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Outline of the talk 1(2)

We discuss nonnegative (super)solutions of the porous medium
equation (PME)

ut −∆(um) = 0

in the slow diffusion case m > 1 in cylindrical domains.

Motivation: Supersolutions arise in obstacle problems, problems
with measure data, Perron-Wiener-Brelot method, boundary
regularity, polar sets, removable sets and other aspects in nonlinear
potential theory.

Classes of supersolutions:

Weak supersolutions (test functions under the integral)

Supercaloric functions (defined through a comparison
principle)

Solutions to a measure data problem

Viscosity supersolutions (test functions evaluated at contact
points)
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Outline of the talk 2(2)

Goal
To discuss a nonlinear theory of supercaloric functions for the
PME

Questions
Connections of supercaloric functions to supersolutions
Sobolev space properties of supercaloric functions
Infinity sets (polar sets) of supercaloric functions

Toolbox
Energy estimates
Regularity results
Harnack inequalities
Obstacle problems

Applications
Existence results (the Perron-Wiener-Brelot (PWB) method)
Polar sets and capacity
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Space-time cylinders

Let Ω be an open and bounded subset of RN and let
0 ≤ t1 < t2 ≤ T .

We denote space-time cylinders as

ΩT = Ω× (0,T ) and Dt1,t2 = D × (t1, t2),

where D ⊂ Ω is an open set.

The parabolic boundary of Dt1,t2 is

∂pDt1,t2 = (D × {t1}) ∪ (∂D × [t1, t2]),

i.e. only the initial and lateral boundaries are taken into
account.

We call a cylinder Dt1,t2 regular if the boundary of the base
set D is smooth.
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Sobolev spaces

H1(Ω) for the Sobolev space of u ∈ L2(Ω) such that the weak
gradient ∇u ∈ L2(Ω).

The Sobolev space with zero boundary values H1
0 (Ω) is the

completion of C∞0 (Ω) in H1(Ω).

The parabolic Sobolev space L2(0,T ;H1(Ω)) consists of
measurable functions u : ΩT → [−∞,∞] such that
x 7→ u(x , t) belongs to H1(Ω) for almost all t ∈ (0,T ) and∫∫

ΩT

(
|u|2 + |∇u|2

)
dx dt <∞.

The definition of the space L2(0,T ;H1
0 (Ω)) is similar.

u ∈ L2
loc(0,T ;H1

loc(Ω)), if u belongs to the parabolic Sobolev
space for all Dt1,t2 b ΩT .
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The porous medium equation (PME)

Assume that m > 1. A nonnegative function u is a weak solution
of the PME

ut −∆(um) = 0

in ΩT , if um ∈ L2
loc(0,T ;H1

loc(Ω)) and∫∫
ΩT

(−uϕt +∇(um) · ∇ϕ) dx dt = 0

for every ϕ ∈ C∞0 (ΩT ). If the integral ≥ 0 for all ϕ ≥ 0, then u is
a weak supersolution.

It is possible to consider more general equations if this type, but
we focus on the prototype equation. We may also consider
solutions defined, for example, in Ω× (−∞,∞) or RN+1.

Standard reference: Juan Luis Vázquez, The porous medium
equation, Oxford University Press 2007.
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Structural properties

The equation is nonlinear: The sum of two solutions is not a
solution, in general.

Solutions cannot be scaled.

Constants cannot be added to solutions. Thus the boundary
values cannot be perturbed in a standard way by adding an
epsilon.

The minimum of two supersolutions is a supersolution. In
particular, the truncations

min(u, k), k = 1, 2, . . . ,

are supersolutions.

Caccioppoli estimates are obtained for um instead of u.
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Continuity properties

A weak solution is continuous after a possible redefinition on
a set of measure zero (Dahlberg-Kenig 1984 and
DiBenedetto-Friedman 1985).

A weak supersolution is lower semicontinuous after a possible
redefinition on a set of measure zero, see Benny Avelin and
Teemu Lukkari, Lower semicontinuity of weak supersolutions
to the porous medium equation, Proc. Amer. Math. Soc. 143
(2015), no. 8, 3475–3486.

Observe: No regularity in time is assumed, in particular, for weak
supersolutions. For example,

u(x , t) =

{
1, t > 0,

0, t ≤ 0,

is a weak supersolution.
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Alternative definitions 1(2)

Sometimes it is assumed that u
m+1

2 ∈ L2
loc(0,T ;H1

loc(Ω)) and∫∫
ΩT

(−uϕt +∇(um) · ∇ϕ) dx dt = 0

for every ϕ ∈ C∞0 (ΩT ), where

∇(um) =
2m

m + 1
u

m−1
2 ∇(u

m+1
2 ).

Advantage: u can be used as a test function.

Remark: This definition gives the same class of bounded
(super)solutions by Pekka Lehtelä and Stefan Sturm, Regularity of
weak solutions and supersolutions to the porous medium equation,
in preparation.
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Alternative definitions 2(2)

um ∈ L1
loc(ΩT ) is called a distributional solution of the PME, if∫∫

ΩT

(−uϕt − um∆ϕ) dx dt = 0

for every ϕ ∈ C∞0 (ΩT ).

Advantage: Convergence results are immediate.

Remark: This definition gives the same class of functions by Pekka
Lehtelä and Teemu Lukkari: The equivalence of weak and very
weak supersolutions to the porous medium equation, Tohoku Math.
J., to appear. The result is proved under the assumption that
functions are continuous even though it would be more appropriate
to consider locally bounded lower semicontinuous functions.
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Takeaway

There are several ways to define weak (super)solutions of the
PME, but they all give the same class of functions.
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The Barenblatt solution

Example

The Barenblatt solution is

B(x , t) =

t−λ
(
C − λ(m − 1)

2mN

|x |2

t
2λ
N

) 1
m−1

+

, t > 0,

0, t ≤ 0,

where m > 1, λ = N
N(m−1)+2 and the constant C is usually chosen

so that ∫
Ω
B(x , t) dx = 1

for all t > 0.

Observe: There is a moving boundary and disturbances propagate
with a finite speed.
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Properties

B is a weak solution in the upper half space

{(x , t) ∈ RN+1 : x ∈ RN , t > 0}.

B ∈ Lqloc(RN+1) whenever q < m + 2
N , the weak gradient

exists and ∇(Bm) ∈ Lqloc(RN+1) whenever q < 1 + 1
1+mN .

B is a weak solution to the measure data problem

Bt −∆(Bm) = Cδ,

where δ is Dirac’s delta at the origin.

However, B is not a weak supersolution, since∫ 1

−1

∫
|x |<1

|∇(B(x , t)m)|2 dx dt =∞,

and thus ∇(Bm) /∈ L2
loc(RN+1).
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Increasing limits of solutions

The class of solutions is closed under increasing limits in the
following sense.

Lemma (K.-Lindqvist 2008)

Assume that uk , k = 1, 2, . . ., is a sequence of (continuous) weak
solutions in ΩT and that 0 ≤ u1 ≤ u2 ≤ . . . . If the limit function

u(x , t) = lim
k→∞

uk(x , t)

is finite in a dense subset, then u is a (continuous) weak solution.

Proof.

The argument is based on an intrinsic Harnack inequality and
Hölder continuity estimates of DiBenedetto. Ascoli’s theorem and
compactness arguments are applied to complete the proof.
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Increasing limits of supersolutions 1(3)

Warning: The class of supersolutions is not closed under
increasing limits in general.

Example

uk(x , t) = k , k = 1, 2, . . . ,

are solutions, but the limit function is identically infinity.

min(B(x , t), k), k = 1, 2, . . . ,

are weak supersolutions, but B is not a weak supersolution.

Juha Kinnunen, Aalto University Supercaloric functions for the PME



Increasing limits of supersolutions 2(3)

Delicate point: The time derivative can be assumed to be an
object belonging to the dual of the parabolic Sobolev space, but
this approach does not give a class of supersolutions which is
closed under bounded increasing convergence.

Example

u : RN+1 → R, u(x , t) =

{
1, t > 0,

0, t ≤ 0,

is a supersolution and it can easily be approximated by an
increasing sequence of smooth supersolutions which only depend
on the time variable. However, the time derivative of u does not
belong to the dual of the parabolic Sobolev space because of a
jump discontinuity.
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Increasing limits of solutions 3(3)

The class of supersolutions is closed under increasing limits under
the following assumptions.

Lemma (K.-Lindqvist 2008)

Assume that uk , k = 1, 2, . . ., is a sequence of (lower
semicontinuous) weak supersolutions in ΩT and that
0 ≤ u1 ≤ u2 ≤ . . . . If the limit function

u(x , t) = lim
k→∞

uk(x , t)

is locally bounded, or um ∈ L2
loc(0,T ;H1

loc(Ω)), then u is a (lower
semicontinuous) weak supersolution.
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Supercaloric functions for the PME

We consider a class of m-supercaloric functions defined via a
comparison principle. This class will be closed under increasing
limit if the limit is finite in a dense subset.

Definition (K.-Lindqvist 2008)

A function v : ΩT → [0,∞] is m-supercaloric, if

1 v is lower semicontinuous,

2 v is finite in a dense subset of ΩT and

3 v satisfies the following comparison principle in every interior
cylinder Dt1,t2 b ΩT : If u ∈ C (Dt1,t2) is a weak solution of the
PME in Dt1,t2 and v ≥ u on ∂pDt1,t2 , then v ≥ u in Dt1,t2 .

m-subcaloric functions are defined analogously.

When m = 1 we have supercaloric functions (supertemperatures)
for the heat equation.
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Remarks 1(2)

An m-supercaloric function is defined at every point, not just
almost everywhere.
By the Schwarz alternating method is enough to compare in
boxes instead of all cylindrical subdomains, see Pekka
Lehtelä and Teemu Lukkari: The equivalence of weak and
very weak supersolutions to the porous medium equation,
Tohoku Math. J., to appear.
The minimum of m-supercaloric functions is m-supercaloric.
An m-supercaloric function v in Ω×{t > t0} can be extended
as zero in the past. In other words{

v(x , t), t > t0,

0, t ≤ t0,

is an m-supercaloric function in Ω× R.
An m-supercaloric function does not, a priori, belong to a
Sobolev space. The only connection to the equation is
through the comparison principle.
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Remarks 2(2)

A lower semicontinuous representative of a weak supersolution
is m-supercaloric. This follows from the comparison principle.

A locally bounded m-supercaloric function is a weak
supersolution. In particular, the truncations min(v , k),
k = 1, 2, . . . , are supersolutions (K.-Lindqvist 2008). This
follows by approximating a given m-supercaloric function
pointwise by an increasing sequence of weak supersolutions,
constructed through successive obstacle problems. By the
boundedness assumption, the limit function is a weak
supersolution.

Since min(B, k), k = 1, 2, . . . , are weak supersolutions, the
Barenblatt solution is m-supercaloric, but not a weak
supersolution.

Any function of the form v(x , t) = f (t), where f is a
monotone increasing lower semicontinuous function is
m-supercaloric.
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Takeaways

There are no other bounded m-supercaloric functions than
weak supersolutions, once the question of lower
semicontinuity is taken into account. Thus if we are only
interested in bounded functions these classes coincide.

As we shall see, there are several ways to construct unbounded
m-supercaloric functions, that are not weak supersolutions.
Thus, in general, these are different classes of functions.
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Unbounded m-supercaloric functions 1(2)

Example

Assume that Ω ⊂ RN is a bounded open set, m > 1 and let
t0 ∈ R. The friendly giant, obtained by separation of variables, is

v(x , t) =
u(x)

(t − t0)
1

m−1

, t > t0,

where um ∈ H1
0 (Ω) is the unique positive weak solution to the

nonlinear elliptic eigenvalue problem

∆(um) +
1

m − 1
u = 0

in Ω. v is a solution in Ω× (t0,∞) and the zero extension to
Ω× (−∞, t0] is m-supercaloric in Ω× R.
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Remarks

The infinity set of the friendly giant is the whole time slice
Ω× {t0}.
This cannot occur for the classical heat equation when m = 1.

Since the friendly giant v is a solution in Ω× (t0,∞) it plays
an important role as a minorant for m-supercaloric functions
which blows up at time t0.

This can be used to show that an m-supercaloric function,
with infinite initial values on the whole time slice Ω× {t0},
blows up at a rate greater or equal to the friendly giant.
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Unbounded m-supercaloric functions 2(2)

Example

Let
v(x , t) = u(x)e

1
(m−1)t , t > 0,

where u is a solution to the same elliptic problem as in the
previous example. Then

vt(x , t)−∆(v(x , t)m)

= e
1

(m−1)t

(
e

1
t − 1

t2

)
u(x)

m − 1
≥ 0.

Thus v is a supersolution in Ω× (t0,∞) and the zero extension to
Ω× (−∞, t0] is m-supercaloric in Ω× R.

Observe: An m-supercaloric function may blow up exponentially
near the infinity set.
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Question: What are the Sobolev space properties of unbounded
m-supercaloric functions?
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Class B

First we consider m-supercaloric functions that have a similar
behaviour as the Barenblatt solution.

Definition

We say that a nonnegative m-supercaloric function v belongs to
class B, if v ∈ Lqloc(ΩT ) for some q > m − 1.

Example

The Barenblatt solution belongs to class B.
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A characterization of class B

The following result is based on K.-Lindqvist 2008, 2016.

Theorem (K.-Lehtelä-Lindqvist-Parviainen, in preparation)

Assume that v is a nonnegative m-supercaloric function in ΩT .
Then the following claims are equivalent:

1 v ∈ B,

2 v ∈ Lm−1
loc (ΩT ),

3 ∇(vm) exists and ∇(vm) ∈ Lqloc(ΩT ) whenever q < 1 + 1
1+mN ,

4

ess sup
t∈(δ,T−δ)

∫
D
v(x , t) dx <∞

whenever D × (δ,T − δ) b ΩT .
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Remark

If v ∈ B, then

v ∈ Lqloc(ΩT ) for every q < m +
2

N
.

This is a consequence of a reverse Hölder inequality for
supersolutions of the PME, see Pekka Lehtelä, A weak harnack
estimate for supersolutions to the porous medium equation,
Differential Integral Equations, to appear.

The upper bound for the exponent is sharp as the Barenblatt
solution shows.
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Moral: The result shows that functions in class B have similar
Sobolev space properties as the Barenblatt solution.
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A measure data problem

If v ∈ B, there exists a Radon measure µ on RN+1, such that v is
a weak solution to the measure data problem

vt −∆(vm) = µ.

Reason: By the discussion above,

v ∈ L1
loc(ΩT ) and ∇(vm) ∈ L1

loc(ΩT ).

Thus we may apply the Riesz representation theorem to the
nonnegative linear operator

Lv (ϕ) =

∫∫
ΩT

(−vϕt +∇(vm) · ∇ϕ) dx dt,

where ϕ ∈ C∞0 (ΩT ), ϕ ≥ 0.
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Class M

Next we consider the complementary class of B. We denote this
class by M, which refers to the somewhat monstrous behaviour of
these functions.

Definition

We say that a nonnegative m-supercaloric function v belongs to
class M, if v 6∈ Lqloc(ΩT ) for every q > m − 1.

Example

The friendly giant, and other similar functions, belongs to class M.
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Remark

As we have seen, the separation of variables method can be
modified to produce m-supercaloric functions which blow up
exponentially fast near the infinity set. These functions are lacking
several properties, such as local integrability.

We shall see that classes B and M are mutually exclusive. Thus
every nonnegative m-supercaloric function belongs either to B or
M. The decisive difference between these classes is a local
integrability property, but there are several ways to characterize
these classes.

For the p-parabolic equation with p > 2, see Tuomo Kuusi, Peter
Lindqvist, Mikko Parviainen, Shadows of infinities, Ann. Mat.
Pura Appl. (4) 195 (2016), no. 4, 1185–1206.
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A characterization of class M

Theorem (K.-Lehtelä-Lindqvist-Parviainen, in preparation)

Assume that v is a nonnegative m-supercaloric function in ΩT .
Then the following claims are equivalent:

1 v ∈M,

2 v 6∈ Lm−1
loc (ΩT ),

3 there exists δ > 0 such that

ess sup
t∈(δ,T−δ)

∫
D
v(x , t) dx =∞,

whenever D b Ω with |D| > 0.

4 there exists (x0, t0) ∈ ΩT , such that

lim inf
(x ,t)→(x0,t0)

t>t0

v(x , t)(t − t0)
1

m−1 > 0.
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Moral: The result shows that functions in class M blow up at
least with the rate given by the friendly giant.

Dichotomy: Either

v ∈ Lqloc(ΩT ) for every q < m +
2

N

or
v 6∈ Lm−1

loc (ΩT ).

Thus the local integrability of a solution is either up to m + 2
N or

worse than m − 1. There is a gap between these exponents.
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The infinity set

We consider the infinity set (polar set)

I (t0) =
{

(x0, t0) : lim
t→t0+

u(x0, t) =∞
}

at time t0 ∈ (0,T ). More general approach directions can be
considered as well.

Example

For the Barenblatt solution I (0) = {0} and for the friendly giant
I (0) = Ω.
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Past and future

It is essential that the limit in the definition of I (t0) is determined
only by the future times t > t0, while the past and present times
t ≤ t0 are totally excluded.

This is in striking contrast to the pointwise value of the function,
which can always be determined only by the past. An extension of
Brelot’s classical theorem for m-supercaloric functions
(K.-Lindqvist 2008) states that

v(x0, t0) = ess lim inf
(x ,t)→(x0,t0)

t<t0

v(x , t)

Here the notion of the essential limes inferior means that any set
of (N + 1)-dimensional Lebesgue measure zero can be neglected in
the calculation of the lower limit.
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The infinity set and M

Theorem

Assume that v is a nonnegative m-supercaloric function in ΩT .
Then the following claims are equivalent:

v ∈M,

there exists t0 ∈ (0,T ) such that

lim
(x ,t)→(x0,t0)

t>t0

v(x , t) =∞ for every x0 ∈ Ω.
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Theorem (K.-Lehtelä-Lindqvist-Parviainen, in preparation)

Assume that v is a nonnegative m-supercaloric function in ΩT .
Then for every t ∈ (0,T ) there are two alternatives: either

|I (t)| = 0 or I (t) = Ω.

Proof.

A chaining argument and weak Harnack’s inequality.

Moral: Even though we consider the slow diffusion case, infinities
propagate with infinite speed.
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Characterizations of B and M

v ∈M if and only if I (t) = Ω for some t ∈ (0,T ).

v ∈ B if and only if |I (t)| = 0 for every t ∈ (0,T ).

If v is a nonnegative m-supercaloric function defined on whole
RN+1, then v ∈ B. Thus class M does not occur in the
whole space.

This follows by contradiction from comparison and scaling
arguments related to the friendly giant. In this case the
function is equal to infinity on a set of positive measure on
RN+1, which violates the finiteness assumption on a dense
subset.
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Takeaways

A nonnegative m-supercaloric function has a Barenblatt type
behaviour (class B) or it blows up at least with the rate given
by the friendly giant (class M).

Functions in class B satisfy a natural Sobolev space
properties. There is a measure data problem and the Riesz
measure associated with class B.

Functions in class M are lacking several properties, such as
local integrability. Thus these functions are not easily
tractable.

Class M does not occur in the whole space.

The infinity set on a time slice is either a set of measure zero
or the whole time slice.

v ∈M if and only if I (t) = Ω for some t ∈ (0,T ).

v ∈ B if and only if |I (t)| = 0 for every t ∈ (0,T ).
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A boundary value problem

Assume that ΩT is a bounded space-time cylinder and
g ∈ C (∂pΩT ) is a nonnegative boundary function. Consider the
boundary value problem

ut −∆(um) = 0 in ΩT ,

u = g on ∂Ω× [0,T ),

u(x , 0) = g(x , 0).

Problem: How to prove existence of a solution to this problem
with general continuous boundary values and general cylindrical
domains?
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The Perron-Wiener-Brelot method

The Perron-Wiener-Brelot (PWB) method in potential theory gives
an upper solution Hg and a lower solution Hg with

Hg ≤ Hg .

Question: For which bondary functions g we have

Hg = Hg?

If this happens, the boundary function g is called resolutive and we
denote the common function by Hg .

Warning: Even if the upper and lower PWB solutions coincide,
they may take the wrong boundary values. A punctured ball gives
an example for the Laplace equation.

Juha Kinnunen, Aalto University Supercaloric functions for the PME



Upper class and upper solution

Definition

Let g : ∂pΩT → R be given. The upper class Ug consists of
m-supercaloric functions v which satisfy

lim inf
x→y

v(x) ≥ g(y)

for all y ∈ ∂pΩT . The upper PWB solution is

Hg (x) = inf
v∈Ug

v(x).
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Lower class and lower solution

Definition

Let g : ∂pΩT → R be given. The lower class Lg consists of
m-subcaloric functions u which satisfy

lim sup
x→y

u(x) ≤ g(y)

for all y ∈ ∂pΩT . The lower PWB solution is

Hg (x) = sup
u∈Lg

u(x).
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Remark

If there exists a function u ∈ C (ΩT ) solving the boundary value
problem in the classical sense, then

u = Hg = Hg .

To see this, simply note that the function u belongs to both the
upper class and the lower class.

As we will see, both Hg and Hg are weak solutions to the PME.
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Upper and lower PWB solutions

Theorem (K.-Lindqvist-Lukkari 2016)

Hg and Hg are continuous weak solutions to the PME in ΩT .

Proof.

The argument is based on the fact that monotone limits of Poisson
modifications is a weak solution to the PME.
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A comparison principle tailored for the Perron solutions

Theorem (K.-Lindqvist-Lukkari 2016)

Let u be a m-subcaloric and v m-supercaloric such that

lim sup
x→y

u(x) ≤ lim inf
x→y

v(y)

for all y ∈ ∂pΩT . Then u ≤ v in ΩT .

Proof.

The proof of this result is not immediate, since constants may not
be added to solutions. An approximation result, based on a test
function introduced by Oleinik, is used to bypass this.

Observe: The essential feature here is that the base Ω of the
space-time cylinder ΩT may be an arbitrary bounded open set.
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Wiener’s resolutivity theorem for the PME

The following theorem states that continuous functions are
resolutive in cylindrical domains. This extends classical Wiener’s
resolutivity theorem for the PME.

Theorem (K.-Lindqvist-Lukkari 2016)

Assume that ΩT is a bounded space-time cylinder and
g ∈ C (∂pΩT ). Then Hg = Hg in ΩT .

Observe: No regularity assumptions on the base of the space-time
cylinder are needed.
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Outline of the proof 1(2)

Reduce to smooth boundary function g by approximating with
positive smooth functions.

For g smooth, there exists a unique weak solution u to the
problem with Sobolev boundary values.

Show that u = Hg .

In general, u does not belong to the upper class Ug .
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Outline of the proof 2(2)

For smooth boundary values, we need to construct functions
belonging to the upper class Ug that are sufficiently smooth in
time and attain the correct boundary and initial values.

This is done by a penalized problem, see V. Bögelein, T.
Lukkari, and C. Scheven, The obstacle problem for the porous
medium equation, Math. Ann. 363 (2015), no. 1-2, 455–499.

Energy estimates for the time derivatives in the smooth case
play a central role in the argument.
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Remarks on noncylindrical domains

For the heat equation, there is a resolutivity theorem in
general space time domains in RN+1.

For the PME resolutivity in general space-time domains
remains open.

For the PME in general space time domains it is not even
known whether Hg ≤ Hg .
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The elliptic comparison principle

The missing tool is the following “elliptic” comparison principle for
the PME in general space-time domains: Assume that O be a
general open set in RN+1 and that v is m-supercaloric in O. If
u ∈ C (D) be a weak solution to the PME in D b O with v ≥ u on
the whole topological boundary ∂D, does it follow that v ≥ u in
D?

For the p-parabolic equation we may add constants to solutions
and a comparison principle for general open sets then follows from
the space-time cylinder case by a straightforward exhaustion
argument, see Tero Kilpeläinen and Peter Lindqvist, On the
Dirichlet boundary value problem for a degenerate parabolic
equation, SIAM J. Math. Anal. 27 (1996), no. 3, 661–683.
For the PME adding constants is no longer possible.

For partial results, see Benny Avelin and Teemu Lukkari, A
comparison principle for the porous medium equation and its
consequences, Rev. Mat. Iberoam. 33 (2017), no. 2, 573–594.
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Takeaways

It is possible to develop a theory of supercaloric functions for
the PME.

Differences between several classes of supersolutions to the
PME are relatively well understood.

The results and methods can be applied in nonlinear potential
theory for the PME.
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Open problems 1(4)

What is the corresponding theory of m-supercaloric functions
and in the fast diffusion case 0 < m < 1?

The question is also open for the p-parabolic equation when
1 < p < 2.

Is it possible to develop the Perron-Wiener-Brelot method for
the PME in general space time domains?

In particular, is it possible to prove the elliptic comparison
principle for the PME?

Partial results: Benny Avelin and Teemu Lukkari,
A comparison principle for the porous medium equation and its
consequences, Rev. Mat. Iberoam. 33 (2017), no. 2, 573–594.
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Open problems 2(4)

Is it possible to develop capacity theory for the PME?

For the p-parabolic equation with p ≥ 2: K., Riikka Korte,
Tuomo Kuusi, Mikko Parviainen, Nonlinear parabolic capacity
and polar sets of superparabolic functions, Math. Ann. 355
(2013), no. 4, 1349–1381.
Partial results for the PME: Benny Avelin and Teemu Lukkari,
A comparison principle for the porous medium equation and its
consequences, Rev. Mat. Iberoam. 33 (2017), no. 2, 573–594.

Are polar sets for m-supercaloric functions sets of capacity
zero?

Are sets of capacity zero removable for bounded
m-supercaloric functions?

For the p-parabolic equation with p ≥ 2: Benny Avelin and
Olli Saari, Characterizations of interior polar sets for the
degenerate p-parabolic equation, arXiv 2015.
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Open problems 3(4)

Do the classes of viscosity supersolutions and m-supercaloric
functions coincide?

For the p-parabolic equation: Petri Juutinen, Peter Lindqvist
and Juan Manfredi, On the equivalence of viscosity solutions
and weak solutions for a quasi-linear equation, SIAM J. Math.
Anal. 33 (2001), no. 3, 699–717.
Vesa Julin and Petri Juutinen, A new proof for the equivalence
of weak and viscosity solutions for the p-Laplace equation,
Comm. Partial Differential Equations 37 (2012), no. 5,
934–946.
Luis Caffarelli and Juan Luis Vázquez, Viscosity solutions for
the porous medium equation, Differential equations: La Pietra
1996 (Florence), 13–26, Proc. Sympos. Pure Math., 65,
Amer. Math. Soc., Providence, RI, 1999.
Cristina Brändle and Juan Luis Vázquez, Viscosity solutions for
quasilinear degenerate parabolic equations of porous medium
type, Indiana Univ. Math. J. 54 (2005), no. 3, 817–860.
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Open problems 4(4)

While uniqueness with sufficiently regular data and fixed
boundary and initial values is also standard, uniqueness
questions related to nonlinear equations with general measure
data are rather delicate. For instance, the question whether
the Barenblatt solution is the only solution of the PME with
Dirac’s delta seems to be open.

What is the Wiener criterion for boundary regularity for the
PME?
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