

`

.

It is clear that f is a 1{r-Lipschitz function such that f “ 1 in Bpx, rq,
0 ≤ f ≤ 1 and f “ 0 in XzBpx, 2rq. We may use f as an admissible function
in the definition of the capacity and obtain

(4.8) capLip,ppBpx, rq, Bpx, 2rqq ≤ cD
µpBpx, rqq

rp
.

Therefore, it is enough to show that there exists c ą 0 such that
µpBpx, rqq

rp
≤ c

ż

Bpx,2rq
plip fqp dµ,(4.9)

for any f P LippXq such that f “ 0 in XzBpx, 2rq and f ≥ 1 in Bpx, rq X
pXzΩq.

Let l “ p2pL` 1qq´1, where L is the constant in the pointwise p-Hardy
inequality. The doubling property implies that cDµpBpx, lrqq ≥ lsµpBpx, rqq.
First let us assume that fB ą ls{p2cDq, where B “ Bpx, rq. Since f P
LippBpx, 4rqq and f “ 0 in Bpx, 4rqzBpx, 2rq, Theorem 3.6 and Hölder’s
inequality imply that

ls

2cD
ă fB ≤

cD
µpBpx, 2rqq

ż

Bpx,2rq
|f | dµ(4.10)

≤ c
ˆ
ż

Bpx,2rq
|f |p dµ

˙1{p

≤ cr
ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

.

Hence (4.9) holds in that case. On the other hand, if fB ≤ ls{p2cDq, then we
can argue as in [10] and obtain (4.9) also in that case.

By taking infimum in (4.9) over all f P LippXq such that f “ 0 in
XzBpx, 2rq and f ≥ 1 in Bpx, rq XXzΩ, we obtain by (4.8)

capLip,ppBpx, rq XXzΩ, Bpx, 2rqq ≥ c
µpBpx, rqq

rp

≥ ccapLip,ppBpx, rq, Bpx, 2rqq.

Recall that Corollary 3.14 states that under the p-strong resistance con-
ductor condition, we have

(4.11)
ż

Bpx,rq
|f ´ fBpx,rq| dµ ≤ cr

ˆ
ż

Bpx,2rq
plip fqp dµ

˙1{p

for every x P X, 0 ă r ă diampXq{2 and f P LippBpx, 2rqq. Consequently,
there exists c ą 0 and τ ≥ 1 such that

|fpxq ´ fBpx,rq| ≤ cr
`

Mτrlip fpxq
p
˘1{p(4.12)

for every x P X.
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Theorem 4.13. Let 1 ≤ p ă 8 and Ω Ĺ X be an open set. In the claims
(i)–(iii) we assume that X satisfies the p-strong resistance conductor condition
and in the claim (iv) we assume that X satisfies the p-resistance conductor
condition.

(i) If XzΩ is uniformly p-fat, then for all balls Bpx, rq, with x P XzΩ and
r ą 0, and f P LippXq, with f “ 0 in XzΩ, it follows that

ż

Bpx,rq
|f |p dµ ≤ crp

ż

Bpx,2rq
plip fqp dµ.

(ii) Let x P XzΩ, r ą 0 and f P LippXq with f “ 0 in XzΩ such that
ż

Bpx,rq
|f |p dµ ≤ crp

ż

Bpx,2rq
plip fqp dµ.

Then

p4.14q |fBpx,dΩpxqq|
p ≤ cdΩpxq

p

ż

Bpx,8dΩpxqq
plip fqp dµ.

(iii) If for all x P Ω and f P LippXq such that f “ 0 in XzΩ, we have

|fBpx,dΩpxqq|
p ≤ cdΩpxq

p

ż

Bpx,8dΩpxqq
plip fqp dµ,

then Ω satisfies the pointwise p-Hardy inequality.
(iv) If Ω satisfies the pointwise p-Hardy’s inequality, then XzΩ is uniformly

p-fat.

Proof. (i) Let B “ Bpx, rq, with x P XzΩ, 0 ă r ă diampXq{2 and
f P LippXq such that f “ 0 in XzΩ. By the p-fatness of XzΩ, since X
satisfies a p-resistance conductor condition

capLip,p

`

Bpx, r{2q X tf “ 0u, Bpx, rq
˘

≥ capLip,p

`

Bpx, r{2q XXzΩ, Bpx, rq
˘

≥ cfcapLip,p

`

Bpx, r{2q, Bpx, rq
˘

≥
cf
cD

µpBpx, rqq

cRrp
.

By a Maz’ya type inequality (see [11] and [2, Proposition 3.2]), we have

1

µpBpx, rqq

ż

Bpx,rq
|f |p dµ

≤ c

capLip,ppBpx, r{2q X tf “ 0u, Bpx, rqq

ż

Bpx,2rq
plip fqp dµ

≤ crp

µpBpx, rqq

ż

Bpx,2rq
plip fqp dµ,
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and then
ż

Bpx,rq
|f |p dµ ≤ crp

ż

Bpx,2rq
plip fqp dµ.

If instead diampXq{2 ≤ r ≤ diampXq, let us take B̂ “ Bpx,diampXq{3q.
It follows that

(4.15)
ż

Bpx,rq
|f |pdµ

≤ c
ˆ
ż

Bpx,rq
|f ´ fBpx,rq|

p dµ`

ż

Bpx,rq
|fBpx,rq ´ fB̂|

p dµ`

ż

Bpx,rq
|fB̂|

p dµ

˙

≤ c
ˆ
ż

Bpx,rq
|f ´ fBpx,rq|

pdµ` µpBpx, rqq|fBpx,rq ´ fB̂|
p ` µpBpx, rqq|fB̂|

p

˙

.

Applying the previous case to B̂, we have

µpBpx, rqq|fB̂|
p “ µpBpx, rqq

ˇ

ˇ

ˇ

ˇ

1

µpB̂q

ż

B̂
f dµ

ˇ

ˇ

ˇ

ˇ

p

≤ µpBpx, rqq
ˇ

ˇ

ˇ

ˇ

1

µpB̂q

ˆ
ż

B̂
fp dµ

˙1{p

µpB̂q1´1{p

ˇ

ˇ

ˇ

ˇ

p

≤ cµpBpx, rqq
µpB̂q

ˆ

diampXq

3

˙p ż

2B̂
plip fqp dµ

≤ crp
ż

2B̂
plip fqp dµ

≤ crp
ż

Bpx,2rq
plip fqp dµ.

Moreover, by Theorem 3.11,

µpBpx, rqq|fBpx,rq ´ fB̂|
p

≤ µpBpx, rqq
ˇ

ˇ

ˇ

ˇ

1

µpB̂q1{p

ˆ
ż

B̂
pfpzq ´ fBpx,rqq

p dµpzq

˙1{pˇ
ˇ

ˇ

ˇ

p

≤ µpBpx, rqq

µpB̂q

ż

Bpx,rq
|fpzq ´ fBpx,rq|

p dµpzq

≤ crp
ż

Bpx,2rq
plip fqp dµ,

and
ż

Bpx,rq
|f ´ fBpx,rq|

p dµ ≤ crp
ż

Bpx,2rq
plip fqp dµ.

The claim follows from (4.15) and the last three inequalities.
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(ii) Let x P Ω and f P LippXq such that f “ 0 in XzΩ, and Bx “
Bpx, dΩpxqq. Choose w P XzΩ so that r “ dpw, xq ≤ 2dΩpxq, and consider
Bpw, rq. Then, it follows that

|fBx | ≤ |fBx ´ fBpw,rq| ` |f |Bpw,rq.

By (4.11), the fact that Bpw, rq Ă 4Bx and Bx Ă 2Bpw, rq, we have that

|fBx ´ fBpw,rq| ≤ cdΩpxq

ˆ
ż

8Bx

plip fqp dµ

˙1{p

.

Moreover, by Hölder’s inequality, the hypothesis and the Maz’ya type in-
equality, it follows that

|f |Bpw,rq ≤
ˆ
ż

Bpw,rq
|f |p dµ

˙1{p

≤ cr
ˆ
ż

Bpw,2rq
plip fqp dµ

˙1{p

≤ cdΩpxq

ˆ
ż

Bpw,2rq
plip fqp dµ

˙1{p

≤ cdΩpxq

ˆ
ż

8Bx

plip fqp dµ

˙1{p

.

(iii) Let f P LippXq such that f “ 0 in XzΩ and x P Ω, which is a
Lebesgue point. By hyphotesis,

|fBpx,dΩpxqq| ≤ c
1{pdΩpxq

ˆ
ż

Bpx,8dΩpxqq
plip fqp dµ

˙1{p

,

and by (4.12),

|fpxq ´ fBx | ≤ cdΩpxq
`

MτdΩpxqplip fpxqq
p
˘1{p

.

Hence,

|fpxq| ≤ |fpxq ´ fBx | ` |fBx | ≤ cdΩpxq

ˆ
ż

Bpx,maxt8,τudΩpxqq
plip fqp dµ

˙1{p

.

Since f P LippXq, any point in Ω is a Lebesgue point and the pointwise
p-Hardy inequality follows.

(iv) The claim follows from Theorem 4.7.

Finally, we have the following characterization.

Corollary 4.16. Let X satisfy the p-strong resistance conductor condition
and let Ω Ĺ X be an open set. Then the following properties are equivalent.

(i) XzΩ is uniformly p-fat.
(ii) For all Bpw, rq, with w P XzΩ, r ą 0 and f P LippXq, f “ 0 in XzΩ,

ż

Bpw,rq
|f |p dµ ≤ crp

ż

Bpw,2rq
plip fqp dµ.
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(iii) For all x P Ω and f P LippXq such that f “ 0 in XzΩ

|fBpx,dΩpxqq|
p ≤ cdΩpxq

p

ż

Bpx,8dΩpxqq
plip fqp dµ.

(iv) Ω admits the pointwise p-Hardy’s inequality.
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