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Definitions and approximations

In this chapter we begin our study of Sobolev spaces. The Sobolev space is a
vector space of functions that have weak derivatives. Motivation for studying
these spaces is that solutions of partial differential equations, when they exist,
belong naturally to Sobolev spaces.

1.1 Weak derivatives

Notation. Let QcR" beopen, f:Q —Rand £ =1,2,.... Then we use the following
notations:

C(Q)={f : f continuous in Q}
suppf ={x € Q: f(x) # 0} = the support of f
Co(Q)={f €eC(Q) : suppf is a compact subset of 2}
ck) = {f eC(Q): f is k times continuously diferentiable}
ChQ) = CH QN Co(Q)

(o)
c*= C*(Q) = smooth functions
k=1

CR(Q) = C®(Q)N Co(Q)

compactly supported smooth functions

= test functions

WARNIN G : Ingeneral, suppf Z Q.

Examples 1.1:
(1) Let u:B(0,1) — R, u(x) =1—-|x|. Then suppu = B(0,1).
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(2) Let f:R— R be

—x2, x <0.

xz, x=0,
fx)=
Now f € C1(R)\ C%(R) although the graph looks smooth.

(3) Let us define ¢ :R"” — R,

1
e?-1 xeB(0,1),
p(x) =
0, xeR™\B(0,1).

Now ¢ € C3°(R") and supp ¢ = B(0,1) (exercise).

Let us start with a motivation for definition of weak derivatives. Let Q c R"
be open, u € CH(Q) and g € Cy°(€). Integration by parts gives

—dx= —@d
/”axj *= /axj(p -

There is no boundary term, since ¢ has a compact support in QO and thus vanishes
near 0Q).

Let then u € C¥(Q),k=1,2,..., and let a = (a1, as,...,a,) € Nj be a multi-index
such that the order of the multi-index |a| = a1 +...+ a, is at most k. We denote

alaly 9% g¢m

D% = = u
a1 a ay " a
Oxit...0xp"  Oxy 0x,"

THE MORAL: A coordinate of a multi-index indicates how many times a
function is differentiated with respect to the corresponding variable. The order of
a multi-index tells the total number of differentiations.

Successive integration by parts gives
/ uD%pdx = (—1)'“'/ D%u@dx.
Q Q

Notice that the left-hand side makes sense even under the assumption u € Llloc(Q).

Definition 1.2. Assume that u € Llloc(Q) and let @ € N” be a multi-index. Then
VE Llloc(Q) is the ath weak partial derivative of u, written D%u = v, if

/uD“(pdxz(—l)'“'/v(pdx
Q Q

for every test function ¢ € Cgo(Q). We denote D% = D©0 =y If |a| = 1, then

ou .
Dju=—=D(0 """ Lo 0)u, j=1,...,n,
axj

(the jth component is 1) and
Du={Diu,Dou...,D,u)

is the weak gradient of u. Here
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THE MORAL: Classical derivatives are defined as pointwise limits of differ-
ence quotients, but the weak derivatives are defined as functions satisfying the
integration by parts formula. Integration by parts also play an important role in
divergence form elliptic partial differential equations. Observe, that changing the

function on a set of measure zero does not affect its weak derivatives.

WARNING: We use the same notation for the weak and classical derivatives.

It should be clear from the context which interpretation is used.

Remarks 1.3:

(1) If u € C*(Q), then the classical partial derivatives up to order % are also
the corresponding weak derivatives of u. In this sense, weak derivatives
generalize classical derivatives.

(2) If u = 0 almost everywhere in an open set, then D®u = 0 almost everywhere

in the same set.

(3) Let Q' be an open subset of  and assume that u has a weak partial
derivative D% in Q. Then D%u is the weak partial derivative of u in Q'.
(4) Being a weak derivative is a local property in the following sense: if for
every point x € Q) there exists an open ball B(x,r,) cQ, r, >0, so that u
has a weak derivative D%y in B(x,r,), then D%u is the weak derivative u

in Q (exercise).

Lemma 1.4. A weak ath partial derivative of u, if it exists, is uniquely defined

up to a set of measure zero.

Proof. Assume that v,0€ Llloc(Q) are both weak ath partial derivatives of u, that

/ uD%pdx = (—1)'“'/ vodx = (—1)'“'/ vpdx
Q Q Q
for every ¢ € C3°(€). This implies that

is,

/ (v-D)pdx=0 forevery ¢eC(Q). (1.5)
Q

Claim: v = v almost everywhere in Q.

Reason. Let Q' € Q (G.e. Q' is open and Qis a compact subset of 2). The
space C°(Q) is dense in LP(Q') (we shall return to this later). There exists a
sequence of functions ¢; € C3*(Q') such that |¢;| <2 in Q' and ¢; — sgn(v —7)
almost everywhere in Q' as i — co. Here sgn is the signum function.

Identity (1.5) and the dominated convergence theorem, with the majorant
(v =) ;] < 2(v] + |7]) € LX), give

0=Ilim | (v-D)p;dx= / lim (v - 0)¢p; dx
o) Q

1—00 /1 1—00

:/(v—msgn(v—mdx: lv—vldx
Q/

Q!
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This implies that v = 0 almost everywhere in Q' for every Q' € Q. Thus v =7

almost everywhere in Q. n

From the proof we obtain a very useful corollary.

Corollary 1.6 (Fundamental lemma of the calculus of variations). If f e L1 (Q)

loc
/ fodx=0
Q

for every ¢ € C°(Q), then f =0 almost everywhere in Q.

satisfies

THE MORAL: Thisis an integral way to say that a function is zero almost

everywhere.

Example 1.7. Let n=1 and Q =(0,2). Consider

x, O<x<l1,
u(x) =
1, 1<x<2,

and
1, O<x<1,

v(x) =
0, 1<x<2.

We claim that ©’ = v in the weak sense. To see this, we show that
2 2
/ up' dx= —/ vodx
0 0

Reason. An integration by parts and the fundamental theorem of calculus give

2 1 2
/ u(x)tp'(x)dx=/ x(p/(x)dx+/ ¢'(x)dx
0 0 1

for every ¢ € C3°((0,2)).

1 1
= xp(x) —/ @(x)dx+ p(2)—p(1)
o Jo —~
=p(1)
1 2
= —/ p(x)dx = —/ vp(x)dx
0 0
for every ¢ € C°((0,2)). (]

1.2 Sobolev spaces

Definition 1.8. Assume that Q is an open subset of R”. The Sobolev space
W*P(Q) consists of functions u € LP(Q) such that for every multi-index a with
|a| < k, the weak derivative D%u exists and D%u € LP(Q)). Thus

WhP(Q) = (u e LP(Q): D% € LP(Q), |a| < k).
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If u € W5P(Q), we define its norm

and

Notice that D% = D©-0y = ;. Assume that Q' is an open subset of Q. We say
that Q' is compactly contained in Q, denoted Q' € Q, if ' is a compact subset of

>
“u”Wk.P(Q):(Z /|DQU|pdx) , l<p<oo,
lal<k / Q

lullwrooy= 2 ID%ullzo@) = Y esssup|D%ul.
lal<k lalsk  Q

Q. A function u € WP (Q), if u € WHP(Q') for every Q' € Q.

THE MORAL: Sobolev space W*P(Q) consists of functions in L?(Q) that have

weak partial derivatives up to order £ and they belong to L?(Q2).

Remarks 1.9:

(1

(2)

3

As in LP spaces we identify W*? functions which are equal almost every-

where.

There are several ways to define a norm on W*P(Q). The norm | - lwk.p ()

is equivalent, for example, with the norm

Y. ID%ullLr), 1<p<oo.

|lal<k

and |- llyyr.eo(qy) is also equivalent with

max |[D%u lLoo(y-
|lal<k

For £ =1 we have

=

n
“u“WLP(Q) = (Ilullz,,(m + Zl ”Dju”z”(Q))
]:

and

n
lellyiooq) = lulzeo@ + Y ID jullLeo)-
Jj=1

We may also consider equivalent norms

1
_ P P P
lallwroiy = (120500 + 1DRIZ, )

n
lullwieq) = lullLe@) + Z ||Dju||Lp(Q) >
J=1

and

lwllwirq) = llullLe) + 1DulliLe)

when 1 < p <oo. For p =00, we may consider

lzellwieoq) = lullLeo) + 1D ull Lo
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and
lullwieoq) = max {|lull Loy, ID1ullLo@ys - - 1Dl Loy} -
Here Du =(D1u,...,D,u) is the weak gradient of u,

1
IDulLe( = (/ |Du|de)”, 1<p<oo,
Q

and

D ullLeo(r) = esssup |Du|
Q

with [Du|=/|D1ul?2+---+|D,ul?.

4) ue W{Zf(Q) if and only if every point has a neighborhood U, < Q2 such that
u e WkP(U,), see Remark 1.3 (4).

(5) Letue Wllzf (Q) such that u € LP(Q) and D%u € LP(Q) for every multi-index
a with |a| < k. It follows from Remark 1.3 (4) that u € W5P(Q).

Example 1.10. Let n = 2 and u : B(0,1) — [0,00], u(x) = |x|™%, a > 0. Clearly
u € C*(B(0,1)\{0}), but u is unbounded in any neighbourhood of the origin.

We start by showing that u has a weak derivative in the entire unit ball. When
x#0 , we have

du Xj Xj
@)=-alx| 1L =—q , Jj=1,...,n.
0, T wjerz J
Thus
D _ X
u(x)— _aW.

Gauss’ theorem gives

/ Dj(utp)dxz/ upv;ds,
B(0,D\B(0,¢) A(B(0,)\B(0,£))

where v = (v1,...,Vv,) is the outward pointing unit (]v| = 1) normal of the boundary
and ¢ € C3°(B(0,1)). As ¢ =0 on dB(0,1), this can be written as

/ Dju(pdx+/ uDj(pdxz/ upv;ds.
B(0,D\B(0,) B(0,)\B(0,&) 8B(0,¢)

By rearranging terms, we obtain

/ uDj(pdxz—/ Dju(pdx+/ ugv;ds. (1.11)
B(0,D\B(0,¢) B(0,1)\B(0,&) 8B(0,¢)

Let us estimate the last term on the right-hand side. Since v(x) = —l’;—l, we have
vj(x) = 7%, when x € B(0,¢). Thus

/ upv;dS
0B(0,¢)

< ||<p||L°°(B(0,1))/ e *dS
8B(0,¢)
n-1-a €0

= llllLe®©,1))Wn-1€ 0,
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ifn—1-a>0. Here w,_1 = #" 1(8B(0,1)) is the (n — 1)-dimensional measure of
the sphere 6B(0,1).
Next we study integrability of D ju. We need this information in order to be

able to use the dominated convergence theorem. A straightforward computation

gives
/ |Dju|dxs/ IDuIdxza/ x|~ 1dx
B(0,1) B(0,1) B(0,1)
1 1
= a/ / lx|~*1dSdr= awn_l/ praln-lg,
0 JoB(0,r) 0
1 adwn-1 1
= awn_l/ P2 g = — 1 _pnmatll g
0 n-a—-1 0
ifn-1-a>0.

The following argument shows that D ;u is a weak derivative of u also in a

neighbourhood of the origin. By the dominated convergence theorem

uD;pdx = / tim (D9 g .1 B0 ) 4
/B<0,1) B(0,1)¢~0 BONBO

=lim uDjpdx
£=0/B0,1)\B(0,¢)

=-lim Djupdx+lim upv;dsS
€=0./B(0,1)\B(0,¢) £=0/5B(0,¢)

=" /B o l)}sl_l,l(l)Dju(pXB(O,l)\B(O,e)dx

=- Djugpdx.
B(0,1)

Here we used the dominated convergence theorem twice: First to the function

uDjPXpo 10\B02)

which is dominated by |u||D¢ll € Ll(B(O, 1)), and then to the function

D; UPXB(0,1\B(0,¢e)’

which is dominated by [Dulll¢lle € Ll(B(O, 1)). We also used (1.11) and the fact
that the last term there converges to zero as € — 0.

We have proved that u has a weak derivative in the unit ball. Let 1< p <n
and a > 0. We note that u € L?(B(0,1)) ifand only if —-pa+n>0<—= a < %. On the
other hand, |Du| € L?(B(0,1)), if and only if —p(a+1)+n>0<= a < np%p. Thus
u € W-P(B(0,1)) if and only if a < ’%”.

Let (g;) be a countable and dense subset of B(0,1) and let « : B(0,1) — [0,00],

(o) 1 —a
i)=Y rle—qil ™.
i=1

Then u € WHP(B(0,1)) if a < 2.
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Reason. We observe that

|| lx—q:l™® ||€V1,p(3(0,1)) = ” lx—qil™® “217(3(0,1» + ||D(|x - qil‘“)llz’fp(mo,l»

= [l —gqil™ “217(3(0,1)) +|lalx—g; 17! ”217(3(0,1))

=/ Ix—qil‘“”dx+a"/ lx—q;|"*P P dx
BO,1) B0,

< / x|~ *P dx + ap/ x|~ *P~P dx
B(0,2) B(0,2)

=/ |2x|‘“p2”dx+ap/ |2x|”*PTP2" dx
B(0,1) B(0,1)

—g-ap+n / |x|79P dx + 27PN P / || (@ DP gy
B(0,1) B(0,1)

<279 (1 427P) ||| 77| <oo, i=12,....

p
WLr(B(0,1))
Note that the right-hand side is independent of i. It follows that

o 1 B

lellwieso,1) < Zi 5 12— g Cr”WLP(B(o,l))
=

<

=

1
- (2791 +277))7 1217 | s ai0.)

18
R =

~
Il
-

1
= (27T A+27))P ||l ”WLP(B(O,I)) <00,
if a < n’+p ]

Since a > 0, we note that u is unbounded and not differentiable in the classical

sense in a dense subset of B(0,1).

THE MORAL: Functionsin W'?,1<sp<n,n=2, may be unbounded in every

open subset.

Example 1.12. Observe, that u(x) = |x|™%, @ > 0, does not belong to W1(B(0,1).

However, there are unbounded functions in W™, n > 2. Let u : B(0,1) — R,

log(log(l + i)), x#0,

Jx]

0, x=0.

u(x) =

Then u € WH™(B(0,1)) when n = 2, but u ¢ L(B(0,1)). This can be used to
construct a function in WH*(B(0,1) that is unbounded in every open subset of
B(0,1) (exercise).

THE MORAL: Functionsin W'?, 1< p <n, n =2, are not continuous. Later
we shall see, that every W? function with p > n coincides with a continuous

function almost everywhere.
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Example 1.13. The function u :B(0,1) — R,

1, x,=0,
ulx) =u(x1,...,x,) =

0, x,<0,

does not belong to W2 (B(0,1) for any 1 < p < oo (exercise).

1.3 Properties of weak derivatives

The following general properties of weak derivatives follow rather directly from
the definition.

Lemma 1.14. Assume that u,v € WkP(Q) and 1 < |a| < k. Then

(1) D%y e Wh-lalp(Q),
(2) DA(D*u) = D*(DPu) for all multi-indices a, B with |a|+ || <k,
(8) for every A, u€R, Au + pv € WHP(Q) and

D*Au+ uv) = AD%u + uD%v,
(4) if Q' < Q is open, then u € WP (Q),

(5) (Leibniz’s formula) if n € C3°(Q2), then nu € WkP(Q) and

Du)= Y (“)D%D“—ﬁu,
B<a
where
B~ Bla-pV

and < @ means that §; < «a; for every j=1,...,n.

a a!
al=aql...ay,!

THE MORAL: Weak derivatives have the same properties as classical deriva-

tives of smooth functions.

Proof. Follows directly from the definition of weak derivatives. See also (2).
Let ¢ € CP(Q). Then Dfgpe C3°(Q). Therefore

(—Dlﬁl/Dﬁ(D“u)(pdx:/D“uDﬁ(pdx
Q Q
= (-l / uD**Pypdx
Q

= (-Dlel(-p)la+hl / D™ Pugpdx
Q
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for all test functions ¢ € C3°(Q2). Notice that

lal+la+Bl=a1+...+a, +(a1+B1)+...+(a, + Br)
=2(a1+...+ay)+P1+...+ B
=2|al +|pI.

As 2|a| is an even number, the estimate above, together with the uniqueness
results Lemma 1.4 and Corollary 1.6, implies that Df(D%u) = DAy,

(3) and (4) | Clear.

@ The proof is by induction on |a|. Let |a|=1and ¢ € CSO(Q). Since D%(ne) =
nD%p + D%n, we have

/nuD“(pdx:/(uD“(n(p)—u(pD“n)dx
Q Q
:—/(nD“u+uD“n)(pdx.
Q

This shows that D(qu) =nD%u + uD%n.
Then we make the induction assumption. Let [ < £ and assume that

D)= Y (“)D%D“—ﬁu,
f<a ﬁ

for every multi-index a with |a| <! and for every n e CS"(Q).
Let a be a multi-index with |@| =7+ 1. Then a = f+7 with |f| =7 and |y| = 1.

As above, we have
/ nuD%pdx = / nuDP Y pdx = / nuDP(DYp)dx
Q Q Q
=P [ ¥ h D°nDF7uDYpdx.
Qo<p\9
By the induction assumption on DA~y € W =1BI+l9l.p(Q)) and DY € C(Q), Iyl =1,

we have

(_1)|ﬁ| Z (g)DanDﬁ_guDY(ﬂdx
Qo<p

= (—=1)lAlI*IYl Z (’B)DY(D"nDﬁ_Uu)(pdx.
Qo<p o

By the induction assumption on D~y € W ~1PI+19l.p(Q)) and D¢ € Cr (), we

have

(=1)!PN Z('B)DY(D"nDﬁ‘”u)(pdx
Qo<p o

=(-1) Z(ﬁ)(Dana_pu+D‘T17D“_‘Tu)(pdx,
Qo<p g
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where p =0 + 7 so that a —o = - p. It follows that

I DY (5)(DPnDa_pu +DnD* °u)pdx
Qo<p

=(—1)'“'/(Z(a;y)D"nD“‘”u+ ) (a_Y)DPnD“‘Pu)qux
Q

o<p y<p<a \P~Y

= (-1 /Q (U;a (Z)DUT]D“_Uu)(pdx,
)6 :

1.4 Completeness of Sobolev spaces

since

One of the most useful properties of Sobolev spaces is that they are complete.
Thus Sobolev spaces are closed under limits of Cauchy sequences.

A sequence (u;) of functions u; € WEP(Q), i =1,2,..., converges in W*P(Q) to
a function u € W*P(Q), if for every & > 0 there exists i, such that

lu; —ullwepq) <€ when izi..

Equivalently,

hm IIuL - u|lwk,p(Q) =0.
1—00

A sequence (u;) is a Cauchy sequence in W*?(Q), if for every € > 0 there exists
i¢ such that

”ui_uj||Wk,p(Q)<E When l,_]?lg
WARNING: Thisis not the same condition as
”ui+1_ui||Wk,p(Q)<£ when i>=i,.

Indeed, the Cauchy sequence condition implies this, but the converse is not true

(exercise).
Theorem 1.15 (Completeness). The Sobolev space W*P(Q), 1< p <oo, k =

1,2,...,1s a Banach space.

THE MORAL: The spaces Ck(Q), k=1,2,..., are not complete with respect
to the Sobolev norm, but Sobolev spaces are. This is important in existence

arguments for PDEs.

Proof. Step 1: |- lwep(q) is @ norm.
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Reason. lullwepy=0—=u=0 almost everywhere in Q.
=] IIuIIWk,p(Q) =0 implies |lullzrq) = 0, which implies that u = 0 almost every-
where in Q.

u = 0 almost everywhere in Q implies

/D“u(pdxz(—l)'“‘/uD“(pdsz
Q Q

for all ¢ € C5°(Q2). This together with Corollary 1.6 implies that D%z =0 almost
everywhere in Q for all a, |a| < k.

2)| 1Al ywto(0y = M ko, A € R. Clear.

The triangle inequality for 1 < p < oo follows from Minkowski’s inequality
applied first for the Lebesgue measure and then for the counting measure, since

1
P
lu+vlwesy=| 2 ||Dau+Dav||Zp(Q))
|lal<k
1
» p
<| 2 (ID%ullLr)+ 1D vlLe()
lal<k
1 1
» p
a a
<| )Y ID ulle(Q)) (Z 1D vlle(Q))
lal<k lal<k
= "u”Wk,p(Q) + ||U||Wk,p(Q)~ [ ]

Step 2: Let (u;) be a Cauchy sequence in W52 (Q). As
IDu; —D%ujlliLe() < lui —ujllyrp)y lal<k,

it follows that (D%wu;) is a Cauchy sequence in L?(Q), |a| < k. The completeness
of LP(Q) implies that there exists u, € LP(Q) such that D%u; — u, in LP(Q) as
i — oo. In particular, u; — u(,. 0= u in L?(Q) as i — oo.

Step 3: We show that D% = u,, |a| < k. We would like to argue

/ uD%pdx = lim u D%pdx
Q

1—00
i—00
=(-d / Ugpdx
Q

for every ¢ € C°(Q). On the second line we used the definition of the weak
derivative. Next we show how to conclude the first and last equalities above.

Letgpe Cg"(Q). By Holder’s inequality we have

'/ uiD"‘(pdx—/uD“(pdx
Q Q

= lim (- 1)'“'/D“u pdx

= ‘/(ui—u)Daq)dx
Q

i—00

<llui —ulle@ D@l q)—0
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and consequently we obtain the first inequality above. The last inequality follows

in the same way, since

/D“ui(pdx—/ua(pdx
Q Q

A similar argument as above (exercise).

This means that the weak derivatives D%u exist and D%u = u,, |a| < k. As we

i—00
<ID%u; —ualLe@ 9l g 0.

also know that D%u; — ugq = D%u, |a| < k, we conclude that |u; — ullwr.o(q) — 0 as

i —oo. Thus u; — u in W*P(Q) as i — oo. )

Remark 1.16. W*P(Q), 1 < p < oo is separable. In the case k = 1 consider the
mapping u — (u,Du) from WP (Q) to L?(Q) x L?(Q)" and recall that a subset of a

separable space is separable. However, W1*°(Q) is not separable (exercise).

1.5 Hilbert space structure

The space W#2(Q) is a Hilbert space with the inner product
(u,v)sz(Q) = Z (Dau,DaU>L2(Q),
|lal<k
where

(Du,D%v)12(q) = / D%uD%vdx.
Q

Observe that )
bl

||u||Wk,2(Q) = <u7u>Wk,2(Q)'

1.6 Approximation by smooth functions

This section deals with the question whether every function in a Sobolev space
can be approximated by a smooth function.
Define ¢ € C°(R™) by

1
celx®-1  |x| <1,
Plx) =
0, |x|=1,

where ¢ > 0 is chosen so that

/ dx)dx = 1.
Rn

For £ >0, set

Pe(x) = Eind)(gg—c)
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The function ¢ is called the standard mollifier or Friedrich’s mollifier. Observe
that ¢, =0, supp ¢, = B(0,¢) and

1 1
(,bg(x)dxz—n/ ¢(f)dx=—n/ <p(y)e”dy=/ dx)dx =1
RP I R” € £ R® R”

for all £ > 0. Here we used the change of variable y = %, dx =¢"dy.

Notation. If Q cR” is open with Q) # @, we write
Q, ={x e Q:dist(x,0Q)>¢}, €>0.

Iffe Llloc(Q), we obtain its standard convolution mollification f; : Q. — [—00,00],

Fol@) = (f * po)) = / FO)elx— ) dy.
Q

THE MORAL: Since the convolution is a weighted integral average of f over
the ball B(x,¢) for every x, instead of Q it is well defined only in Q.. If Q = R", we
do not have this problem.

Remarks 1.17:
(1) For every x € Q,, we have

felx)= / Ff)Pe(x—y)dy = / fWpe(x—y)dy.
Q B(x,e)

(2) By a change of variables z = x —y we have

/f(y)tbs(x—y)dy:/f(x—z)</>g(z)dz
Q Q

(3) For every x € Q., we have

[fe(x)] <

/ FPe(x—y)dy| < llpe ||L°°([R2”)/ [f(»Idy < oo.
B(x,¢) B(x,e)

(4) If f € Cy(Q), then f, € Cy(Q;), whenever
1
O<e<gy= 3 dist(supp f,0Q).

Reason. If x € Q, such that dist(x,suppf) > €p (in particular, for every
x € Qe \ Q¢,) then B(x,e) Nsupp f = @, which implies that f.(x) = 0. n

Lemma 1.18 (Properties of mollifiers).
(1) fe € C(Q).
(2) fe— f almost everywhere as € — 0.
(3) If f € C(Q), then f, — f uniformly in every Q' € Q.
(4) If feL? (Q), 1< p <oo, then f, — f in LP(QY') for every Q' € Q.

loc
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WARNIN G: Assertion (4) does not hold for p = oo, since the limit of a uni-
formly converging sequence of continuous functions is continuous, whereas exist

functions in L that are not continuous.

Proof: Let x€Qe, j=1,...,n,e;=(0,...,1,...,0) (the jth component is 1). Let
ho >0 such that B(x,hg) Q. and let h € R, |h| < hg. Then

fe(x+hej)—fe(x) 1

(x+hej—y
€

J-0(=22)] ras.

1
h en B(x+hej,e)UB(x,¢e) h

Let Q' = B(x,ho +¢€). Then Q' € Q and B(x + hej,e) UB(x,e) Q.
Claim:

¢(x+hej—y)_¢(x—y)

h=0 16_¢(x—y
£ €

e0x;\ €

1 !
7 ) for every ye Q.
Reason. Let y(x)=¢(=2). Then

W ()= laﬁ(u

, j=1,...,n
Ox;j € 0x; 8) J

and by the fundamental theorem of calculus, we have
h 9 h
w(x+hej)—ylx)= /(; a—t(w(x +te;))dt = /0 Dy(x+tej)-e;dt.
Thus

|h|
[w(x+he;)—p(x)l s/ [Dy(x+te;)-e;ldt
0

|| L
sl/ D¢(m—fy)'dt
€ Jo £

A
< ?||D¢||L°°(R”)~

This estimate shows that we can use the Lebesgue dominated convergence theorem
(on the third row) to obtain

Ofc ) _ T RED = Fela)

6xj h—0 h
1 1 x+hej—y x—y
—%E%:n/g,z N )‘4’( : )]ﬂy)dy

_ l/ laﬁ(x_y)f(y)dy

e Joedx; \ €
A e
- [ - ordy =[G s f )@,
Q' 6xj axj

A similar argument shows that D, exists and

DafezDa¢£*f in Q,
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for every multi-index a.
Recall that f Blx.e) Pe(x =) dy = 1. Therefore we have

[fe(x) = f(x0)| =

/ Pe(x—y)f(¥)dy - f(x) cPs(x—y)dy'
B(x,¢)

B(x,e)

/ Pe(x—yUf(y) - f(x)dy
B(x,¢)

1 —
<= [ o(Z2)re-ruwidy
&

€" JB(xe)

1 -0
<Q, ||¢||L°°([R€")m -~ If ()= f@)ldy ==0
> X,E

for almost every x € Q. Here Q,, =|B(0,1)| and the last convergence follows from
the Lebesgue differentiation theorem.

Let Q' € Q" € Q, 0 < e < dist(Q,8Q"), and x € Q'. Because Q" is compact
and f € C(Q), f is uniformly continuous in Q”, that is, for every &’ > 0 there exists
6 > 0 such that

|[f(x)— F(y)| < € for every x,y € Q" with |x - y| < 8.

By combining this with an estimate from the proof of (ii), we conclude that

1
Ife(x)— f(0)] < Qp ||(P||L°°([R")m o) If () - fx)ldy

< QL@ €’

for every x € Q' if e < 6.
Let Q' € Q" € Q.

Claim:

/ IfelPdx< [ IfIPdx
Q/ Q//
whenever 0 < € < dist(Q',0Q") and 0 < £ < dist(Q",0Q).

Reason. Take x € Q. Hélder’s inequality implies

|fe()| =

/ Pelx —y)f(y)dy‘
B(x,e)

< / be(e— )7 el — )7 | ()] dy
B(x,e)

1 1
s( / qbe(x—y)dy)” ( / e —IF P dy|”
B(x,¢) B(x,e)
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By raising the previous estimate to power p and by integrating over Q', we obtain

/ |f5(x)|pdxs/ / Pelx—Mf WP dydx
Q' Q' J B(x,¢)
=/ /(Pe(x—y)lf(y)l”dxdy
QI/ Q/
- / FOP / del—ydxdy
Q” Q’

=/ lfnIPdy.
QI/

Here we used Fubini’s theorem and once more the fact that the integral of ¢, is
one. n

Since C(Q") is dense in L?(Q)"). Therefore for every &' > 0 there exists g € C(Q")

such that .
= !
(/ |f—g|pdx)p <.
Q 3

By (3), we have g, — g uniformly in Q' as € — 0. Thus

1
» 1 ¢
(/ Igs—glpdx) <suplg:—gl|Q|? < <,
Q' Q' 3

when ¢ > 0 is small enough. Now we use Minkowski’s inequality and the previous
claim to conclude that

([ e-reas) =( [ ve-soras)
/Iga—glpdx);+ / Ig—flpdx);
Q Q

1 1
sZ( Ig—flpdx)p+(/ |g5—g|de)p
’ Q’

+

Q/
e €
<2—+—=¢.
3 3

Thus f: — f in L?(Q') as ¢ — 0. O

1.7 Local approximation in Sobolev spaces

Next we show that the convolution approximation converges locally in Sobolev
spaces.

Theorem 1.19. Let u € W*P(Q), 1 < p <oo. then

(1) D%, =D%u * ¢, in Q, and
(2) ugz— u as € — 0 in WEP(Q) for every Q' € Q.
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THE MORAL: Smooth functions are dense in local Sobolev spaces. Thus
every Sobolev function can be locally approximated with a smooth function in the
Sobolev norm.

Proof: By Young’s theorem

lu* dellLry) < lullLe@olldellLiq,) = luliLe,) < oo

for every € > 0, since ||¢¢ lziq,) =1 for every r > 0. This shows that u * ¢, € LP(Q,)

1
loc

and, by Holder’s inequality, that u * ¢, € Ly (Q.) for every € > 0. A similar

argument shows that

ID%u * ¢pellLr(q,) < 1D ullLr@plPelLiq,) = 1D ullLr,) < oo
for every € > 0. Thus D%u * ¢, € LP(Q;) and, by Holder’s inequality D%u * ¢, €
Llloc(Qf) for every € > 0. An alternative way to show that u * ¢, € Llloc(Qg) and
D% x ¢, € Ll (Q,)is to apply Lemma 1.18 (1) to conclude that u * ¢ € C(Qy)

loc

and D%u * ¢, € C*°(Q,) for every € > 0.
Let ¢ € C°(Qe). By a repeated application of Fubini’s theorem, we have

/ (u*¢>g)(x)D“<p(x)dx=/ (/ u(x—y)([)g(y)dy)Da(p(x)dx
Q, Qe \JQ,

_ / ( / u(x—y)D“(p(x)dx)([)s(y)dy
Q, Qe

:(—1)'“'/ (/ <p(x)Dau(x—y)dx)(/>g(y)dy

Q. \JQ,

_ (-1l / ( / qbg(y)D“u(x—y)dy)(p(x)dx
Q. \Ja,

= (-1 / (D% u * ) (x)p(x) dx.

This shows that D*(u * ¢¢) = D%u * ¢, in Q. Here D® denotes the weak partial
derivative. By Lemma 1.18 (1) we have u * ¢, € C*°(£);) and thus the classical
derivative D%(u * ¢b¢) equals with the weak derivative D%(u * ¢b¢) in Q.

Let Q' € Q, and choose € > 0 s.t. Q' < Q.. By (i) we know that D%u, =
D% x ¢, in Q/, |a| < k. By Lemma 1.18, we have D%, — D%u in LP(Q)') as e — 0,
|a| < k. Consequently

=

_ a a, P =0
”uE - u"Wk,P(Q/) - Z ”-D Ug -D u”LP(Q’) —0.
lal<k d

Remark 1.20. Theorem 1.19 (1) can also be proved by applying the fact that
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u * g € C°(Q,), see Lemma 1.18 (1). Fix x € Q. Then
D%up(x) = D(u * pe)(x) = (u * D¥P,)(x)
= /QD?%(x—y)u(y)dy
= (-1 /Q D% (el — y)u(y)dy.
Here we first used the proof of Lemma 1.18 (1) and then the fact that
2 (o222) - () - 2 (o(222))

For every x € (¢, the function ¢(y) = ¢¢(x — y) belongs to C7°(Q2). Therefore

/ D§(pelx - yu(y)dy = (-1)* / D%u(y)pe(x —y)dy.
Q Q

By combining the above facts, we see that
D% (x) = (-1)/**e! / Du(y)pex = y)dy = (D%u * pe)(x).
Q

Notice that (-1)l@l*lal = 1,

1.8 Global approximation in Sobolev
spaces

The next result shows that the convolution approximation converges also globally

in Sobolev spaces.

Theorem 1.21 (Meyers-Serrin). If u € W*P(Q), 1 < p < oo, then there exist

functions u; € C°(Q) N W2 (Q) such that u; — u in WP (Q).

THE MORAL: Smooth functions are dense in Sobolev spaces. Thus every

Sobolev function can be approximated with a smooth function in the Sobolev norm.

In particular, several estimates for smooth functions also hold Sobolev functions

by a density argument.

Proof. Let Qp =@ and
Q; = {xe Q:dist(x,0Q) > 1} nB(0,i), i=1.2,....

Then .
Q= UQ,‘ and Q1€ E...EQ.
i=1
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Claim: There exist n; € C3°(Q;+2 \Q;_1),i=1,2,..., such that 0 < n; <1and

()
Z ni(x)=1 forevery xeQ.
i=1

This is a partition of unity subordinate to the covering {Q;}.

Reason. By using the distance function and convolution approximation we can
construct 7j; € C3°(Q; 42 \Q;_1) such that 0 < ni<landn;=1in Qi11\Q; (exercise).

Then we define 5 ()
nilx .
(X)) = ——, i=12,....
L S 7

Observe that the sum is only over four indices in a neighbourhood of a given

point. [ ]
By Lemma 1.14 (5), nju € WEP(Q) and
supp(n;u) < Qo \ Q;_1.
Let £ > 0. Choose ¢; > 0 so small that
supp(e, * (;w) < Qiso \ Qi1
(see Remark 1.17 (4)) and
pe; * i) =il iy < 23 i=1,2,....

By Theorem 1.19 (2), this is possible. Let

v=Y g+ (i),
=1

12

This function belongs to C*°(Q), since in a neighbourhood of any point x € Q, there

are at most finitely many nonzero terms in the sum. Since

[} (e8]
u=uy n;=) niu,
i=1 =1

we have
o) o0
”U - u”Wk,p(Q) = Z (rbfi * (niu)— Z niu
=1 i=1 Whe (@)
o0 oo .
sZ“(/)Ei*(mu)_niu”Wk’P(Q)sZ§=£. 0
i=1 =

Remarks 1.22:

(1) The Meyers-Serrin theorem 1.21 gives the following characterization for
the Sobolev spaces W*P(Q), 1< p <oco: u € WP(Q) if and only if there
exist functions u; € Cw(Q)ﬁWk’p(Q), i =1,2,..., such that u; — u in
WHP(Q) as i — co. More precisely, W*?(Q) is the completion of C®°(() in
the Sobolev norm.
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Reason. Theorem 1.21.

Theorem 1.15. -

(2) The Meyers-Serrin theorem 1.21 is false for p = co. Indeed, if u; € C°(Q)N
WL(Q) such that u; — u in W1(Q), then u € C1(Q) (exercise). Thus
special care is required when we consider approximations in W1°(Q).

(3) Let Q' € Q. The proof of Theorem 1.19 and Theorem 1.21 shows that for
every € >0 there exists v € CSO(Q) such that [|v — ullyipqy <e.

(4) The proof of Theorem 1.21 shows that not only C*°(Q) but also C{°(Q) is
dense in LP(Q), 1 < p <oo.

1.9 Sobolev spaces with zero boundary
values

In this section we study definitions and properties of first order Sobolev spaces
with zero boundary values in an open subset of R”. A similar theory can be
developed for higher order Sobolev spaces as well. Recall that, by Theorem 1.21,
the Sobolev space WP(Q) can be characterized as the completion of C*°(Q)) with

respect to the Sobolev norm when 1 < p <oo.

Definition 1.23. Let 1 < p < oco. The Sobolev space with zero boundary values
WO1 P(Q) is the completion of C3°(Q) with respect to the Sobolev norm. Thus
uce Wol’p(Q) if and only if there exist functions u; € C;°(Q2), i = 1,2,..., such that
u; — u in WHP(Q) as i — co. The space WO1 P(Q) is endowed with the norm of
WLP(Q).

THE MORAL: The only difference compared to W2(Q) is that functions in
WO1 "P(Q) can be approximated by C3°(Q) functions instead of C*°(Q2) functions,
that is,

WP(Q)=C=(Q) and W,”(Q)=CP(Q),

where the completions are taken with respect to the Sobolev norm. Observe that
C7°(Q) functions have finite Sobolev norm, but for C*°(Q2) we consider functions
with finite Sobolev norm. A function in WO1 ’(Q) has zero boundary values in
Sobolev’s sense. We may say that u, v € WHP(Q) have the same boundary values
in Sobolev’s sense, if u —v € WO1 *P(Q). This is useful, for example, in Dirichlet
problems for PDEs.

WARNING: Roughly speaking a function in WP (Q) belongs to WO1 P(Q), if it
vanishes on the boundary. This is a delicate issue, since the function does not
have to be zero pointwise on the boundary. We shall return to this question later.
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Remarks 1.24:
(1) Clearly C(Q) « Wy P (Q) c WhP(Q) < LP(Q).
(2) Wg’p(Q) is a closed subspace of WLP(Q) and thus complete (exercise).

(3) By the Meyers-Serrin theorem, see Theorem 1.19 and Theorem 1.21, we
conclude that u € WO1 "P(Q) if and only if there exist functions u; € Co(Q) N
WLP(Q),i=1,2,..., such that u; — u in WHP(Q) as i — oo (exercise). This
useful observation can be applied to show that a function belongs to a
Sobolev space with zero boundary values. The advantage is that the

approximating functions do not necessarily have to be smooth.

Theorem 1.25. Let 1 < p < 0o and let Q < R” be an open set. Assume that

ue€ WO1 "P(Q) and let ug be the zero extension of u, that is,

u(x), x€Q,
uo(x) =
0, xeR*"\Q.

Then ug € WhHP(R™) and

Du a.e.in (),
Duy=
0 a.e. inR*"\Q.

In particular, ||u0||W1,p([Ran) = lullwrrq)-

THE MORAL: Functions in a Sobolev space with zero boundary values can
always be extended by zero so that the obtained function belongs to the corre-

sponding Sobolev space over the entire space.

Proof. Let Du = (D1u,...,D,u) be the weak gradient of u in Q, and let f =
(f1,...,fn) be the componentwise zero extension of Du. Since u € Wg P(Q), there
exist functions u; € CP(Q), i =1,2,..., such that u; — u in WHP(Q) as i — co. Let

¢ € C°(R™). By Holder’s inequality we have

‘/ uDjpdx— /uD](pdx /Iu u;l|Djpldx
(/Iu ulpdx) (/ID (plpdx) /

S
2’

(/Iu u|de) ( |D,<p|1’dx) =%, j=1,...,m,
[RYL

where % + 1% =1. A similar argument shows that

‘/Dju,-q)dx—/Dju(pdx
Q Q

1

1 1
< (/ IDju—Djuilpdx)p ( I(plp’dx)p =20
Q Re
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for every j =1,2,...,n. Moreover, integration by parts for the smooth functions
u; €CP(Q),i=1,2,... and p € CP[R") gives

—/uiDj(pdxz/Djui(pdx, j=1,...,n,
Q Q

for every i =1,2,.... It follows that
—/ uoDjpdx = —/ uDjpdx=~1lim | u;Djpdx
R? Q i—oo /0

= lim Djui(pdx:/Dju(pdx
Q Q

1—00
:/ fj(pd‘x’ j:1""’n’
Rﬂ
for every ¢ € C°(R"). By the uniqueness of weak derivatives, see Lemma 1.4, we

conclude that the weak gradient Dug of u( in R" coincides almost everywhere
with £. It follows that ug € WHP(R™) and luollyio@ny = l2llwisq)- O

Remark 1.26. Theorem 1.25 can be also proved by the Meyers-Serrin theorem,
see Theorem 1.21. Since u € Wol’p(Q), there exist functions u; € C3°(Q), 1 =1,2,...,
such that u; — u in WH?(Q) as i — co. The zero extensions of u; belong to C®(R")
and converge to the zero extension of u in WH2(R?) as i — co. The claims follow
from this.

Lemma 1.27. If u € WHP(Q) and suppu is a compact subset of Q, then u €
Lp

Wy ().

Proof. Let ne C3°(Q) be a cutoff function such that 7 =1 on the support of u.

Claim: If u; € C®°(Q), i = 1,2,..., such that u; — v in WHP(Q), then nu; € C3°(Q)

converges to nu = u in WP(Q).
Reason. We observe that
1
s =nulgro = (I =nulg g, + ID@ws =l )7
< llpu; —nullLe) + 1D (Mu; —nullLe ),
where

1 1
p p
Inu; —nulLrq) = (/ Inu; —nul? dx) = (/ NP lu; —ul? dx)
Q Q

1

? i
snnanm)(/ |u,-—u|de) i~
Q
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and by Lemma 1.14 (5)

1
p
1D (s — )l = ( / D(nu; - )P dx)
Q

=

= (/ |(w; —u)Dn+Du; —Du|? dx)
Q ) .

s(/ |(u,-—u)Dn|de)”+(/ I(Dui—Du)nlpdx)p
Q Q

1 1
P ? i
< |D7lipeq) (/ lu—ul? dx) + Inll o) (/ |Du; —DulP dx) 720, m
Q Q

Since nu; € C3°(Q), i = 1,2,..., and nu; — u in WLP(Q), we conclude that
ue WP Q). O

Since W(} P(Q) c WhP(Q), functions in these spaces have similar general prop-
erties and they will not be repeated here. Thus we shall focus on properties that

are typical for Sobolev spaces with zero boundary values.
Lemma 1.28. W1P(R?) = WP (R") with 1< p < oco.

THE MORAL: The standard Sobolev space and the Sobolev space with zero

boundary value coincide in the whole space.

WARNING: WLP(B(0,1)) # W&’p(B(O, 1)), 1 < p <oo. Thus the spaces are not

same in general.

Proof. Assume that u € WIP(R"?). Let 13, € Cy(B(0,k + 1)) such that n;, =1 on
B(0,k),0<np <1 and |Dng| <c. Lemma 1.27 implies uny, € Wol’p(R”).

Claim: un; — u in WYP(R") as k — oo.

Reason.

lw —ungllwiegey < llu —ungllprwn) + 1D(w —ung)llLewn)

1 1
= (/ lu(1—np)P dx "y (/ |D(u(1—77k))|pdx)p
Rn Rn

1 1
:( |u(1—nk)|de)" +( |(1—nk)Du—ank)|pdx)p
R™ R

: : :
s( lu(1-—np)P dx +( |(1—nk)Du|pdx) +( Ianklpdx)
R® R® Re

We note that lim;,_. ., u(1—173) = 0 almost everywhere and |u(1—nz)|P < |ulP €
L1(®") will do as an integrable majorant. The dominated convergence theorem

gives

=

k—o0

( u(L =)l dx) 0.
[Rn
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A similar argument shows that

1
P k—oo

0.

( (1= n)Dul? dx)
Rn

Moreover, by the dominated convergence theorem

1
p
( Ianklpdx) sc(/ IuIde)
Rr B(0,k+1\B(0,k)

1
» D
=c [ul? B,k +1)\BO,k) AX
Rﬂ

p

k—o0

0.

Here [ul? B0,k +1\B(0,k) < |u|P € LY(R™) will do as an integrable majorant. =

Since uny, € Wol’p(lR”), i=1,2,..., unp — uin WHP(R"?) as k — oo and Wol’p(IR”)
is complete, we conclude that u € WO1 PR, O



Methods and characterizations

2.1 Chainrule

We shall prove some useful results for the first order Sobolev spaces.

Lemma 2.1 (Chain rule). Let u €e WH2(Q), 1 < p < oo, and f € CL(R) such that
f'€ L®(R) and £(0) = 0. Then f ou € WH?(Q) and

Dj(fow)=f'w)Dju, j=12,...,n
almost everywhere in Q.

Proof By Theorem 1.21, there exist a sequence of functions u; € C®(Q) N W1P(Q),
i=1,2,..., such that u; — u in W"P(Q) as i — co. Let ¢ € C(Q).

Claim:/f(u)Dj(pdxz1im/f(ui)Dj(pdx,jzl,...,n.
Q 1= /0

Reason. By Holder’s inequality

' / @)D jpdx - / f@pD,jpdx
Q Q
1

1
s (/ If )= fu)® dx)p (/ IDl”’ dx)”
Q Q
’ 1
s”’Nll""(/ 'u_uilpdx)p(/ Ilep'dx)p ==.0.
Q Q

In the last inequality, we used the fact that
u
/ @ de
u;

26

< / f(w)— F(ui)l Dol dx
Q

!
< ool —u;l.

If @) -l =
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A similar argument as above gives

' / f@)Djpdx - / f@pD,jpdx
Q Q

< / f(w)— Fui)l Dol dx
Q

<1 loo D@l oo(r) / lu—u;ldx —>0. -
Q

Claim: lim f’(ui)Djui(pdxz/ f'WDjupdx, j=1,...,n..
Q Q

1—00

Reason. By Holder’s inequality

'/ f'(ui)Djui(pdx—/f’(u)Dju(pdx
Q Q

/f'(ui)(Djui—Dju)(pdx—/(f'(u)—f'(ui)Dju(pdx
Q Q

sllf’lloo/ IDjui—Djullwldx+/ If'w) - f'(w)lIDjullpldx
Q Q

1 1
< ”f’”oo(/ |Djui_Du|pdx)P (/ |<P|pldx)p
Q Q

1
+(/ If' (@)= ') |Djul? dx)p (/ lpl”’ dx)p .
Q Q

Since Dju; — Dju in LP(Q) as i — oo, we have

1 1
il fmraf [ =o
Q Q

On the other hand, since u; — u in L?(Q), by passing to a subsequence, we may

? =

assume that u; — u almost everywhere in Q as i — co. Since f € Cl(R), we

conclude that f'(u;) — f'(u) almost everywhere in () as i — co. We note that
If' @) = @)l <If @I+ @)l <201 f o, i=1,2,....

It follows that
lim |f'(w)— f'w)IP|1Djul? =0
1—00

almost everywhere in O and
If' @)~ f'@)IPIDjul? < 2P |15, 1DulP e LY(Q), i=1,2,...,

almost everywhere in Q. By the dominated convergence theorem, we have

lim [ |f'w) - f'(w)?IDjul’ dx = / lim |f'(w)— f'(u)I”1D julP dx = 0.
1—00 /O Ql—o0
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A similar argument as above gives

'/ f’(ui)Djui(pdx—/f’(u)Dju(pdx
Q Q

< IIf'Ilooll(ﬂllLoo(Q)/ |Dju; —Duldx
Q

+ ||<P||L°°(Q)/Q|f’(u)—f'(Ui)||Dju|dx-

Since u; — u in LY(Q), by passing to a subsequence, we may assume that u; — u
almost everywhere in Q as i — oo. It follows that

lim | ') - f'(w)IID jul =0
1—00
almost everywhere in O and
If' @) - f'@lIDjul <20 f leolDjul e LYQ), i=1.2,...,

almost everywhere in Q2. By the dominated convergence theorem, we have

lim If'(u)—f’(ui)IIDqudx=/,lim If' (W)= f'(w)lIDjuldx = 0. .
1—00 Q QL—’OO

Next, we use the claims above, integration by parts for smooth functions and
the chain rule for smooth functions to obtain

/(fou)Dj(pdleim/f(ui)quodx
Q i—o0 /0

=-lim [ D;(f(u;))¢dx
Q

1—00

:—lim f’(ui)Djui(pdx
1—00 Q

= —/ f'(W)Djupdx
Q

=—/(f’ou)Dju<pdx, j=1,...,n,
Q

for every ¢ € C3°(Q).
Finally, we show that f(u) and f’ (u)gT"j belong to L?(Q). Since

!/
<[ Noolul,

If (@) =If@w)-f(0)| = ‘ / Fl@t)dt
0

1/p 1%
(/ |f(u)|pdx) < IIf’IIOO(/ IuIde) < 00,
Q Q

1 1
(/ |f' @)D jul” dx)p < IIf’IIm(/ IDulpdx)p < oo.
Q Q a

Remark 2.2. Lemma 2.1 also holds for u € Wh*°(Q), since then u € Wl(l)’(f’(Q) for

1< p <o (exercise).

we have

and similarly,
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2.2 Truncation

The truncation property is an important property of first order Sobolev spaces,
which means that we can cut the functions at certain level and the truncated
function is still in the same Sobolev space. Higher order Sobolev spaces do not

enjoy this property, see Example 1.7.

Theorem 2.3. Let u € WhP(Q), 1 < p <oco. Then ut = max{u,0} € WHP(Q), u™ =
—min{u,0} € W-P(Q), |u| € WHP(Q) and

D {Du ace. in QN {u >0},
u =

0 a.e inQnf{u<O0},

a 0 a.e inQn{u=0},
Du =
—Du a.e.in Qn{u <0},

and
Du a.e. in Qn{u >0},

Dlul=<0 a.e.in Qn{u =0},

—Du a.e.in Qn{u <0}.

THE MORAL: Incontrast with C1, the Sobolev space W12 are closed under

taking absolute values.

Proof Let0<e<1andlet fe:R— R, fo(t) = Vt2 + €2 —£. The function f; has the
properties f: € CL(R), f:(0) =0,

lir%fg(t) =|t| forevery teR,
paine

t
Vit? +¢2

and [|[(f¢) loo < 1 for every £ > 0. From Lemma 2.1, we conclude that feou € wbrQ)

1
(fo)'®) = §(t2+82)_%2t= for every teR,

and

/(fgou)Dj(pdxz—/(fg)'(u)Dju(pdx, j=1,...,n,
Q Q

for every ¢ € C°(€2). We note that
£ = V2 + 62— <23(t] +£) < V2(It] + 1)
for every t € R and 0 < £ <1 and thus

(£ ow)D jop| < V21Dl Loo() (1t | Loo(suppp) + 1 Xsuppp € LM
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for every 0 <e<1and j=1,...,n. Moreover, we have ||(f;) |z~ < 1 for every

O<e<1land

1, t>0,
lim(f.)'(®) =10, t=0,
e—0

-1, t<O.

Thus, by the dominated convergence theorem, we obtain
/ IuIDj(pdxz/lim(onu)Djwdx
Q QE—'O
=lim [ (feou)Djpdx
e—0 Q
:—lim/(fe)'(u)Dju(pdx
e—0 Q
= —/ lim(f,) (w)D jupdx
Q£—>0
= —/ Djlulpdx, j=1,...,n,
Q

for every g € CSO(Q), where Dj|u| is as in the statement of the theorem.
The other claims follow by observing that

1 1
u+:§(u+|u|) and u_:g(lul—u). O
Remarks 2.4:
(1) If u,v € WLP(Q), then max{u,v} € WHP(Q) and min{u,v} € WP (Q). More-
over,
Du ae. in Qni{u=v},
D max{u,v}=
Dv a.e.in Qn{u <v},
and
Du a.e. in Qn{u <v},
Dmin{u,v} =
Dv a.e.in Qn{u=v}.

In particular, Du = Dv almost everywhere in {x € Q : u(x) = v(x)}.
Reason.
1 ) 1
max{u,v} = E(u +v+|u—-v|) and minf{u,v} = é(u +tv—|lu-vl). m
(2) If u e WHP(Q) and A € R, then Du = 0 almost everywhere in {x € Q: u(x) =

A} (exercise).
3) Ifu e Wh2(Q) and 1 € R, then minf{u, A} € Wlif(Q) and

Du a.e. in Qnf{u <A},
Dmin{u, A} =
0 a.e.in Qnf{u=A}.
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A similar claim also holds for max{u,A}. This implies that a function

u € WP (Q) can be approximated by the truncated functions

A ae in Qn{u= A1},
uy) =max{—A,min{u, A}}={u a.e. in Qn{-A<u<A},

-1 ae. inQnf{u<-21},
in WhP(Q). (Here A > 0.)
Reason. By applying the dominated convergence theorem to
lu—ual? <2P(ul? +lual?) <27 Hul? e LY(Q),

we have
lim [ lu—ulPdx= lim |u—u|Pdx=0,
QA—oo

A—oo JO

and by applying the dominated convergence theorem to
IDu—Du,|P <|DulP € LY(Q),
we have

lim IDu—Du,llpdxz/ lim |Du—-Du,|Pdx=0.
Q Q

A—o0 A—o00 ]
THE MORAL: Bounded W52 functions are dense in W2,

We discuss a useful converge result which can be applied in proving truncation
properties for Sobolev spaces with zero boundary values. The following slight

extension of the dominated convergence theorem is useful in the proof.

Theorem 2.5. Let f; :R" — [—o00,00], i = 1,2,..., be measurable functions such
that f; — f almost everywhere as i — co. Assume that there exist integrable
functions g;,h; : R* — [—00,00] such that g; < f; < h; almost everywhere for

1=1,2,...,8; — g and h; — h almost everywhere as i — oo and

/gdx:_lim gidx and /hdx:lim hidx.
n Rﬂ n

1—00 1—00 R™
Then f is integrable and
fdx=lim fidx.
R" 1—00 R”
Proof. Exercise, see [4, Vol. 1, Theorem 2.8.8]. a

Theorem 2.6. Let 1< p <oo and let Q < R” be an open set. Assume that (u;) and
(v;) are sequences of functions u;,v; € WHP(Q), i =1,2,..., such that u; — u and

v; — v in WP(Q) as i — co. Then min{u;,v;} — min{u,v} in W-P(Q) as i — oo.
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Proof. Let (u;) be a sequence of functions u; € C*°(Q),i=1,2,...,such that u; — u
in WP(Q) as i — oo and let (v;) be a sequence of functions v; € C®(Q), i =1,2,...,
such that v; — v in WHP(Q) as i — co. By passing to subsequences, we may assume
that Du; — Du and Dv; — Dv almost everywhere in Q as i — oo.

By Minkowski’s inequality

| minfu;,v;} — min{u, v} Lr)
< [ min{u;,v;} —min{u, v} Le) + | min{u,v;} — min{u, v}Lr Q)

=I1+1s, 1=1,2,....

We estimate I1 and Iy separately. For I; we have

Ill’z/ Imin{ui,vi}—vilpdx+/ |minf{u;,v;} —ul? dx
Qn{u=v;}

Qnfu<v;}

2/ |vi—vi|pdx+/ lu; —v;|P dx
Qn{u?vi}ﬁ{ui%ﬁ}T Qn{uzv;in{u;<v;}

+/ Ivi—ulpdx+/ lu; —ulP dx
Qnfu<v;infu;=v;} Qnfu<v;infu;<v;}
s/ (u—ui)pdx+/ (u; —u)’ dx
Qnf{uzv;In{u;<v;} Qniu<viin{u;=v;}
+/ lu; —ul? dx
Qnfu<v;inf{u; <v;}
s/ Iu—uilpdx+/ lu; —ulPdx
Qn{u=v;} Qnfu<v;}
+/ lu; —ul? dx
Qnf{u<viin{u;<v;}
s/ Iu—uilpdx+/ lu; —ulPdx
Qn{uzv;} Qn{u<v;}

:/ lu—u;ilP dx 0.
Q
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For I, we have

IES :/ Ivi—min{u,v}lpdx+/ lu —min{u,v}|? dx
Qnfuzv;} Qnfu<v;}

=/ |vi—v|pdx+/ lv; —ul? dx
Qnfuzv;in{u=v} Qnfuzv;in{u<v}

+/ Iu—vlpdx+/ lu—ul? dx
Qn{u<v;in{u=v} Qﬂ{u<vi}ﬂ{u<v}‘“_6_"

s/ Ivi—vlpdx+/ lv—v;Pdx
Qn{uzv;in{u=v} Qn{uzv;In{u<v}
+/ lv; —vlP dx
Qn{u<viin{u=v}
s/ |vi—v|pdx+/ lv; —vIP dx
Qn{uzv;} Qn{u<v;}

=/ lv—v;? dx =220.
Q

This shows that min{u;,v;} — min{u,v} in LP(Q) as i — oco.

For the weak partial derivatives, we have

) D;v ae in Qn{uz=v}
D ;min{u,v} =
Dju ae.in Qn{u<v},

j=1,...,n. By Minkowski’s inequality

D ;min{u;,v;} — D ;jmin{u, v}l L)
< |Djmin{u;,v;} —Djmin{u,v;}lprq) + 1D jminf{u,v;} - D jmin{u, v}z ()

=Ji1+de, i=12,..., j=1,...,n.
For J1, we have
Jf =/ IDjmin{ui,vi}—Djvilpdx+/ |Djminfu;,v;}—D;jul’ dx
Qniuzv;} Qnfu<v;}
=K1 +K2.

For K1, we have
K= / IDjui =D ;vil? Yusv X <v;} A%
Q

+/ ID;v; =D jvil? X{usv;) Xiu;>v;) AX.
Q—

Since

Lhrglo|D']ul _Djvi|p7({u>vi}x{ui<vi} =0
almost everywhere in Q and

i—00
IDju; =D jvilP Yusv) Xiu;<vp) S 1Dju; =D jvi|P — |Dju—Djv|?
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in L1(Q), by Theorem 2.5, we have

lim [ [Dju; —D;jv;|” Yiusv;) Xiu,<v;)
1—00 Q

=/ iliI?oleui—Djvilp)c{uavi})c{ui<ui}dx=0-
Qi

This shows that K1 — 0 as i — oo.

For Ko, we have
Ky = /Q 1D jui _Djule{u<vi}X{ui<Ui}dx
+/Q|Djvi =Djul? Yju<v Xiu;>v,) A%,
where
/Q|Djui —Djulpx{u<vi)7((ui<vi}dx < /Q IDju; —DquP dax oo 0.

Since
lim 1D jv; =D jul® Yiu<v) Xtuizvi) = 0
almost everywhere in Q and

i—00

1D jvi =D jul? Xu<v) Xtuizvy) < 1Djvi —DjulP IDjv—Djul?

in L1(Q), by Theorem 2.5, we have

lim [ |Djv; —Djul? yuu<v)Xiu;sv:) 4%
Q

1—00

=/ lim |Djv; — D jul? Yiu<v) X(w;>v;) dx = 0.
Q

1—00

This shows that Ko — 0 as i — oco. It follows that J1 =K1+ Kg — 0 as i — co.

For Js, we have
Jé’ =/ ID jv; —Djmin{u,v}lpdx+/ ID ju — D ;minf{u,v}|? dx
Qn{uzv;} Qn{u<v;}
:/ IDjv; —Djmin{u,v}lpx(uzvi}dx+/ IDju—Djmin{u,v}lp)({u@i}dx.
Q Q

Since

lim |D jv; — D ;min{u, v}l y >y, = 0
1—00

almost everywhere in O and

ID jv; — D ;min{u,v}l” yy»v;) < 1D jv; — D;min{u,v}P

=% |Djv - D min{u,v}/?
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in L1(Q), by Theorem 2.5, we have

lim [ |D;v; —D;min{u, v} yiusp,) dx
1—00 Q

= / lim |D jv; — D jmin{u,v}|® ¥ y>p,; dx = 0.
Qi—oo
On other other hand, since

lim |Dju — D ;min{u,v}” y(u<p;) =0
1—00

almost everywhere in  as i — co and
ID ju —D ;min{u, v} y(y<p;) < I1Dju — D jmin{u,v}|? e LY(Q),
by the dominated convergence theorem

lim IDju—Djmin{u,v}lpx{u@i}dx
1—00 Q

:/ llug IDju —D;min{u,v}|” yu<p,)dx = 0.
Qi

It follows that J9 — 0 as i — oo.
Thus min{u;,v;} — min{u,v} and D;min{u;,v;} — D jmin{u,v} in L?(Q) as i —

oo, which implies that min{u;,v;} — min{u,v} in WhP(Q) as i — co.
Remark 2.7. We leave the proofs of the following results as exercises.

(1) The corresponding convergence result holds true for max{u,v} by a similar
argument or by observing that max{u,v} = —min{-u, —v}.

(2) The corresponding convergence result holds true for u*, v~ and |u|.

3) Ifue Wol’p(Q), then ut = max{u,0} € Wol’p(Q), u~ = —min{u,0} € Wol’p(Q),
lul € WP ().

@) If u,v € WyP(Q), then max{u,v} € Wy P(Q) and minfu,v} € Wy P (Q).

(5) Assume that u € W(:)l’p(Q). If v e WP(Q) and 0 < v < u almost everywhere
in Q, then v e W, P ().

(6) Assume that u € Wol’p(Q). Ifv e WHP(Q) and |v]| < |u| almost everywhere in
Q\K, where K is a compact subset of Q, then v € WO1 P(Q).

2.3 Weak convergence methods for So-
olev spaces

In this section we consider a function and its weak partial derivatives together

and it is convenient to apply vector valued L? spaces. Let 1 < p < oo and let
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Q cR"™ be an open set. Recall that L?(Q;R™) is the space of R™-valued functions
f:Q—=R", f=(f1,f2,-...,[m) with m €N for which

1
P

m
If e mm) = (Z ”fj”zp(g)) < oo.
=

It is clear that f € LP(Q;R™) if and only if f; € L?(Q) for every j=1,2,...,m. The
norm above will be convenient for us, since if f € LP(Q;R™), then

I lLe@mrm) = sup{/ﬂf.gdx gl pm) = 1},
where f-g = Z;.": 1£;jgj is the Euclidean inner product.

Let f € LP(Q;R™) and g € L (Q;R™), where 1< p <o and 2 + 2 =1 By
Holder’s inequality for functions and finite series, we have

/f-gdxs /f-gdx
Q Q

m m
<) Ifilee 8l ) < (Z If; lllzp(g))
j=1 Jj=1

m
> | figjdx
=ila

m
SZ/Ifjllgjldx
j=1JQ

1
P

1
it 2 (©)

|f ”LP(Q;R’”) ”g ||Lp’(Q;Rm)~

Hence, for every g ELp’(Q;[R'") with ”g”LP’(QRm) =1, we have

/ f-gdx<|fllLrmrm)
Q

and thus
SUP{/Qf'gdxi Igl e @mm) = 1} <IIf lzrmm).-

Next we show that the supremum above is attained, that is, there exists a
function g € LP'(Q;[R’”) with ”g”LP’(mRe'n) =1 such that

/Qf'gdx= 11l Lrmm)-

Let Y
If;1”" sgnf;
j:—£ , J:1,...,m-
T -
Then
F " !
. - N LI P ?
”g-]”Lp/(Q) - ([) |g]| dx) - ”f”LP(Q,Rm) (/(‘2 |fj| dx)

b D
- oI .
=1l i il = Loeearm.
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Consequently

3 3
m , P _P m P
— p — ! p
gl pm) = (_Zlng i (Q)) =115 ey (Zl||fj||Lp(Q))
J= J=

p
L+
P,

p
- T
= "f”LP(Q’&m) =1

and
U -5 U 1+2
Q j=1/Q ’ Jj=1/0

- AL -L4p
=1z mm) | 2 / IFilP x| = I F Wl gy oy = I ILp(umy.
= g ;
This shows that
171l e rm) :sup{/ fgdx:lglyyqpm = 1},
Q ;

The following version of the Riesz representation theorem will be useful.

Lemma 2.9. Let 1 < p <oco. For every L € LP(QQ;R™)* there exists a unique
g € LP'(Q;R™) such that

L(f)=/ f-gdx

Q

for every f € LP(Q;R™). Moreover, we have
LI L (rmys = 181! (. omy-

Proof Let 1< p <oo and let L : LP(Q;R**1) — R be a bounded linear functional,
that is, L € LP(Q;R"*1)*. Let e;=(0,...,1,...,0), j=0,1,...,n, be the standard jth
basis vector in R"*!. Then L; : LP(Q) — R,

Li(f)=L(fe;)=L(0,...,f,...,0)), j=0,1,...,n,

where f is in the jth slot, is a bounded linear functional on LP(Q), that is, L; €
LP(Q)*, j=0,1,...,n. To see this, we observe that

ILi() = IL(fep)l < LI fejllLpme+ty = ILINF Lo )

for every f € LP(Q)). The linearity of L}, j =0,1,...,n, follows immediately from
the linearity of L.
By the Riesz representation theorem, there exists g; € L?'(Q) such that

Lj(f)Z/fgjdx, j=0,1,...n,
Q

for every f € LP(Q).
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Let f =(fo,f1,...,fa) = X}_yfje;. Since L is linear, we have
L(f)= L(Z fje]) = ZL(fJeJ)_ ZL (fJ
=Z figjdx= ijgjdx /f -gdx.
j=0/Q
By Holder’s inequality for functions and finite series, we have
n
'/ f-gdx|= Z | figidx| < > [ Ifjllgjldx
j=0/Q
n
Z ||fJ||LP(Q)”g_] "Lp Q)
]:
1
n p/ p/
= ”f”LP(Q;[RVH'l)“g“Lp’(Q;RnJrI)-
Hence
LI = Sllp{|L(f)| : ||f||Lp(Q;Rn+1) < 1}
= sup{‘/ fgdx : "f”LP(Q;RrHl) < l} < ”g"Lp/(Q;[Rn-#l)‘
Q
On the other hand, let f; = Igjlpr_1 sgng;, j=0,1,...,n. Then |f;|P = Igjlp’ and

. 1
p
||f||Lp(Q ‘Rn+ly (Z |fj”LP(Q))

p!

n
_ P P
= (J;O g7, (Q)) =gl o nsry < O

=

It follows that

n i n i
lgl”, / lg ;P dx = lg;IP g;jsgng;dx
LP' QR 1) j;) q >’ J;‘) q -’ J J

n
=y fjgjdx=/f‘gdx
ji=0/a Q

= LD < ILI gty = VTN

This implies that

/ P

"L” = ”g”LP ©; Rn+1) ”g”Lp’(Q;Rn+1)-

Hence ”L” = ”g”LP’(Q;R’”l)'

To show the uniqueness, we assume that there exist g,h € Lp/(Q;[R’”l) such

that
L(f)=/f-gdx and L(f)z/f-hdx
Q Q
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for every f € LP(Q;R"*1). Then
/(f'g—f-h)dx:/f'(g—h)dxzo
Q Q
for every f € LP(C;R**1). Let
fj:|gj_hj|p’_15gn(gj—hj), j=0,1,...,n.
Then |f;IP = Igj—hjlp/ and
?

1
n » P n »
”f”LP(Q;[RWf*l) = ZO ”fJ”LP(Q) = ZO ”gj _h‘j”LP/(Q)
J= J=

P,

_ A
=lg h||Lp,(Q;W+1)<OO-
Thus
n
Oz/f‘(g—h)dx:/ Y filgj—hjdx
Q Qj=0
n ! n !
= Y lgj—-h;IPdx=) [ lgj—h;l” dx
Qj=0 Jj=07Q
which implies that g; = h; for every j=0,1,...,n. a

This section discusses weak convergence techniques for L?(Q;R™) even though

most of the results hold for more general Banach spaces as well.

Definition 2.10. Let 1 < p <oo and m € N, and let QO c R” be an open set. A
sequence (fi)ien of functions in LP(Q;R™) converges weakly in LP(Q;R™) to a
function f € LP(Q;R™), if

tim [ fiegds= [ fogdx
Q Q

1—00
for every g € L (Q;R™) with p’ = 1%'

Next we show that weakly convergent sequences are bounded and that the L?

norm is lower semicontinuous with respect to the weak convergence.

Lemma 2.11. Let 1 < p <oo and m € N, and let Q < R” be an open set. If a
sequence (f;);en converges to [ weakly in LP(Q;R™), then (f;)ien 1s a2 bounded
sequence in L?(Q;R™). Moreover, we have

£ llemm) < liiminfllfi e mm)- (2.12)
—00

Proof |(1)| The claim

sup || fillr@m) < oo.
l
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follows from the uniform boundedness principle (exercise).
In order to prove (2.12), let g € Lp’(Q;[Rm) with ||g||Lpr(Q,Rm) =1and

||f||LP(Q;[R’"):/Qf'gdx-

The definition of weak convergence and Hélder’s inequality for functions and finite
series as above imply

nfan(Q;Rm):/f-gdx:hm/fi-gdx
Q 1—0o0 JO)
sliminf2/|f.(’ g | dx
i—00 i=1 Q 4

m . .
<liminf ) 1 Ir gl o
i—oo ;3

1 1
(’” o V(& ow |7
< liminf E (! § g™l
] LP(Q '
1—00 j=1 t © j=1 Lr(
= liminf] f; Rm ! m
mir I7ill e cirm) 181l e (o my

= liminfl|£; | r @:rm).- O
1—00

THE MORAL: The LP-norm is lower semicontinuous with respect to the weak

convergence.

A bounded sequence in L?(Q;R™) need not have a convergent subsequence.
However, the following result shows that it always has a weakly convergent
subsequence if 1 < p < co. This will be important in our applications of weak
convergence. The following result holds, since L?(Q2;R™) is reflexive and separable
when 1 < p < oco. Theorem 2.13 does not hold for p = 1. This can be seen by

considering the standard mollifier that approximates the Dirac’s delta.

Theorem 2.13. Let 1 <p <ocoand m €N, and let Q2 c R" be an open set. Assume
that (f;)ien is a bounded sequence in LP(Q;R™). There exists a subsequence
(fi,)ren and a function f € LP(Q;R™) such that f;, — f weakly in LP(Q;R™) as

k — oo.

THE MORAL: This shows that L? with 1 < p < oo is weakly sequentially
compact, that is, every bounded sequence in L? has a weakly converging subse-
quence. One of the most useful applications of weak convergence is in compactness
arguments. A bounded sequence in L? does not need to have any convergent sub-
sequence with convergence interpreted in the standard L? sense. However, there

exists a weakly converging subsequence.

Remark 2.14. Theorem 2.13 is equivalent to the fact that L? spaces are reflexive

for 1< p <oo.
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Weak convergence is often too weak mode of convergence and we need tools
to upgrade it to stronger modes of convergence. We begin with the following
result, which is related to Lemma 2.11. The next result holds, since L?(Q;R™) is

a uniformly convex Banach space.

Lemma 2.15. Let 1 <p <ooand m €N, and let Q c R” be an open set. Assume
that a sequence (f;);en converges to f weakly in LP(Q;R™) and
limsup | fillr@mm) < If ILr@mm)- (2.16)
1—00

Then f; — f in LP(Q;R™) as i — oo.

Observe that, under the assumptions in Lemma 2.15, by (2.12) and (2.16) we
have
1 £ 1lLr:rm) <liimglf||fi lzr@mrm) < limsup || fillLrrm) < 1 flLe@rm),
- i—00
which implies
lim || £;llLermy = I1f I Lp(irm)-
1—00
This means that the limit exists with an equality in (2.16).

THE MORAL: Weak convergence in L?(Q;R") with 1 < p < co can be upgraded

to strong convergence if || f; o qrm) — I f lLr(Q;rm) @S T — oo.

Next we discuss another method to upgrade weak convergence to strong
convergence. Mazur’s lemma below asserts that a convex and closed subspace of a

reflexive Banach space is weakly closed.

Theorem 2.17 (Mazur’s lemma). Assume that X is a normed space and that
x; — x weakly in X as i — oco. Then there exists a sequence of convex combinations
X = Z;’:i a;jxj, witha; ; =0 and Z;.n:iiai,j =1, such that x¥; — x in the norm of X
as i — oo.

THE MORAL: Forevery weakly converging sequence, there is a sequence of
convex combinations that converges strongly. Thus weak convergence is upgraded
to strong convergence for a sequence of convex combinations. Observe that some
of the coefficients a; may be zero so that the convex combination is essentially for

a subsequence.

Remark 2.18. Since LP(Q;R™) is a uniformly convex Banach space, the Banach—
Saks theorem asserts that a weakly convergent sequence has a subsequence
whose arithmetic means converge in the norm. Let 1 < p <oo and m € N, and
let Q cR” be an open set. Assume that a sequence (f;);en converges to f weakly
in LP(Q;R™) as i — co. Then there exists a subsequence (f;, )zen for which the
arithmetic mean %Zﬁ?: 1 fi; converges to f in L?((;R™) as k — co. The advantage
of the Banach—Saks theorem compared to Mazur’s lemma is that we can work

with the arithmetic means instead of more general convex combinations
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Remark 2.19. Mazur’s lemma can be used to give a proof for (2.12) (exercise).

Theorem 2.20. Let 1 < p < co. Assume that (z;) is a bounded sequence in
WLP(Q). There exists a subsequence (ui,) and u € WLP(Q) such that uj, > u
weakly in L?(Q) and Du;, — Du weakly in LP(QQ) as k& — oco. Moreover, if
u; € WyP(Q), i =1,2..., then u e Wy P (Q).

THE MORAL: This shows that WP with 1 < p < oo is weakly sequentially
compact, that is, every bounded sequence in Wl? with 1 < p < co has a weakly
converging subsequence. Note that there may exist several weakly converging
subsequences and the limit may depend on the subsequence.

Proof. Assume that u € WHP(Q). Denote
fi =i, Du) e LP(Q;R™h), ieN.

Then (f;);en is a bounded sequence in LP(Q;R**1). By Theorem 2.13, there exist a
subsequence (f;,)ren and a function f € LP (Q;R™*1) such that fi, — f weakly in
LP(Q;R"*1) as & — co. Let f =(u,v) with u € L?(Q) and v = (v1,...,v,) € LP(Q;R"™).
We claim that v is the weak gradient of u, that is, v = Du in Q.

By using test functions of the form (g1,0,...,0) or (0,g2,...,8,+1) in the
definition of weak convergence, we conclude that u;, — u weakly in LP(Q2) and
Du;, — v weakly in LP(Q;R") as k£ — co. Since u;, — u weakly in LP(Q) as k — oo
and u;, € WLP(Q), we have

/uqude: lim/uiij(pdx
Q k=0 Jo

=—lim/Djuik(pdx, j=1,...,n,
Q

k—o0

for every ¢ € C3°(Q2). On the other hand, since Du;, — v weakly in LP((;R"), by
using the test function (0,...,¢,...,0) € LP/(Q;[R”), where ¢ is in the jth position,
we have

k—o0

lim Djuikgadxzfvjwdx, j=1,...,n.
Q Q

It follows that
/uDj(pdxz—/vj(pdx, j=1,...,n,
Q Q

for every ¢ € C3°(Q2). This shows that D ;u =vj, j=1,...,n. In particular, the weak

partial derivatives Dju =vj, j=1,...,n, exist. Moreover, D ju € L?(Q), j=1,...,n,

since v = (v1,...,v,) € LP(Q;R"). It follows that u € W2(Q). The argument above

also shows that (u;,,Du;,) converges to (z,Du) weakly in LP(Q;R"*1) as k — oo.
H Assume that u; € Wé *P(Q) for every i € N and that the sequence

(fip)ken = (i), Dujy Dpen
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converges weakly to f = (z,Du) in LP(Q;R**1). By Theorem 2.17, there exists a

sequence of convex combinations
my, my,
he= Z]eak,jfij = Z;,zak,j(uij;Duij)
J: J:

that converges to f = (u,Du) in LP(Q;R"*1) as k — co. This implies

= k—o00 = k—o00
Zak,juij v and Zak,jDuij Du
j=k j=k

in L?P(Q) and thus

= k—o0
Z ak’juij u
J=k

in WL2(Q). Moreover,
mp

§ apus, € WA @)
J=k

for every k € N. Since WO1 P(Q) is a closed subspace of WHP(Q), it follows that
ue WP Q). O

Remarks 2.21:
(1) Theorem 2.20 is equivalent to the fact that WP spaces are reflexive for
1<p<oo.
(2) Since u;, — u weakly in L”(Q) and Du;, — Du weakly in L”(Q) as k£ — co
in Theorem 2.20, by Lemma 2.11 we have

lullwieq < li}efliiololf||uik lwie)-

Thus the WhP-norm is lower semicontinuous with respect to the weak
convergence in W12,

(3) Another way to see that WP spaces are reflexive for 1 < p < oo is to
recall that a closed subspace of a reflexive space is reflexive. Thus it is
enough to find an isomorphism between W1?(Q) and a closed subspace of
LP(Q,R* 1) = LP(Q,R") x --- x LP(Q,R™). The mapping v — (u,Du) will do
for this purpose. This holds true for WO1 "P(Q) as well. This approach can be
used to characterize elements in the dual space by the Riesz representation
theorem, see [2, p. 62-65], [14, Section 11.4], [18, Section 4.3].

Example 2.22. The Sobolev space is not compact in the sense that every bounded
sequence (z;) in W1 (Q) has a converging subsequence (x ip)andu € WLP(Q) such
that u;, — uin WLP(Q). For i =1,2,..., consider u; :(0,2) — R,

0, 0<x<1,
ui(@) =4 -1, 1<x<l+1,

1, l1+1<x<2.
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Then u; € w11((0,2)) and lwillwiigo,2) < 2 for every i = 1,2,.... However, there
does not exist a subsequence that converges in W11((0,2)). To conclude this,
assume that there exists a subsequence (u;,) that converges in wt1((0,2)). In
particular, the subsequence (u;,) converges in L1((0,2)) and the limit function
u e LY((0,2)) is

0, O<x<l,

u(x) =

1, 1<x<2.
However, u ¢ WH1((0,2)). This example also shows that Theorem 2.20 does not
hold true in the case p =1 (exercise).

Example 2.23. Fori=1,2,..., consider u; : (0,2) — R,

0, O0<x<1,
ui®)=q c-1DVi, I<x<l+i,
1 1

Vi 1+5<x<2
Then u; € W12((0,2)),

1 i-1 3i-2

12 - 4 -
||ul”L2((0,2)) - 312 + 17

112 —
i2 - W, ”Dul ||L2((0,2)) -

foreveryi=1,2,... and u; — u weakly in W2(Q) as i — oo, where u = 0 (exercise).
Clearly
0= ||u||W1,z((0,2)) <1< hmlnfllul ”Wl'2((0,2))'
1—00

This shows that norm is only lower semicontinous in the weak topology but not

continuous. Observe carefully that u; - u in W12((0,2)), since
lim [|Du;||? =1#0.
lllgi) ” ul ”LZ((O,Z)) 75

For the proof of the next result we briefly discuss the convergence of a sequence
of real numbers. Let (a;);ecn be a sequence of real numbers and let a € R. It is
easy to show that a; — a as i — oo if and only if every every subsequence (a;, )ren

converges to a as k — oco. We state a refinement of this result.

Claim: a; — a as i — oo if and only if every subsequence (a;,)ren has a
subsequence, denoted by (aij) jen, such that ai, ~aas j— oo.

Reason. Assume that a; — a as i — co. Then every subsequence (a;, )zen
converges to ¢ and we may take (aij )jen be the subsequence (a;, )ren itself.
Assume that every subsequence (a;,)ren has a subsequence, denoted by
(aij) ieN, such that a i;—~aas J — oo. For a contraction, assume that a; does not
converge to @ as i — 0co. Then there exists € > 0 such that for every & € N there
exists i = k such that |a;, —al >¢. Let (a;;)jen be a subsequence of (a;, )ren-

Then Iaij —al| = € for every j € N. In particular, there does not exist n € N such
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that |a;; —al| < ¢ for every j = n. This implies that (a;;)jen does not converge to
a as j — co. Thus (a;,)ren is a subsequence of (a;);en, but its every subsequence
(ai;)jen does not converge to a as j — oco. This contradicts the assumption on the

subsequences of (a;);en. It follows that a; — a as i — oo n

Theorem 2.24. Let 1 < p <oo and let Q cR” be an open set. Assume that (u;);en
is a bounded sequence in W1?(Q) such that u; — u weakly in LP(Q) as i — oo or
that u; — u almost everywhere in Q as i — co. Then u € WP(Q), u; — u weakly
in LP(Q), and Du; — Du weakly in LP(Q;R") as i — co. Moreover, if u; € Wol’p(Q)
for every i €N, then u € Wg’p(Q).

THE MORAL: Pointwise convergence implies weak convergence for a bounded
sequence in WP (or LP) with 1 < p < co. In order to show that u € W2(Q) it is
enough to construct functions u; € wir(Q),i=1,2,..., such that u; — u almost

everywhere in Q as i — oo and sup; l|lu;llywpq) <oo.

Proof. We prove that (u;,Du;) — (u,Du) weakly in LP(Q;R"**!) as i — oo by
showing that every subsequence (u;,)ren has a subsequence (u;;)jen such that
(ui;,Du;;) — (u,Du) weakly in LP(Q;R™ 1) as j — oo.

To see this assume that every subsequence (u;, )en has a subsequence (u,-j) 7eN
such that (u;;,Du;;) — (u,Du) weakly in LP(Q;R**1) as j — co. We claim that
(u;,Du;) — (u,Du) weakly in LP(Q;R**!) as i — co. For a contradiction, assume
that (u;,Du;) does not converge to (u,Du) weakly in LP(Q;R"1) as i — co. Then
there exists g € Lp/(Q;[R””) such that the sequence of real numbers

ai=/(ui,Dui)'gdx, 1=12,...,
Q

does not converge to
a :/(u,Du)~gdx
Q

as i — oo. Then (a;);en has a subsequence (a;,)ren such that its all subsequences
(@i;)ren with

aij:/(Uij,DUij)'gdx, j:152;'~"
Q

fail to converge to a. This is a contradiction with the assumption that every
subsequence (u;, )ren has a subsequence (uij)jeN such that (uij,Du,-J.) — (u,Du)
weakly in L?(Q;R"*1) as j — co.

Let (u;,)ren be a subsequence of (u;)ien. By Theorem 2.20, there exists a

subsequence, again denoted by (u;, )ren, and a function v € WLP(Q) such that

k—o0

(wiy,Dui,) (v,Dv)

weakly in L?(Q;R"*1). We claim that u = v almost everywhere in Q.
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If u; — u weakly in LP(Q), then u;, — u weakly in L?(Q2) and u = v almost
everywhere by the uniqueness of weak limit. This implies that u € W12 (Q).
It remains to consider the case u; — u almost everywhere in Q as i — co. By

Theorem 2.17, there exists a sequence of convex combinations
mp
hi =) apj(u;,,Du;;)
j=k
that converges to (v,Dv) in L?(Q;R**1) as £ — co. In particular,

& k—o0

hri=) apjui;, ——v
J=k

in LP(Q). This implies that there exists a subsequence of (21 1)ren that converges

to v almost everywhere in Q. Since u;; — u almost everywhere in (2 as j — oo, we

have
mp,
limhklz lim Zakjui.zu
k—oo kaooj:k R

almost everywhere in Q. This shows that u = v almost everywhere in Q, which
implies that u € WHP(Q).
Ifu; € Wol’p(Q) for every i €N, then u € Wol’p(Q) by Theorem 2.20. a

Remark 2.25. Theorem 2.20 and Theorem 2.24 do not hold when p =1 (exercise).

As a final result in this section we show that pointwise uniform bounds are

preserved under weak convergence.

Theorem 2.26. Let 1 < p <ocoand m €N, and let QO c R” be an open set. Assume
that sequences (f;)ien and (g;)ien are such that f; converges to f weakly in
LP(Q;R™) and g; converges to g weakly in LP(Q) as i — co. If |f;(x)| < gi(x) for
almost every x € Q, then |f(x)| < g(x) for almost every x € Q.

Proof: Let x € Q be a Lebesgue point of g and all components of f. Let 0 <r <
d(x,0Q) and assume that [ . f(y)dy # 0. Denote

-1
e:k{ f@y@(‘f f(y)dyeR™
B(x,r) B(x,r)

and
_ XB(x,r)

~ IB(x,7)|
By Cauchy—Schwarz’s inequality and the assumptions, we have

e e LP (Q:R™).

|J€a<x,,>f Wdy|=e: ]g(x S dy= /Q f@)-h(y)dy

>

= lim fi(y)'h(y)dySIiminf/ Ifi IR dy
1—00 Q 1—00 Q

sliminf/ gi(y)lh(y)ldy=][ gdy.
i—oo Jq B(x,r)
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This implies
|][ f(y)dy‘ sf g(y)dy,
B(x,r) B(x,r)

which clearly holds also if fB(x »f(¥)dy=0. Since almost every point x€Q is a
Lebesgue point of g and all components of / and the claim follows by passing

r — 0 on both sides of the inequality above. a

2.4 Dual spaces

Let X be a Banach space. A linear functional L : X — R is bounded, if there exists

a constant M < oo such that
|ILx| < M| x| forevery xeX.

The norm of L is

|Lx| Lx
IL|| = sup — = sup — = sup |Lx| = sup |Lx|.
xeX, llll xeX, llll xeX, xeX,
llcll 20 lcll 20 flell<1 llell =1

Recall, that for a linear functional L, we have
L:X —>R iscontinuous <= Lisbounded <= |L| <oo.

The dual space X* of a Banach space X is the collection of all bounded linear
functionals on X. In this section we discuss the dual spaces of WO1 P(Q) and
WLP(Q).

Let 1< p <oo and assume that fy, f1,...,frn € Lp’(Q), where p’ is the Holder
conjugate exponent of p with % + 1% = 1. Then the functional L : WO1 PQ)—R,

n
L(u) =/ (f0u+ Z ijju) dx
Q j=1
belongs to Wg PQ)*.

Reason. Asin (2.8), we have

|L(w)| s/ (fou + Z ijju) dx
Q j=1

1
L D' 2 P L P
< ;)Ilfjlle,(Q) IIMIILP(Q) + leleulle(Q)
J= Jj=

= ”f”LF(Q;R"+1)”u"WLP(Q)

for every u € Wol’p(Q). Here f =(fo,f1,...,fn) and

S

n
_ P
||f||Lp(Q;|Rn+1) = (Z(’) ”fj”Lp(Q)) < 0.
J=
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Thus

1

IL(w)| e |7

———— <|Ifllrmr+1) = Z”ff”zﬂ(m ’
ueWyP(Q), lullwir) Jj=0

N2ty 1,0y 20 "

”L ”WOLP(Q)* =

We apply the following version of the Riesz representation theorem in L?(Q;R**1).

Theorem 2.27. Let 1< p < oo and assume that L : LP((;R**1) — R is a bounded
linear functional, that is, L € LP(Q;R**1)*. Then there exists a unique g =
(80,81, -.,8n) € LP (Q;R"*1) such that

L(f):/ ijgjdxz/f'gdx
Q=0 Q

for every f =(fo,f1,-..,fn) € LP(Q;R**1). Moreover,

B

n !
- _ P
”L” = ”g”Lp’(Q;RrH-l) - (j;o "gj ”LP/(Q))
Proof Apply the Riesz representation theorem in L?(Q) componentwise (exer-

cise). O

The following result holds true for the dual of WO1 P(Q) and WP (Q). We state
it only for Sobolev spaces with zero boundary values.

Theorem 2.28. Let 1 < p < oo and let 2 c R” be an open set. Then for every
bounded linear functional L € WO1 P(Q)* there exist fo, f1,...,fn € LP'(Q) such that

L(u)=/(fou+iijju) dx
Q =1

Jj=

for every u € Wy ”(Q2) and

=

n ’ P
— P
Iy gy = (]Zo 112, (m) :

Proof Consider the embedding T : W, " () — LP(Q;R™+1),
T(u)=(u,D1u,...,Dyu).

Then

n
— p p —
”T(u)“LP(Q;R""'l) - (”u”LP(Q) + Z]-”D]u"LP(Q)) - “u”WLP(Q)
j=

for every u € WO1 P(Q). Thus T is linear, one-to-one, bounded and norm preserving.
Since WO1 P(Q) is complete, we conclude that X = T(WO1 "P(Q)) is a closed subspace
of LP(Q;R™*1). Let L € Wy”(Q)* and let L1 : X — R,

L1(g) = (T X(g))
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for every g € X. Then L; is a bounded linear operator with

ILi(g)l IL(TY(g)
= sup ——

IL1llx«= su

gex, lgllx  gex, lgllx
llgllx#0 llgllx#0

_ sup [L()l

T(weX, ”T(u)||Lp(Q;Rn+l)
IT@ L ppn+1)70
[L(w)

= sup = Ll
ueW&’p(Q), ”u”WLP(Q) 0
lelly1,p )70

By the Hahn-Banach theorem we may extend L1 to a bounded linear functional
L1 :LP(Q;R"1) — R such that

L1l s sty = IL1lx+ = 1Ll gy
By Theorem 2.27 there exists a unique g =(go,g1,...,8n) € Lp/(Q;[R{"”) such that
_ n
Li(f)= ijgjdx
Qj=0

for every f = (fo,f1,.-.,fn) € LP(Q;R"*1) and

. Y
”L"WOLP(Q)* = ”Ll ”LP(Q;RH+1)* = ”g”Lp’(Q;Rrwd) = Jg‘(,) ”gj "LI”(Q) .
It follows that

L(u)=L1(T(w)) =Ly(T(w) = / (fou+ S £,D ju) dx
Q i=1

J:
for every u € W, P (). O

Remark 2.29. Note that the previous theorem does not imply that WO1 Py =
LP'(Q;R"*1). We have shown that if £ = (fo, f1,...,fs) € L? (Q;R"*1), then the
functional L : Wol’p(Q) —R,

L(u)=/ (f0u+ ijDju) dx (2.30)
Q j=1

belongs to WO1 P(Q)* with

e

n !
1P
Il gy < (jzzo) 117 (Q))

On the other hand, by Theorem 2.28, there exists g =(go,£1,...,81) € LP/(Q;[R{”“)
such that

L(u) :/ (g0u+ ingju) dx
Q =1

J
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for every u € WO1 P(Q) and

s

n !
— P

If follows that

n ’ p ,
— mi P . p .pn+l
”L”Wol,p(Q)* = mln{ (;6 I7; ||Lp,(Q)) :f e L? (Q;R"" ") such that (2.30) holds.}
Observe, that the representation (2.30) is not unique in general. For example,
let Q c R" be a bounded open set and assume that z € C2(R") be a harmonic
function in R”, that is, a classical solution to the Laplace equation
n 62h

—1 0x<
J=1 Jj

for every x € R*. Then
n n aZh
—/ ZDthj(pdxz/ Z—z(pdxz/Ah(pdxzo
Qo1 q j=1 0x; Q

for every ¢ € CP(QQ). Let u € Wol’p(Q). Then there exist functions ¢; € C3°(Q),
i=1,2,..., such that ¢; — u in W(Q) as i — co. Then

= ‘/(Dthj(pi—Dthju)dx
Q

‘/ Dthj(pidx—/Dthjudx
Q Q
S/|Djh||Dj(pi—Dju|dx
Q

<Dkl D jei =D juliLe)

1 i
S IDA o) | QU7 1D jpi = D jull Lo () —> 0
for every j =1,...,n. This shows that

n n
Y DjhDjudx=1lim | Y D;hD;p;dx=0
Qj=l 1—00 Qj=1

for every ¢ € Wg’p(Q). Thus if f = (fo,f1,..-,fn) € Lp’(Q;[R’”l) such that (2.30)
holds, then

L(u):/(fou+iijju) dx
Q j=1
:/(f0u+ i(fj+Djh)Dju)dx
Q j=1

for every u € W(:)l’p(Q).
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2.5 Difference quotients

In this section we give a characterization of W1, 1 < p < oo, in terms of difference
quotients. This approach is useful in regularity theory for PDEs. Moreover, this
characterization does not involve derivatives.

Definition 2.31. Let u € Llloc(Q) and Q' € Q. The j** difference quotient is

u(x+hej)—u(x)
h b
for x € O’ and & € R such that 0 < |A| < dist(Q’,0Q). We denote

D?u(x)z j=1,...,n,

D"u=(D"u,...,D"w).

THE MORAL: Note that the definition of the difference quotient makes sense
at every x € Q whenever 0 < |2| < dist(x,0Q). If Q =R", then the definition makes
sense for every h # 0.

Theorem 2.32.
(1) Assume u € W?(Q), 1< p <oco. Then for every Q' € Q, we have

ID"ulizp < clDulLr)

for some constant ¢ = ¢(n, p) and all 0 < |A| < dist(Q’, Q).
(2) Ifue LP(QY), 1 < p <o, and there is a constant ¢ such that

h
ID"ullpry<c

whenever 0 < 4| < dist(Q',0Q), then u € WHP(Q') and |IDullzrqr < c.

(3) Let 1< p <oo, and assume that u € LP(R") and that there exists a constant
¢ such that
D" ullLp @) <

for every h # 0. Then the weak derivative Du with respect to R” exists,
ueWhP(R") and IDullr®ey < c.

THE MORAL: Pointwise derivatives are defined as limit of difference quotients
and Sobolev spaces can be characterized by integrated difference quotients. This

is useful in the regularity theory for elliptic partial differential equations.

WARNING : Claim (2) does not hold for p =1 (exercise).
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Proof: First assume that u € C®°(Q) N WHP(Q). Then
h o
u(x+hej)—u(x)=/ —(ulx +te;))dt
o Ot
h
=/ Du(x+tej)-e;dt
0

h
u .
=/0 %(Jﬁ_tej)dt’ j=1,...,n,

for all x € ', 0 < || < dist(Q',0Q). By Hélder’s inequality

ulx + hej) —u(x)

\hl
Ihl /|h|

D" u(x) =

—(x+te;)| dt

Ox;

1 (™ a v
< — (x+te) dt 12h|" P,
A (/|h| Ox; / )
which implies
h p IR 6u
ID u(x)| —(x+te ) dt
BT ny 02 ’

Next we integrate over Q' and switch the order of integration by Fubini’s theorem

|h]
IDhu(x)Ipdx<—/ /
Q' IRl JarJ-in

op- I/Ihl/
Al Jow o

p
f(x)

g2})/ du
anj

The last inequality follows from the fact that, for 0 < || < dist(Q’,0Q) and |¢| < |A|,

we have
ou
/Q/ a—(x+ te;)

to conclude

dtdx

5% (x+teJ)

P
dxdt

du
6__7(,'](x + tej)

dx.

P
—_(x) dx.

p
dxs/ Ou
Q axj

Using the elementary inequality (a1 +---+a,)* <n%@a{ +---+ay),a; 20, a >0,

we obtain

P
/Q/ D" u(x)|P dx = / (Z IDhu(x)I ) de<n? o Z ID?u(x)lp dx

ou
—(x)

d
aldx; x

=nt Z IDhu(x)Ipdac<2pn2 Z
Jj=1/Q J=1

<2pn1+%/IDu(x)|pdx
Q

The general case u € WH2(Q) follows by an approximation, see Theorem 1.21.
Let u; € C®(Q)NWLP(Q), i € N, such that u; — u in WhP(Q) as i — co. By
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passing to a subsequence, if necessary, we may also assume that u; — u pointwise
almost everywhere in Q as i — co. Assume that 0 < |&| < dist(Q',0Q). Then
D"u;(x) — D"u(x) for almost every x € Q' as i — co. By Fatou’s lemma and

assumption we obtain
ID"u(x)? dx <liminf [ |D"u;(x)? dx
Q! 1—00 QI

< c(n)liminf/ [Du;(x)IP dx
Q

1—00

= c(n)/ [Du(x)|? dx.
Q

Let pe CS"(Q'). Then by a change of variables we see that, for 0 < |2 <
dist(supp ¢,0Q’), we have

+hej)—@(x) —hej)—ulx)

/u(x)wdx:_/ w(p(x)dx, i=1,...n.
Q/ h Q/ _h

This shows that

/ uDj%wdxz—/(D;hu)(pdx, j=1,...,n.
Q' Q

By assumption

sup ”D;hu”Lp(Q/) < ¢ <00.
0<|h|<dist(Q’,0Q)

Since 1 < p < 0o, by Theorem 2.13 there exists f € LP(Q';R") and a sequence
(hi)ien converging to zero such that D"y — f weakly in L?(Q';R") as i — oo.
This implies

0 . .
/ UL = / u| lim D}.“(p) dx = lim uD’.ll(pdx
Q axj o \hi—0 J i—0/qy J

B —h; _
=_g;?0 Q,(Dj u)(pdx——/Qlfj(pdx

for every ¢ € CgO(Q’ ). Here the second equality follows from the dominated
convergence theorem and the last equality is the weak convergence tested with
g=(0,...,0,...,0), where ¢ is in the jth position. It follows that Du = f in the
weak sense in Q' and thus u € WH2(Q). By (2.12),

. . _h
IDullre@rey = I f lLp(rrry < liminfllD ™" ullzrq pe) < c.
1—00

Let Q; = B(0,2i) and Q; = B(0,i) for every i € N. Assertion (2) and the
assumption imply that u; = ul|q,, i € N, has a weak derivative Du; in Q; and
IDu;llzp gy < c. Since Du;+1 = Du; almost everywhere in Q;, we see that the
limit

fx)= zlilgo Yo ()Du;(x)
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exists for almost every x € R”. The weak derivative of u with respect to R”

1

1oc(R";R") and Fatou’s lemma implies

coincides with f € L

1
. P
IDullzr@emey = | f | e e me) = (/ lim |y Du;l? dx)
Rn 100 l
1

.. P
< 11m1nf( |Du; P dx) <ec.
i—oo /!

From this it also follows that u € WLP(R™). O

Remark 2.33. By the proof of the previous theorem u € WH2(R?), 1 < p < oo, if and
only if u € LP(R") and

limsup [ D* w1 @y < 0o.
h—0

2.6 Absolute confinuity on lines

In this section we relate weak derivatives to classical derivatives and give a
characterization W17 in terms of absolute continuity on lines.

Let [a,b], with —co <a < b < oo, be a bounded closed interval in R. A function
u :la,b] — R is absolutely continuous, if for every € > 0, there exists § > 0 such
thatifa =x1 <y; <x9<yg<...<x, <y, => is a partition of [a, b] into a finite

number of pairwise disjoint intervals (x;,y;), i =1,...,m, with
m
> (i—x) <8,
i=1
then
m
Z lu(y;)—ulx;) <e.

=1
Absolute continuity can be characterized in terms of the fundamental theorem of

calculus.

Theorem 2.34. A function u :[a,b] — R is absolutely continuous if and only if
there exists a function g € L1((a, b)) such that

u(x) =u(a) +/ gt)dt.

By the Lebesgue differentiation theorem g = u’ almost everywhere in (a, b).

THE MORAL: Absolutely continuous functions are precisely those functions

for which the fundamental theorem of calculus holds true.

Examples 2.35:
(1) Every Lipchitz continuous function u : [a,b] — R is absolutely continuous.
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(2) The Cantor function u is continuous in [0,1] and differentiable almost
everywhere in (0, 1), but not absolutely continuous in [0, 1].

Reason.

1
u(1)=1750=u(0)+/ u'(t) dt.
05 .

The next result relates weak partial derivatives with the classical partial

derivatives.

Theorem 2.36 (Nikodym, ACL characterization). Assume that u € Wlt’f Q),
1< p<ooandlet Q' Q. Then there exists u* : Q — [—00,00] such that

(1) u* = u almost everywhere in Q’,

(2) u* is absolutely continuous on almost every (with respect to the (n — 1)-
dimensional Lebesgue measure) line segments in )/, that are parallel to
the coordinate axes and

(3) the classical partial derivatives of u* coincide with the weak partial deriva-

tives of u almost everywhere in '.

Conversely, if u € LP(Q)’) and there exists u* as above such that D;u* € LP(Q'),
i=1,...,n, then u e WHP(Q)).

THE MORAL: Thisis a very useful characterization of W7 since many
claims for weak derivatives can be reduced to the one-dimensional claims for
absolute continuous functions. In addition, this gives a practical tool to show that

a function belongs to a Sobolev space.

Remarks 2.37:

(1) Let u € WH?(R™). By the ACL characterization there exists a function u*
such that ©* = u almost everywhere in R”, u* is absolutely continuous on
almost every line segments in R" parallel to the coordinate axes and the
classical partial derivatives of u* coincide with the weak partial derivatives
of u almost everywhere in R”.

(2) In the one-dimensional case we obtain the following characterization:
ueWbhP((a,b)), 1< p < oo, if u can be redefined on a set of measure zero
in such a way that u € L?((a,b)) and u is absolutely continuous on every
compact subinterval of (a,b) and the classical derivative exists and belongs
to u € LP((a,b)). Moreover, the classical derivative equals to the weak
derivative almost everywhere.

(3) A function u € WP(Q) has a representative that has classical partial
derivatives almost everywhere. However, this does not give any informa-
tion concerning the total differentiability of the function. See Theorem
3.28.
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Proof If Q #R", then 0Q # @. Since Q' € Q, we have dist(Q’',0Q) > 0. Let
Q" ={x e Q:dist(x,Q') < § dist(3Q,0Q)}

and consider a cutoff function 7 € C3°(Q") such that n =1 in Q'. By replacing u
with nu, we may assume that Q = R" and that u has a compact support.

Let u; =u¢;, i=1,2,..., be a sequence of standard convolution approxima-
tions of u such that suppu; < B(0,R) for every i =1,2,... and

1.
llue; _u”Wl,l([Rn) < E, 1=1,2,...

By Lemma 1.18 (2), the sequence of convolution approximations converges point-
wise almost everywhere and thus the limit lim; ., z;(x) exists for every x e R* \ E
for some E c R" with |E| = 0. We define
lim u;(x), xeR"\E,
u*(x) =1 i—o
0, xekE.

We fix a standard base vector in R” and, without loss of generality, we may assume
that it is (0,...,0,1). Let

filx1,...,xn-1) = / (Iui+1 —ul+ )
R

J=1

Ou;jv1  Ou;

axj ij

)(xl,...,xn)dxn

and

f(xl,---,xn—l) = Zfi(xl,---;xn—l)-
i=1

By the monotone convergence theorem and Fubini’s theorem

< 00.

[e.e]
fdxl...dxn_lz/ Zfidxl...dxn_l
Rr-1 Rr-1 i=1
ZZ/ fidxl...dxn_l
i=1 Rnfl
= Ou;v1 aui)
= lw;v1 —uil + -—|dx
I;_/Rn( " ' Ox; Ox;
1
2i

A
,Mg

~
1l
-

This shows that £ € LI(R"1) and thus f < co (n — 1)-almost everywhere in R* 1.
Let £ = (x1,...,%n—1) € "1 such that f(Z) < co. Denote

gi®=u;(x,t) and g)=u*&x,1).
Claim: (g;) is a Cauchy sequence in C(R).

Reason. Note that

i-1
gi=g1+ ) (8re1—8r), 1=12,...,
k=1



CHAPTER 2. METHODS AND CHARACTERIZATIONS 57

where
t
|8r+1() — gr () = ’/ (81— 83)(s)ds
—00
S/Ig}m(S)—g}e(s)Ids
R
19] d
s/ TUk+1 (2 5= T2z 5)| ds < f1 ().
R Xn 0xp,
Thus

|8i+m () —gi(?)l

i+m-1 i-1
(g1(t)+ Y (gk+1(t)—gk(t)))—(g1(t)+ Z(gk+1(t)—gk(t)))‘

k=1 k=1
i+m—1 i+m—1
=1 Y (gra1@®-gr®|< Y Igre1t)—gr®)
k=i k=i

(o]
<Y @, m=12,..,
k=i

for every t € R. Since

Y 2@ =f@&) <oo,
k=1

we have

& i—00
fr (%) 0.
k=i
Thus
& ~ I—00
suplgi+m(t) —g; (@< ) fr(®X) 0
teR k=i

and it follows that (g;) is a Cauchy sequence in C(R). Since C(R) is complete, there
exists g € C(R) such that g; — g uniformly in R. It follows that {x} xRcR*" \E. g

Claim: (g’i) is a Cauchy sequence in L1(R).

Reason. Again we note that

i—1
gi=g1+> (gh1—8), i=12,..,
k=1

/ A OEFAGI /
R R

i+m-1

< X /'gku(t)—g;(t)ldt
k=i JR

Thus

i+m-1

Y (gha®O-g)@®)|dt
k=i

<Y @ =f@ <00, m=1,2,....
k=i

This implies that (g’i) is a Cauchy sequence in L1(R). Since L'(R) is complete,
there exists g € L1(R) such that g,—gin LiR)asi—oco. =
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Claim: g is absolutely continuous in every bounded interval in R.

Reason.

¢ t
g(t)=lim g;(¢) = lim / g’i(s)ds =/ g(s)ds
1—00 1—00 —c0 —00
Since g has a compact support, his implies that g is absolutely continuous in every
bounded interval in R and g’ = g almost everywhere in R. n

Claim: g is the weak derivative of g.

Reason. Let ¢ € C3°(R). Then

/g(p’dtzlim/ggp’dtz—lim/g;q)dt:—/g(pdt. n
R 1700 JR 1= /R R

Thus for every ¢ € C3°(R") we have

.o g ou* "
/u (x,xn)—(p(x,xn)dxn:—/ &, x,)p(x,x,)dxy
R 0 RO

Xn Xn

and by Fubini’s theorem

dp ou*
L dx=- dx.

This shows that u* has the classical partial derivatives almost everywhere in R"

and that they coincide with the weak partial derivatives of u almost everywhere
in R".

Assume that u has a representative u* as in the statement of the theo-
rem. For every ¢ € C3°(R"), the function u* ¢ has the same absolute continuity

properties as u*. By the fundamental theorem of calculus

/6(”*"’)(2,):)(1)::0
w0

Xn

for (n — 1)-almost every ¥ € R* 1. Thus

/u*(a?,t)a—"’(f,t)dt:—/au &, &, ) dt
R a RO

Xn Xn

and by Fubini’s theorem

310 ou*
* 22 dx=- dx.

Since u* = u almost everywhere in R", we see that % is the nth weak partial
derivative of u. The same argument applies to all other partial derivatives %Lx;,

j=1,...,n as well. ]

Remarks 2.38:
(1) The ACL characterization can be used to give a simple proof of Example

1.10 (exercise).
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(2) The ACL characterization can be used to give a simple proof of the Leibniz
rule. If u e WHP(Q)n L®(Q) and v € WLP(Q) N L°(Q), then uv € WLP(Q)
and

D;(wv)=vDu+uDjv, j=1,...,n,

almost everywhere in Q (exercise), compare to Lemma 1.14 (5).

(3) The ACL characterization can be used to give a simple proof for Lemma 2.1
and Theorem 2.3. The claim that if u,v € W1P(Q), then max{u, v} € WHP(Q)
and min{u,v} € WP (Q) follows also in a similar way (exercise).

(4) The ACL characterization can be used to show that if Q is connected,
ue Wﬂ)’f(Q) and Du = 0 almost everywhere in Q, then u is a constant
almost everywhere in Q (exercise).

(5) The ACL characterization can be used to show that u € Wli’coo(Q) if and
only if u is locally Lipschitz (exercise). Compare with Theorem 3.31 below.

Example 2.39. Let R} ={(x1,...,x,) € R” : x, > 0} be the upper half space. Assume
that u € WHP(R?), 1< p € co. Let

_ u(x1,...,%), %, >0,
u(x) =
u(xi,...,—x,), x,<0.

Then u € WHP(R™) and

Dju(xy,...,x,), x>0,

D;u(x)=
(—1)5J"Dju(x1,...,—xn), xp <0,

Jj=1,...,n, where §;, is the Kronecker delta, thatis 6, =1if j=n and §;, =0

otherwise (exercise). Moreover, we have

_ 2||u||W1,p([R1), 1<p<oo,
||u||W1,p([Rgn) =

||u||W1,w(Rg), b =oo.

Thus there exists a bounded linear extension operator E : WHP(R?) — WLP(R?),
Eu =u such that (Eu)|g» = u for every WLP(R?).

Example 2.40. The radial projection u : B(0,1) — dB(0, 1), u(x) = % is discontinu-
ous at the origin. However, the coordinate functions %, j=1,...,n, are absolutely
continuous on almost every lines. Moreover,

XX
xj  Oijlxl— 4

whenever 1< p <n. Here §;; is the Kronecker symbol. By the ACL characteriza-
tion the coordinate functions of u belong to WP(B(0,1)) whenever 1< p < n.
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Remark 2.41. We say that a relatively closed E c Q is be removable for WhP(Q),
if |[E| =0 and WHP(Q\ E) = WLP(Q) in the sense that every function in wbir(Q\
E) can be approximated by the restrictions of functions in C*°(Q2) in the norm
I - lwwp(q)- Theorem 2.36 implies the following removability theorem for wirQ):
if 7" 1(E) = 0, then E is removable for W1P(Q). Observe, that if #" }(E) =0,
then E is contained in a measure zero set of lines in a fixed direction (equivalently
the projection of E onto a hyperplane also has #" !-measure zero).

This result is quite sharp. For example, let Q = B(0,1) and E = {x € B(0,1) :
x2 = 0}. Then 0 <.#" 1(E) < 0o, but E is not removable since, using Theorem 2.36
again, it is easy to see that the function which is 1 on the upper half-plane and 0
on the lower half-plane does not belong to W1-*Q). With a little more work we can
show that E' = E N B(0, 1) is not removable for W-P(B(0,1)).



Sobolev inequalities

The term Sobolev inequalities refers to a variety of inequalities involving functions

and their derivatives. As an example, we consider an inequality of the form

1 1
(/ Iulqu)qsc(/ |Du|de)” 3.1)
RYZ Rn

for every u € C3°(R"), where constant 0 < ¢ < co and exponent 1 < g < oo are
independent of u. By density of smooth functions in Sobolev spaces, see Theorem
1.21, we may conclude that (3.1) holds for functions in W1-?(R") as well. Let u €
Cy@®R™), u#0, 1< p<n and consider u (x) = u(Ax) with 1 > 0. Since u € C3°(R"),
it follows that (3.1) holds true for every u) with A >0 with ¢ and ¢ independent of
A. Thus

P

1
( Iu,llqu)q sc( IDu,llpdx)
R™ R”

for every A > 0. By a change of variables y = Ax, dx = /%n dy, we see that

1 1
. lua(x)|?dx = . lu(Ax)|? dx = . Iu(y)lq)l—ndy = F/W lu(x)? dx
and
[Duy(x)|P dxz/ APIDu(Ax)IP dx
R” R?
AP »
:F/Rn [Du(y)I” dy
p
= I - |Du(x)|? dx.
Thus

1

1
1 7 A P
—n(/ Iulqu)q <c— (/ IDulpdx)p
Aq n AP R®

61
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for every A > 0, and equivalently,
1-24n
lullLawny < cA™ P e[ DullLrgn).-

Since this inequality has to be independent of 1, we have

n n
1-—+—=0 < g¢-= .
p q n—p

THE MORAL: Thereis only one possible exponent ¢ for which inequality (3.1)
may hold true for all compactly supported smooth functions.
For 1 < p < n, the Sobolev conjugate exponent of p is

._ np
=

Observe that

1) p*>p
(2) If p > n—, then p* — co and
(3) If p=1, then p* = ;5.

3.1 Gagliardo-Nirenberg-Sobolev inequal-
ity
The following generalized Hélder’s inequality will be useful for us.

Lemma 3.2. Let 1<pj,...,pr <oco with pll +~-+plk =1 and assume f; € L?i(Q),
i=1,...,k. Then

k
/ If1...feldx < [ Ifillri-
Q i=1
Proof. Induction and Holder’s inequality (exercise). a

Sobolev proved the following theorem in the case p > 1 and Nirenberg and
Gagliardo in the case p = 1.

Theorem 3.3 (Gagliardo-Nirenberg-Sobolev). Let 1 < p < n. There exists

1 1
(/ Iulp*dx)p so(/ IDulpdx)p
R™ R"

for every u € WHP(R™).

¢ =c(n,p) such that
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THE MORAL: The Sobolev-Gagliardo-Nirenberg inequality implies that
WLP(R") c LP"(R"), when 1< p < n. More precisely, WH2(R") is continuously
imbedded in L?” (R"), when 1 < p < n. This is the Sobolev embedding theorem for
l1<sp<n.

Proof. We start by proving the estimate for u € C°(R"). By the fundamental
theorem of calculus

%I du .
u(xl,...,xj,...,xn)z/ —(x1,...,t),..,xp)dtj, j=1,...,n.
—oo 0%
This implies that
lu(x)] s/IDu(xl,...,tj,...,xn)ldtj, j=1,...,n.
R
By taking product of the previous estimate for each j=1,...,n, we obtain

|u(x)|ﬁsﬂ(/ |Du(x1,...,tj,...,xn)ldtj) )
J=1VR

We integrate with respect to x1 and then we use generalized Holder’s inequality

for the product of (n — 1) terms to obtain

/|u|ﬁdx1s(/ IDuIdtl) ]‘[(/ IDuIdtj) dxi
R R Rj=2\/R

1

w1 on =
S(/ |Du|dt1) l_[ (//IDuIdxldtj) .
R j=2\Jr /R

Next we integrate with respect to xg and use again generalized Hélder’s inequality
1

. w1 on =
//Iulﬁdxldxgs/ (/IDuIdtl) H(//IDuldxldtj)
RJR R R J=2\VRJR
1
n-1
=(//|Du|dx1dt2)
RJR
1 1
n-1 I n-1
/ (/ |Du|dt1) H(//IDuIdxldtj)
R | \Ur j=3\UrJ/r
=
$(//|Du|dx1dt2)
RJR
1 1
n-1 1 n-1
-(//|Du|dt1dx2) n(///lDuldxldxzdtj) .
RJR i=3\UrJ/rJR

Then we integrate with respect to x3,...,x, and obtain

|u|ﬁdxsl_[(/.../IDuIdxl...dtj...dxn)
R™ =1\Ur JR

dxg

dxz
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This is the required inequality for p = 1.
If 1 < p <n, we apply the estimate above to

v=lul”,

where y > 1 is to be chosen later. Since y > 1, we have v € C1(R"?). Holder’s
inequality implies

n-1
n

( |u|Yﬁdx) < [ ID(ul")ldx
R” R”

=y [ lul" ' Duldx
Rn

p-1 1
sy( IuI(Y_DI% dx) g ( IDulpdx)p.

R™ R™

Now we choose y so that |u| has the same power on both sides. Thus

Yn

o P _pn-1
—1—(7f 1)p_—1 = =—.

n-p

This gives
= = :p
n-1 n-p n-1 n-p

and consequently
1 1
( Iulp*dx)p sy( IDulpdx)p.
R® R

This proves the claim for u € CP(R™).

Assume then that ¥ € WMP(R?). By Lemma 1.28 we have WH2(R?) =
Wol’p([R%”). Thus there exist u; € C3°(R"), i = 1,2,..., such that |lu; — ullyipgn) —
0 as i — oco. In particular |u; —ulrr@r) — 0, as i — co. Thus there exists a

subsequence (u;) such that u; — u almost everywhere in R” and u; — u in LP(R").
Claim: (u;) is a Cauchy sequence in L?" (R™).

Reason. Since u; —uj;€ C3°(R"), we use the Sobolev-Gagliardo-Nirenberg inequal-
ity for compactly supported smooth functions and Minkowski’s inequality to
conclude that

lwi —ujllpo* @ny < cllDui —DujllLrmn)

<c(IDu; —DullLe@ny+ IDu — DuliLo@gny) — O. n

Since L?" (R") is complete, there exists v e LP"(R") such that u; —vin LP"(R") as
1 — o0o.

Since u; — u almost everywhere in R” and u; — v in LP"(R"), we have u = v
almost everywhere in R”. This implies that u; — u in L? (R") and that u € L?" (R™).
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Now we can apply Minkowski’s inequality and the Sobolev-Gagliardo-Nirenberg

inequality for compactly supported smooth functions to conclude that

”u”Lp* (R™) < ”u —Uj ”Lp* (R™) + ”uz ”Lp*([Rn)
< llw —uillpp @ny + cllDuillLe @)

< llu=uillpp gny+ ¢ (IDu; = Dulps@e) + IDul Lo @)

i—00

clDullLrwny,

since u; — w in LP (R") and Du; — Du in LP(R™). This completes the proof. O

Remarks 3.4:
(1) The Gagliardo-Nirenberg-Sobolev inequality shows that if u € WP (R")
with 1< p <n, then u € LP(R®")nLP" (R"), with p* > p.
(2) The Gagliardo-Nirenberg-Sobolev inequality shows that if u € WP (R")
with 1 < p <n and Du = 0 almost everywhere in R”, then u = 0 almost

everywhere in R”.

(3) The Sobolev-Gagliardo-Nirenberg inequality holds for Sobolev spaces with
zero boundary values in open subsets of R” by considering the zero exten-

sions. There exists ¢ = ¢(n, p) > 0 such that

1 1
(/ Iulp*dx)p <c / IDulpdx)p
Q Q

for every u € WO1 P(Q), 1< p <n. If|Q| < oo, by Holder’s inequality

1 1

q * e 7i

(/ Iulqu)q s(/ |u|P dx)p |Q|1 i
Q Q

1

_1 )

<clQf P (/ IDulpdx)p
Q

whenever 1< g < p*. Thus for sets with finite measure all exponents below

the Sobolev exponent will do.

(4) The Sobolev-Gagliardo-Nirenberg inequality shows that Wﬁ)’f(ﬂ@”) cL} *C([R”).
To see this, let Q € R"” and choose a cutoff function n € C3°(R") such that
n=1in Q. Then nu € Wg’p(lR") =WLP(R"?) and nu = u in Q and

”u”Lp*(Q) < ”nu”Lp*(Rn) < cllD(muw)llLewn) < 0o.

(5) The Sobolev-Gagliardo-Nirenberg inequality holds for higher order Sobolev

spaces as well. Let keN, 1<p <% and p* = nf’};p. There exists ¢ =

c(n,p,k) such that

1 1
( Iulp*dx)p SC( IDkulpdx)p
R R”
for every u € W*P(Q). Here |D*u|? is the sum of squares of all £th order

partial derivatives of u (exercise).
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The Sobolev—Gagliardo—Nirenberg inequality has the following consequences.

Corollary 3.5. Let 1 < p <n and p < g < p*. Then there exists a constant
¢ =c(n,p) such that
lulLamny < (1 +llullyiegn)

for every u € WP (R?).

THE MORAL: The embedding L : W-P(R*) — LYI(R"), Lu = u, is a bounded

linear operator.

Proof. The claim is clear if ¢ = p and if ¢ = p* the claim follows from the Gagliardo-
Nirenberg-Sobolev inequality in Theorem 3.3, Thus we may assume that p < ¢ <
p*. Let 0<6 <1 such that % = % +%. Then

0 1-0
lellza@n) < Nwllzegnyllely o oo

< lullze@e) + 1l Lo gny,

where we applied Young’s inequality with the exponents % and (%)’ . By the
Gagliardo-Nirenberg-Sobolev inequality in Theorem 3.3, we have

lullLawe) < lullLe@e) + 1wl pp* gny
< lullzp@ny +cllDullLr @)

<(+0o)llu ”Wl,p(Rn)
for every u € WP (R™). O

Corollary 3.6. Let 1 < p <n and let Q c R” be an open set. Assume that
ueE WO1 "P(Q) is such that |Du| = 0 almost everywhere in Q. Then u = 0 almost

everywhere in Q.

Proof. Extend u as zero outside Q2. Then we have |[Du| = 0 almost everywhere in

R™. Theorem 3.3 implies
(17 ”Lp*(Rn) <cl|Du ”Lp(Rn) =0.

It follows that u = 0 almost everywhere in R”, and thus almost everywhere in Q.00

Since p* = % — 00 as p — n—, one might expect that W1(Q) would be
continuously embedded in L*°(Q2). This is false for n > 1. Let Q = B(0,1) cR". The

function

u(x) =log (log(l + i))

||
belongs to W1(Q) but not L®(Q) (exercise).
The following result is a version of the Sobolev inequality for the full range

1<p<oo.
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Corollary 3.7. Let 1< p <oo,let Q < R" be an open set with |Q| < oo, and assume

thatuEWg’p(Q). LetlSqu*:%,for1sp<n,and1sq<oofornSp<oo.

There exists a constant ¢ = ¢(n, p, q) such that

THE MORAL: Let QcR" be an open set with |Q] < co. IquW(}’p(Q)with
p =n, then u € LY(Q) for every ¢ with 1< g <oo.

Proof Extend u as zero outside Q. Then Du(x) = 0 for almost every x € QF°.
Assume first that 1 < p <n. Holder’s inequality and Theorem 3.3 imply

1 11,1 n o
(/Iulqu)q <|Q|“E+a(/|u|ﬁdx) ?
Q Q
1
1 1 1 >
sc(n,p)IQlﬁ_f’W(/ IDulpdx)p.
Q

Assume then that n < p <oo. If ¢ > p, choose 1 < p < n satisfying g = nnTl;. By
the first part of the proof and Hélder’s inequality, we obtain

+3(/Q|Du|ﬁdx)’17
é*é(/gmuwdx)’l’.

Finally, if ¢ < p, the claim follows from the previous case for some ¢ > q and
Holder’s inequality on the left-hand side. a

RST

1 1
(/Iuﬂdx)q <cn,p,)IQI"”
Q

1_
n

<c(n,p,q)Q]

Remark 3.8. Let 1< p <n and let Q c R” be an open set with |Q| < co. The proof
of Corollary 3.7 shows that the Sobolev inequality

(/ Iu(x)l%dx)% < c(n,p)(/ [Du(x)? doc)I17
Q Q

holds for every u € WO1 P(Q).

Remark 3.9. When p =1 the Sobolev-Gagliardo-Nirenberg inequality is related
to the isoperimetric inequality. Let Q < R” be a bounded domain with smooth

boundary and set
1, xe€Q,
ue(x)=41- $E&D 0« gist(x, Q) <,

0, dist(x,Q)=e¢.

Note that u can been considered as an approximation of the characteristic function
of Q. The Lipschitz constant of x — dist(x,2) is one so that the Lipschitz constant
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of u; is €71 and thus this function belongs to W-1(R"), for example, by the ACL
characterization, see Theorem 2.36, we have
1 0<dist(x,Q)<e,
[Du(x)| <
0, otherwise.
The Sobolev-Gagliardo-Nirenberg inequality with p =1 gives

n-1 -

IQI%=(/ Iuglﬁdx) ' s( Iuglﬁdx) '
Q R™

1
<c IDugldeC/ —dx
Rn {0<dist(x,Q)<e} €

cl{x eR™:0 < dist(x,Q) < &}
€

— cH" 1(6Q)

This implies
Q7T < e 10Q),

which is an isoperimetric inequality with the same constant ¢ as in the Sobolev-
Gagliardo-Nirenberg inequality. According to the classical isoperimetric inequality,

if Q cR” is a bounded domain with smooth boundary, then
e _1
1015 <n7lQ, " A1 60),

where #" 1(8Q) stands for the (n — 1)-dimensional Hausdorff measure of the
boundary Q. The isoperimetric inequality is equivalent with the statement that
among all smooth bounded domains with fixed volume, balls have the least surface
area.

Conversely, the Sobolev-Gagliardo-Nirenberg inequality can be proved by the
isoperimetric inequality, but we shall not consider this argument here. From
these considerations it is relatively obvious that the best constant in the Sobolev-
Gagliardo-Nirenberg when p = 1 should be the isoperimetric constant n’lQ,_l%.

This also gives a geometric motivation for the Sobolev exponent in the case p = 1.

3.2 Sobolev-Poincaré inequalities

We begin with a Poincaré inequality for Sobolev functions with zero boundary

values in open subsets.

Theorem 3.10 (Poincaré). Assume that ) cR" is bounded and 1 < p <oo. Then

there exists a constant ¢ = ¢(p) such that
/ lu|P dx < cdiam(Q)p/ |Dul? dx
Q Q

for every u € WO1 Q).
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THE MORAL: This shows that Wol’p(Q) cLP?(Q) when 1< p<oo,if QcR”
is bounded. The main difference compared to the Gagliardo-Nirenberg-Sobolev
inequality is that this applies for the whole range 1 < p < co without the Sobolev

exponent.

Remark 3.11. The Poincaré inequality above also shows that if Du = 0 almost
everywhere, then u = 0 almost everywhere. For this it is essential that the function

belongs to the Sobolev space with zero boundary values.

Proof. First assume that u € C3°(Q). Let y = (y1,...,y,) € Q. Then

Qc [] [yj-diam(Q), y; + diam(Q)] = [] [a;,b,],
1

n
J=1 J=

where a; = y;—diam(Q) and b; = y; +diam(Q), j = 1,...,n. As the proof of Theorem
3.3, we obtain

bj
|u(x)] S/ [Du(xq,...,tj,...,xp)dt;
o

J
1
e ?
< (2diam(Q)) P/ Du(xy,....t5,....x )P dt;| , j=1,...,n.
o

J

The second inequality follows from Hélder’s inequality. Thus

b1 by
/ lu(x)|P dx = / / lu@)P dxy...dx,
Q a Qan

b1 b, b1
<2 diam(Q))P-l/ / / IDu(t1,x2,...,x,)P dt1dx...dx,
a1 an al

b1 by
s(2diam(Q))p/ / [Du(ti,x9,...,x,)IP dt1...dx,
ai an

=(2diam(Q))p/|Du(x)|pdx.
Q

The case u € Wg P(Q) follows by approximation (exercise). O

The Gagliardo-Nirenberg-Sobolev inequality in Theorem 3.3 and Poincaré’s
inequality in Theorem 3.10 do not hold for functions u € W1(Q), at least when
Q c R” is an open set |Q| < 0o, since nonzero constant functions give obvious
counterexamples. However, there are several ways to obtain appropriate local
estimates also in this case.

Next we consider estimates in the case when Q is a cube. Later we consider
similar estimates for balls. The set

Q=[a1,b1]><...><[an,bn], bl—alz...zbn—an
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is a cube in R™. The side length of @ is
Q)=bi-a1=bj-aj, j=1,...,n,
and
Que)={yeR" :ly;—xjl< §,j=1,....n}

is the cube with center x and sidelength /. Clearly,
IQ(x,))|=1" and diam(Q(x,l))=v/nl

The integral average of f € Llloc(R”) over cube Q(x,!) is denoted by

1
= d =T ( )d ’
foen ]{gu,z)f Y |Q(x, )| Q(x,l)fy Y

Same notation is used for integral averages over other sets as well.

Theorem 3.12 (Poincaré inequality on cubes). Let Q) be an open subset of
R™. Assume that u € Wﬁ)’cp(Q) with 1 < p < 0o. Then there exists a constant

¢ =c(n,p) such that

1 1
(][ Iu—uQ<x,z)|pdy)p Scl(][ IDulpdy)p
Q(x,0) Q(x,l)

for every cube Q(x,l) € Q.

THE MORAL: The Poincaré inequality shows that if the gradient is small in
a cube, then the mean oscillation of the function is small in the same cube. In
particular, if the gradient is zero, then the function is constant.

Proof: First assume that u € C*°(Q). Let z,y € @ = Q(x,l) = [a1,b1] x --- x
[a,,b,]. Then

lu@)—uy) <lu(z)—u(zi,...,2n-1,y)| +... +lu(z1,¥2,...,¥2) — u(y)l
n bj
< Z |Du(21,~",Zj—l,t,yj+1,--~,yn)|dt
Jj=1Ja;
By Holder’s inequality and the elementary inequality (a1 + -+ a,)? < np(allJ +
---+ab), a; =0, we obtain
bj

lu(z) - u()I? < (Z

P
IDu(zl,...,zj_l,t,yj+1,...,yn)|dt)
J=17a;

n b; % 11 i
< Z / |Du(21a"-7Zj—1’t7yj+17"'7yn)|pdt (bJ_a]) P
J=1\Va;

n bj
-1
<nPIP71Y" IDu(z1,...,2j-1,t,¥j+1,---, yn)IF dt.
j=1/a;
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By Holder’s inequality and Fubini’s theorem

/Iu(z)—qudeZ/ ‘][ (u(z)—u(y)dy
Q QlJQ

P
< / (][ |u(z>—u<y>|dy) dz< / ][ lu(2) - uIP dzdy
Q \JQ QYR

nplp—l n
<

b;
Z/// |Du(21,...,Zj_]_,t,yj+]_,.-.,yn)|pdtdydz
|Q| j=1/QJRQ Ja;

nP[p-1
s—Z(bj—aj)//lDu(z)Ipdzdw
QI = e/a

J

P
dz

<nP*lP / Du(z)? dz.
Q

The case u € Wlt’f(Q) follows by approximation. There exist u; € C*°(R"),
i €N, satisfying u; — u in W2(Q) as i — co. By passing to a subsequence,
if necessary, we may in addition assume that u; — u almost everywhere in Q.
Moreover, it follows from Holder’s inequality and the LP convergence that

1
(u;)g —u Is][ lu;(x) —u(x)ldx < )[Iui(x)—u(x)l”dx P50
Q-uql< ] ( . )

and thus (u;)g — ug as i — co. Fatou’s lemma and the first part of the proof for
u; € C®(Q) give

=

(]gm—umpdx)‘l’ sliirgglf(ﬁzlui—(ui)mpdx)

1
< liminfc(n,p,q)l(][ |Du; P dx) ?
1—00 Q

=

< c(n,p,q)l(][QlDulp dx) ,

and the proof is complete. a

Theorem 3.13 (Sobolev-Poincaré inequality on cubes). Let Q be an open
subset of R®. Assume that u € Wﬂ)’cp(Q) with 1 < p < n. Then there exists a
constant ¢ = ¢(n, p) such that

1 1
(J[ Iu—uQu,z)Ip*dy)p <cl (][ IDulpdy)p
Q1) Q(x,20)

for every cube Q(x,21) € Q.

THE MORAL: The Sobolev-Poincaré inequality shows that Wli’cp(lR”) c LY (R™),
when 1 < p <n. This is a stronger version of the Poincaré inequality on cubes in
which we have the Sobolev exponent on the left-hand side.
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Proof. Let ne C3°(R"™) be a cutoff function such that
0<n<1, [Dnl<j, suppnc@(x,2]) and n=1inQ(x,D).

Notice that the constant ¢ = ¢(n) does not depend on the cube. Then (u —ug,))n €
WLP(R") and by the Gagliardo-Nirenberg-Sobolev inequality, see Theorem 3.3,

and the Leibniz rule, see Theorem 1.14 (5), we have

1 1
* p* * p*
(/ lu—uqenl? dy) <(/ I(w —ugunnl? dy)
QUx,l) RP

1
<c (/Rn D [ - ugeenm]|” dy) ’

1 1
<c(/ nplDulpdy)p +c( IDnlplu—uQ(x,l)lpdy)p
n Rﬂ

1 1
c
so(/ IDulpdy)p + - / Iu—uQ(x,l)lpdy)p.
Q.20) L \qe2n

By the Poincaré inequality on cubes, see Theorem 3.12, we obtain

Y
lu—ugenl” dy
Qx,20)

< (/ lu—uguonl’ dy
Q(x,21)

<cl (/ |Dul? dy
Q(x,21)

By Holder’s inequality and Poincaré inequality on cubes, see Theorem 3.12, we

-

1 1
"y | - Pdy|”
UQ(x,2]) — UQ(x,]) y
Q(x,21)

1
» 1
+lugu,an — uQunll@x,20)]7.

have

1 n
luquean — ugunl @, 2017 < @D)P ][ = uguanldy

x’

1

n |Q(x,20)| (][ )5

<@l)p —— u-u 2d
1Q(x, 1) Q(x,2l)| a2l dy

1

SCZ(/ IDulpdy)p.
Q(x,21)

By collecting the estimates above we obtain

1 1
(/ Iu—uQ(x,nl”*dy)p sc(/ IDulpdy)p.
Q(x,l) Q(x,20) O

Remark 3.14. The Sobolev-Poincaré inequality also holds in the form

1 1
(][ |u—uQ<x,z>|P*dy)p <cl (f |Du|de)".
Q(x,l) Q(x,l)

Observe that there is the same cube on both sides. We shall return to this question

later.
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Remark 3.15. The Sobolev—Poincaré inequality in Theorem 3.13 holds with the
same cubes on the both sides and it holds also for p = 1. We shall not consider

these versions here.

Remark 3.16. In this remark we consider the case p = n.

(1) As Example 1.12 shows, functions in W1"(R") are not necessarily bounded.

(2) Assume that u € WH(R"). The Poincaré inequality implies that
1
lu(y)—ugldy < (J[ lu(y) - uQI”dy)
Je :

1
<cl (][ |Du<y>|”dy) "
Q
<c|Du |27y < 00

for every cube @ where ¢ = c(n). Thus if u € WH(R?), then u is of bounded
mean oscillation, denoted by u € BMO(R"), and

lwl«= sup][ lu(y)—ugldy < clDullpr@n,
QcR*JQ

where ¢ = c¢(n).

(3) Assume that u € W*(R"). The John-Nirenberg inequality for BMO func-
tions gives

][eylu(ac)—qudxS cryllull« ‘1
Q c2—ylull.

for every cube @ in R” with 0 <y < ﬁ, where c¢1 = c1(n) and co = ca(n).
By choosing y = 52—, we obtain

Iu(x)*uQ\ \u(x)—uQI
J[ec Duly dxs][ e Tl dx<c
Q Q

for every cube @ in R”. In particular, this implies that u € Lﬁ) (R") for
every power p, with 1 < p <oo. This is the Sobolev embedding theorem in
the borderline case when p =n.

In fact, there is a stronger result called Trudinger’s inequality, which states
that for small enough ¢ > 0, we have

( \u(x)—qu)n,—Ll

o Hugl

][ el 1Puln dx<c
Q

for every cube @ in R, n = 2, but we shall not discuss this issue here.

THE MORAL: W'(R")cL] (R") for every p, with 1< p <oco. This is the

Sobolev embedding theorem in the borderline case when p =n.

The next theorem gives a general Sobolev—Poincaré inequality for Sobolev

functions.
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Theorem 3.17. Let 1 < p < oo, let Q c R” be an open set, and assume that
uEWlt’cp(Q). Letlsgsp*=22 forl<p<n,and 1<q <oo for n<p < oco.

n—-p’
There exists a constant ¢ = ¢(n, p, q) such that
1 1
(][ Iu—uQ(x,andy)q <cl(][ IDuI”dy)p (3.18)
Qx,l) Q(x,21)

for every cube Q(x,21) € Q.

Proof. By Theorem 3.13, for 1 < p < n, we obtain

o\ _n-p
(][ lu —u@u,nl"? dy) =c(n,p)l” " ? (
Qx,1) Qx,0)

< c(n,p)llf% (/

Q(x,20)

n-p
np

ﬂ
| —uQeenl™? dy)

1
\Dul? dy)” (3.19)

1

:c(n,p)l(][ IDulpdy)E.
Q(x,21)

For 1 < p < n, inequality (3.18) follows from (3.19) and Hélder’s inequality on the
left-hand side.

In the case p = n we proceed as in the proof of Corollary 3.7. For ¢ > p =n,
there exists 1 < p < n such that g = %, and (3.18) follows from (3.19) with
exponent p and an application of Holder’s inequality on the right-hand side. For
g < p, the claim follows from the previous case and Hélder’s inequality on the

left-hand side. d

The next remark shows that it is possible to obtain a Poincaré inequality
on cubes without the integral average also for functions that do not have zero
boundary values. However, the functions have to vanish in a large subset.

Remark 3.20. Assume u € WHP(R") and u =0 in a set A c Q(x,]) = @ satisfying
|A|=yIQ| forsome O<y<l.

This means that u = 0 in a large portion of @. By the Poincaré inequality there

exists ¢ = ¢(n, p) such that

1 1 1
(][ Iul”dy)p s(][ Iu—qu”dy)p +(][ IuQIpdy)p
Q Q Q

<cl (][ |DulPdy
Q

=

+lugl,

where

lugl= ‘][ u(y)dy
? Q

(L) o]

1
s(l—y)l’%(]gm(y)lpdy)p.

< J{; Yo aWlu(ldy
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1
Since 0 < (1 - )f)k? < 1, we may absorb the integral average to the left hand side

1 1
(1—<1—y)1*%)(][ |u|de)" sCz(Jf |Du|de)”.
Q Q

It follows that there exists ¢ = ¢(n, p,y) such that

1 1
(][ Iulpdy)p sel(][ IDulpdy)p.
Q Q

A similar argument can be done with the Sobolev-Poincaré inequality on cubes

and obtain

(exercise).

3.3 Morrey’s inequality

Let A cR”. A function u : A — R is Hélder continuous with exponent 0 < a <1, if

there exists a constant ¢ such that
lu(x) —u(y) < clx—y|*

for every x,y € A. We define the space C%*(A) to be the space of all bounded

functions that are Holder continuous with exponent a with the norm

u(x) —u(y)l
lullgoaca)y =suplu(x)|+ sup Ltz ean A (3.21)
x€A

x,yEA x#y lx— x|

Remarks 3.22:

(1) Every function that is Holder continuous with exponent @ > 1 in the whole
space is constant (exercise).

(2) There are Holder continuous functions that are not differentiable at any
point. Thus Holder continuity does not imply any differentiability proper-
ties.

(8) C%*(A) is a Banach space with the norm defined above (exercise).

(4) Every Holder continuous function on A < R” can be extended to a Holder
continuous function on R" with the same exponent and same constant.
Moreover, if A is bounded, we may assume that the Holder continuous
extension to R” is bounded (exercise).

n

The next result shows that every function in W1?(R") with p >n has a (1- 1_7)'

Holder continuous representative up to a set of measure zero.

Theorem 3.23 (Morrey). Assume that u € WI?(R?) with p > n. Then there

exists a constant ¢ = ¢(n, p) such that
1-2
lu@)—ul<clz—yl" ?lIIDullLr@r)

for almost every z, y e R"™.
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Proof: Assume first that u € C°(R*) N WLP2(R"). Let z, y € Q(x,1). Then

1 1
u(z)—u(y)z/ a%(u(tz+(1—t)y))dt=/ Du(tz+1-t)y)-(z—y)dt
0 0

and

lu(y) —ugupnl = H (w@)—uly)dz
Q.

1
][ / Du(tz+(1-1t)y)-(z—y)dtdz
QD) Jo

S5 L

S JR—

=1t Jeun Jo
e

<

j;ln_l 0 JQu,D

1 [t
Sl ) @
=1 0 QUtx+(1-t)y,tl)

Here we used the fact that |z; — y;| <[, Fubini’s theorem and finally the change of
variables w =tz+(1-t)y <=z = %(w —(1-t)y), dz= tin dw. By Hélder’s inequality

lz; —yjldtdz

a—u(tz +(1-1)y)
Ox;

dzdt

6—u(t2 +(1-1)y)
GXj

a—”(w)' dwdt.
ij

B_u(w) dwdt

[+
0 " JQuxr-ty,t) | 0%

n 1
s t/n ; (/f
z: n _
j=1 0 Q(tx+(1-28)y,tl)

n(1-3) 1 n=3)
<nl|DullLr@,i) = /0 dt QUtx+(1-1)y,tl) cQ(x,1)))

1
[n-1

n
2
Jj=1

—(w)

p % 1
dw) QUx+(1—t)y,tD|? dt
axy

1
[n-1

tn

np -z
:p—l P |DullLr(@x,1))-

Thus

lu(z) —u(y)l < |lu(2) —uqupl +luge,) — uly)l
n _n

D I DUl ey (3.24)
p —n

<2

for every z,y € Q(x,1).
For every z, y € R*, there exists a cube @(x,l) 3 z, y such that [ = |z —y|. For
example, we may choose x = ﬁTy Thus

1-z 1-n
lu@)—u<clz—ylI” ?1DullLr@e) <clz—yI" 7| Dulre@n

for every z, y e R™.

Assume then that u € WHP(R™). Let u, be the standard mollification of u.
Then

1-2
lug(z) —us(Y) <clz—yl" ?|DucllLr@n).
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Now by Lemma 1.18 (2) and by Theorem 1.19, we obtain

lu(@) - u(y) < clz =y 7 IDullLo@ny.

when z and y are Lebesgue points of u. The claim follows from the fact that almost

every point of a locally integrable function is a Lebesgue point. a
Remarks 3.25:

(1) Morrey’s inequality implies that u can be extended uniquely to R" as a

2)

3

Hoélder continuous function w such that
[u(x)—u(y) <clx —yllf% IDullLprny for all x,y € R™.

Reason. Let N be a set of zero measure such that Morrey’s inequality holds
for all points in R* \ N. Now for any x € R", choose a sequence of points
(x;) such that x; e R*\ N, i =1,2..., and x; — x as i — oco. By Morrey’s
inequality (u(x;)) is a Cauchy sequence in R and thus we can define

u(x) = lim w(x;).

Now it is easy to check that u satisfies Morrey’s inequality in every pair of
points by considering sequences of points in R” \ N converging to the pair
of points. n

If u € WhP(R™) with p > n, then u is essentially bounded.
Reason. Let y € Q(x,1). Then Morrey’s and Hélder’s inequality imply
lu(2)| < [u(2) — uQe,n! + luge,n!

s][ lu(z)—u()dy +/ lu(y)ldy
Q(x,1) Q(x,1)

1
P
<clDulprgn)+ (/ lu(y)I? dy)
x,1)

)

< C‘”u“Wl,p(Rn)

for almost every z € R”. Thus ||ullpeorn) < cllu @) n
This implies that
”ﬂllco,l—%(Rn) <cllullwipgn), ¢=cln,p),

where % is the Holder continuous representative of u. Hence WP (R") is
continuously embedded in CO’I_E(R"), when p >n.

The proof of Theorem 3.23, see (3.24), shows that if Q) is an open subset of
R" and u € Wli’cp(Q), p > n, then there is ¢ = ¢(n, p) such that

1-n
lu)—u) <clz—yl" ?|DullLr@u,)

for every z,y € Q(x,l), Q(x,l) € Q. This is a local version of Morrey’s
inequality.



CHAPTER 3. SOBOLEV INEQUALITIES 78

THE MORAL: WLP(R?)c Co’lfﬁ([ﬂi”), when p > n. More precisely, W1 (R") is
continuously embedded in Co’l_%([R"), when p > n. This is the Sobolev embedding

theorem for p > n.

Definition 3.26. A function u :R" — R is differentiable at x € R" if there exists a
linear mapping L : R” — R such that

i lu(y) —u(x) — L(x — y)|
m =

0. (3.27)
y—x lx =yl

If such a linear mapping L exists at x, it is unique and we denote L = Du(x) and
call Du(x) the derivative of u at x. If the derivative Du exists, it is unique and
satisfies

Du(y—x)=Du(x) - (y —x)

for every y € R"”, where
ou ou
D =|—®),..., —
u(x) o1 (x), dx, (x)
is the pointwise gradient of u at x.

Theorem 3.28. If u € Wli’cp(R”), n < p <oo, then u is differentiable almost every-
where and its derivative equals its weak derivative almost everywhere.

THE MORAL: By the ACL characterization, see Theorem 2.36, we know
that every function in WP, 1 < p < oo has classical partial derivatives almost
everywhere. If p > n, then every function in W2 is also differentiable almost

everywhere.

Proof. Since Wli’:o(R”) c Wli’c‘u(R”), we may assume n < p <oo. By the Lebesgue

differentiation theorem

lim |[Du(z)—Du(x)Pdz=0
1=0JQ(x,])

for almost every x € R™. Let x be such a point and denote
v(y) = u(y) —ulx) - Du(x) - (y —x),

where y € Q(x,l). Observe that v € Wli’f([R”) with n < p <oo. By (3.24) in the proof
of Morrey’s inequality, there is ¢ = ¢(n, p) such that

1
lv(y)—v(x)| <cl (][ |Du(z)P dz)p
)

Q(x,l
for almost every y € Q(x,1), where [ = |x — y|. Since v(x) =0 and Dv(z) = Du(z) -

Du(x), we obtain

1
lu(y) - u(x) = Du(x)-(y —x)| < c(][ IDu(z) - Du(x)l? dz)p -0
ly — x| Q(x,l)

asy—x. O
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3.4 Lipschitz functions and Wi

Let AcR"” and 0 < L < oco. A function f : A — R is called Lipschitz continuous with

constant L, or an L-Lipschitz function, if
lf ()= (I <Llx-y|

for every x, y € R". Observe that a function is Lipschitz continuous if it is Hélder
continuous with exponent one. Moreover, C%1(A) is the space of all bounded

Lipschitz continuous functions with the norm (3.21).

Examples 3.29:
(1) For every y € R” the function x — |x — y| is Lipschitz continuous with

constant one. Note that this function is not smooth.

(2) For every nonempty set A c R" the function x — dist(x,A) is Lipschitz
continuous with constant one. Note that this function is not smooth when
A #R" (exercise).

(3) By considering the zero extension of u € Cé(Q), we may assume that
ue C(l)([R”). Let x,y € R*, x # y. By the mean value theorem, there exists z

in the line-segment between x and y such that
lu(x)—u(y)l = [Du(z)-(x — y)| < |Dull po@nylx — yI.
This shows that u is L-Lipschitz with L = | Du /| poogn)-
Example 3.30. Let x € R” and r > 0. Define
u(y) = max{0,1- 1 dist(y, B(x,r))},

for y € R*. The function u is %-Lipschitz in R, u=11in B(x,r), and u = 0 in

R™\ B(x,2r). This kind of function is used as a cutoff to localize estimates.

The next theorem describes the relation between Lipschitz functions and

Sobolev functions.

Theorem 3.31. A function u € Llloc([R”) has a representative that is bounded and
Lipschitz continuous if and only if u € WL (R?).

THE MORAL: The Sobolev embedding theorem for p > n shows that WHP(R") c
C%'75 (®™). In the limiting case p = oo we have WL®(R") = CO1(R"). This is the

Sobolev embedding theorem for p = co.

Proof. [<=] Assume that u € W-°(R"). Then u € L°(R") and u € W,-”(R") for
every p > n and thus by Remark 3.25 we may assume that u is a bounded

continuous function. Moreover, we may assume that the support of u is compact.
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By Lemma 1.18 (3) and by Theorem 1.19, the standard mollification u. € C3°(R™)
for every € > 0, u, — u uniformly in R” as ¢ — 0 and

IDucllpoo@ny < IDullgooqn)

for every € > 0. Thus

1
lue(x)—u(y) = ‘/ Du (tx+ 1 —t)y) -(x—y)dt
0

< [ Dugllpoo@nylx =yl

< |1Dullpoonylx — |
for every x, y € R". By letting ¢ — 0, we obtain
[w(x) — w(Y) < IDull poornylx — yl

for every x, y € R™.
Assume that u is Lipschitz continuous. Then there exists L such that

lu(x) —u(y)l < L|x -yl

for every x, y € R”. This implies that

u(x—he;)—u(x)

—-h _
1D u(x)] = 5

<L
for every x € R” and & # 0. This means that
1Dl poo@ny < L
for every h # 0 and thus
—h -h 1 1
1D ulz2q) < 1D " wllLoomn 1212 < LIQJ2,

where QQ < R” is bounded and open.
As in the proof of Theorem 2.32, by Theorem 2.13, there exists g € L2(Q/;R"?)
and a sequence (h;);en converging to zero such that D~y — g weakly in LP(Q';R")

as ¢ — oo. This implies

0 . .
/u—(’adxz/u(lim Dh‘(p) dx = lim uD}?‘(pdx
Q X Q hi—0 J hi—0 Jqy J

T —h; _ .
= }}:EIO/Q(DJ. u)pdx = /Qg](pdx

for every ¢ € C(Q'). It follows that Du = g in the weak sense in Q and thus
ue WH(Q).

Claim: D;u € L*(Q), j=1,...,n,
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Reason. Let f; = D;h

Mazur’s lemma as in the proof of Theorem 2.20, there exists a sequence of convex

'u,i=1,2.... Since f; — D ;ju weakly in L%(Q) as i — oo, by

combinations such that .
fi=Y aixfr—Dju
=

1

in LP(Q) as i — oco. Observe that

m;
7 -h
I fillLooq) = <) aip HDJ k u(x)”

Lo(Q) k=i

m;
Y ainfr
k=i

<
L>(Q)

Since there exists a subsequence that converges almost everywhere, we conclude
that
|Dju(x)| <L, j=1,...,n,

for almost every x € Q. n

This shows that Du € L*(Q), with |Dullp~q) < L. As u is bounded, this
implies u € WH°(Q) for all bounded subsets Q = R”. Since the norm does not
depend on Q, we conclude that u € WL°(R"). a

A direct combination of Theorem 3.31 and Theorem 3.28 gives a proof for
Rademacher’s theorem.

Corollary 3.32 (Rademacher). Let f :R" — R be locally Lipschitz continuous.

Then f is differentiable almost everywhere.

WARNIN G : For an open subset Q of R*, Morrey’s inequality and the charac-

terization of Lipschitz continuous functions holds only locally, that is, WHP(Q) c
0,1-2

C,” ?(Q), when p >n and W1°(Q) c c%1(Q).

loc loc

Example 3.33. Let
Q={xeR?:1<|x|<2}\{(x1,0) e R?: 1< x; <2} cR%.

Then there exists a function such that u € W1°(Q), but u ¢ C%%(Q), for example,
by defining u(x) =0, where 0 <0 < 27 is the argument of x in polar coordinates.
Then u € W°(Q), but u is not Lipschitz continuous in Q. However, it is locally

Lipschitz continuous in Q.

Instead of the gradient Du, we are often interested in |Du|, for which we have
the following representation.

Lemma 3.34. Assume that u :R" — R is Lipschitz continuous. Then

Du)| =lim sup A =¥ (3.35)

=0 yeB(x,r) r

for almost every x € R".
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Proof. By Corollary 3.32 u is differentiable at almost every x € R". Let x € R” be
such a point and let 7 > 0. Then

Dut) = _ | Du@lly
r

yeB(x,r) r yeB(x,r)

On the other hand, we choose z=x+r 33% if Du(x) #0, and z = x if Du(x) = 0.

Since z € B(x,r), we have

[Du(x)-(y —x) [Du(x)-(y —x)
_—_—mmmm sup _—

yeB(,r) r yeB(x,r) r
D (z—
2I u(x)-(z —x)| — Du)l.
r
Combining the estimates above we obtain
D (y—
Du@)|= sup 22U G=D (3.36)

yeB(x,r) r

for every r > 0.
Since u is differentiable at x, it follows from (3.27) that

lu(y) —u(x) —Du(x)-(y —x)| _

0. (3.37)

lim sup
=0 yeB(x,r) r

Let r >0 and y € B(x,r), and write

Du(x)-(y—x)
aly,r)= ————,
— -D (v —
b(y.r) = u(y)—u(x) : u(x)-(y x)’
c(y,r)= uy) —ulx) u(x).

Then c¢(y,r) =a(y,r)+ b(y,r) and hence

la(y,r)|— sup [b(z,r)|<|a(y,r)|-1b(y,r)| <|c(y,r)]

z€B(x,r)

< la(y,r)|+16(y,r)I < la(y,r)|+ sup |b(z,7)l.
z€B(x,r)

By taking supremums over all y € B(x,r), we obtain

sup |a(y,r)|— sup |b(y,r)|< sup |c(y,r)

yeB(x,r) yeB(x,r) yeB(x,r)
< sup la(y,r)l+ sup |b(y,r)l.
yeB(x,r) yeB(x,r)
The claim follows by taking r — 0 and using (3.36) and (3.37). d

Remark 3.38. From (3.35) we see that if u is an L-Lipschitz function, then [Du(x)| <
L for almost every x € R”.
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The following locality property is a useful consequence of (3.35).

Lemma 3.39. Assume that u : R" — R is Lipschitz continuous and ¢ € R. Then

Du =0 almost everywhere in the set {x € R" : u(x) = t}.

Proof. Let A ={x € R": u(x) =t} and let x € A be such that (3.35) holds. By the

Lebesgue density theorem, we may assume that

. |AnB(x,r)|
lim 22 3.40
"0 B .40
Let
d(r)= sup d(y,A)+r?>0
yeB(x,r)
for r > 0. By (3.40) we have
. d(r)
lim — =0.
r—0 r

Let r >0 and y € B(x,r). There exists a point z € A nB(y,d(r)). Since u is an
L-Lipschitz function for some constant L > 0, we have

[u(y) — u(x) _ lu(y) —u(z)| - Liy-z| - Ld(r)

r r r r
This implies
- Ld
\Duo)] = lim sup lu(y) — ux)| <lim (r) —o,
rﬂOyEB(x,r) r r—0 r
and the proof is complete. d

3.5 Summary of the Sobolev embeddings

We summarize the results related to Sobolev embeddings below. Assume that Q is

an open subset of R".

WLPR®) < LP"(R™), WP (Q) < LY (@), p* = & (Theorem 3.3
and Theorem 3.13).

WL (R") c BMO(R"), Wlt’cn(Q) c L} (Q)for every p, with 1< p <oo
(Remark 3.16 (3)).

n 0,1-2
WP R < C¥' R (R™), WP (Q) < C, . 7 () (Theorem 3.23).

WLO®R™) = COLR™), W,o(Q) = CpH(Q) (Theorem 3.31).

For Sobolev embeddings in higher order spaces W% (R"), we refer to [7, Sec-
tion 5.6.3].
We close this section with a useful remark.

Remark 3.41. Let1<sp<oo. Ifue WI}ZZ’(Q) for every k =1,2,..., then u € C®(Q).
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Reason. If p > n, then W,P(Q) c C%(Q) and thus W,-P(Q) < CE-24(Q), k =
2,3,.... It follows that u € C*°(Q). Then assume that 1< p <n. Since Wlﬁ’cq(Q) c
W{Zf(Q), 1< p <q, we may assume that 1< p < 3. Let £ =2,3,... be such that
kp<n<(k+1)p. Then

np

WEP(Q)c L™F (Q)

loc loc
and recursively

np

P s Lk
Wk+1’p(Q)CW10c PQeW, Q) W, Q) e,

loc loc

since % > n. Again it follows that u € C®°(Q). -

3.6 Compactness

Let X and Y be Banach spaces. Recall that a bounded linear operator L : X — Y
is compact, if every bounded sequence (x;), x; € X, i =1,2,..., has a subsequence
(x;,) such that the sequence (T'x;,) converges in Y.

Definition 3.42. Let 1< p <oo. An open set Q c R” is called an extension domain,
if there exists a linear operator E : wir(Q) - WHP(R™) such that Eulg = u for

every u € WHP(Q) and there exists a constant ¢ = ¢(n, p, Q) such that

IEullwiemn) < clltllwieog)

for every u € WhP(Q).

THE MORAL: IfQcR”is an extension domain, every function in WH2(Q)

can be extended to a function in W1-P(R") with uniform bounds for the norms.

Example 2.39 shows that an upper half space is an extension domain. It can
be shown that open sets with Lipschitz boundary are extension domains, see [8,
Section 4.4] and [14, Section 13.1]. Observe that every open set QO c R" is an
extension domain for Wg P(Q), since we may consider the zero extension to R” \ Q.
Next we show that the Gagliardo-Nirenberg-Sobolev inequality in Theorem 3.3,
see also Corollary 3.5, does not only hold in the entire space but also in extension

domains.

Theorem 3.43. Let 1<p <n, p<q<p* and assume that Q c R” is an extension

domain. Then there exists a constant ¢ = ¢(n, p,Q) such that
lulLa) < cllullwieq)

for every u € WhP(Q).

THE MORAL: IfQcR"is an extension domain, the embedding L : WhP(Q) —

L%(Q), Lu = u, is a bounded linear operator.
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Proof. By Corollary 3.5, we have

lullLe) = IEulLaq) < IEulLawn)

< |Eullwiogey < clleliwieoq
for every u € WhP(Q). a

Extension domains have certain compactness results that are useful, for
example, in the existence theory for PDEs. For the proof, see [8, Section 4.6] and
[14, Theorem 12.18]. Moreover, if u; € Wol’p(Q), i1=1,2...,thenue Wol’p(Q) for
every open set Q c R”.

Theorem 3.44 (Rellich-Kondrachov). Let 1 < p <n and assume that Q c R”
is a bounded extension domain. Assume that (u;) is a bounded sequence of
functions u; € WP(Q), i = 1,2,.... Then there exists a subsequence (u;,) and
u € WHP(Q) such that u;, —uin L9(Q) as k — oo for every 1< q <p™.

THE MORAL: The embedding L : W-P(R") — LY(R"), Lu = u, is a compact
operator.

Proof. Let Q' be a bounded open set such that Q € Q'. Since Q is an extension
domain, we may extend every u; € WHP(Q) to w; e WLP(R?), i = 1,2,..., with

sup |u; lyipgn) < csup llu;lyipq) < oo,

ieN 1eN
where ¢ = c(n, p,Q). Let n € C3°(Q') be a cutoff function with0<n<landn=1on
Q. Then supp(rjz;) < ' and nz; € Wy P(Q) « WP (R) with

— — G — p p
7% 1o ey = | 1T p gy + 21 1Dz |7 o gen
J:

n

< Il + Y | Di0@)| pogn)
j=1

n
<I@illLe@n + 3 [@iDjn+nD ui ogn
j=1

n n
< I llLe@e + Zl [@:D jnl| o g + Zl 7D % | o n)
J= J=
n n
< IwillLr@®ey + max 1D jnllzeomn) Y l@ilpe@wny + Y |Djui ||Lp(Rn)
Jj=1,...n j=1 J=1

<C||ﬁi ”Wl,p(Rn), 1= 1,2,...,

where ¢ = ¢(n,Q’). By replacing u; with nu;, i = 1,2,..., we may conclude that
u; e WhP(RM), suppu; < Q, i =1,2,..., with

M =sup ”El ”Wl'p(R") <CS p ||ul ”Wl,p(Q) < 0,
eN

ieN i
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where ¢ = c(n,p,Q,Q").
Let (ui): =u; * ¢, € >0, be the standard mollification of u;, i =1,2,....

Claim: There exists a constant ¢ = c(n, p,Q2,Q’) such that

sup |(@;)e —w;llLr@r) < ce.
ieN

Reason. First assume that u; € C*°(R"),i=1,2,.... Then

[(@;)e(x) —ui(x)| = / GeWui(x—y)dy—u;(x) (Pg(y)dy’
B(0,¢) B(0,¢)

= / (Ps(y)(ii(x—y)—ﬁi(x)dy'
B(0,¢)

= / P(2)u;(x—ez)-ui(x))dz

B(0,1)
</ P()ui(x—ez)—u;(x)|dz

B(0,1)
=/ P2 ui(x—ez)-uix)ldz

B(0,1)

Since

dt

[wi(x —e2)—u;(x)| = a(ﬂi(x—etz))

/“
<

Lo _
/0 a(ui(x—etz))dt

1 1
= / |Du;(x—etz)-ez|dt < / |Du;(x —etz)||ez|dt
0 0
1
< E/ |Du;(x—etz)|dt
0
for every z € B(0,1), by applying Hélder’s inequality twice, we obtain

(@) (x) —w; (0P <

p
/ (p(z)lﬂi(x—w)—ﬁi(x)ldz)
B(0,1)

1 p
<¢eP (/ (,D(Z) (/ |Dal(x—£t2‘)|dt) dZ)

B(0,1) 0

1 1l

—¢P (/ P(2)?’ ((p(z)l’ / |Dﬁi(x—etz)|dt) dz)

B(0,1) 0

= 1 P

<er| / perdz)” / ¢(z)( / |Dﬁi(x—stz>|dt) dz

B(0,1) B(0,1) 0

1
<ef / O(2) ( / DU (x — et2)|P dt) dz.
B(0,1) 0

p
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By Fubini’s theorem we have

I@0e =T N2 gy = / |@)e(x) ~ T )P dox
RVL

1
SEp/ (/ P(z) (/ IDﬁi(x—Etz)lpdt) dz) dx
&~ \J/B©0,1) 0
1
=5p/ ‘l’(z)/ ( |Du;(x — etz)|P dx) dtdz
B(0,1) 0 R

1
—eP / $(2) / ( / DT )P dx) dtdz
B(0,1) 0 R™

=P |Dw; |l Lo wny.- (]

The general case u; € WHP(Q) follows by approximation (exercise).
Claim: For every € > 0 the sequence ((z;).) is bounded and equicontinuous
in R".

Reason. By Holder’s inequality, we have

I(@i)e(x) =

/ ui(y)pe(x—y)dy
B(x,e)

1
< ( / Pelx—y)P dy)” ( / [z ()P dy)" ,
B(x,¢) B(x,¢)

1 1
7 7

/ ) 1 P’
([ ([, oo ([, (2002 o
B(x,e) B(0,¢) B(0,e) \ € €

1
1 r' o1 1
=—( / ¢(2) dy)" < ¢l BO, &)/
B(0,¢) £

en £

< / Pelx—yu;(y)dy
B(x,e)

3 |

where

|

1 L a5
= £—n||(P||L°°(Rn)(QnEn)p' =& 2 Q) Pl Loomny.

This shows that

1
—_ _n T — _n
@)@ <& ? Q) NPl willLrgn) < ce ?

for every x € R” and for every i = 1,2,.... Since (u;) is a bounded sequence in

WLP(R™), we conclude that there exists a constant ¢ = c(n, p,M) such that
sup |(@;)ellpoomny S ce P
ieN
Similarly, for the partial derivatives, we have

D j(@1)e(@)] = D j(@; * pe)@)] = |(@; * D jpe)(x)|

/ Ti)D el —y)dy| < / 1D e — IlEI dy
B(x,e) B(x,e)

1 1
< ( / D jpe(x — y)IP' dy) ! ( / (@ (y)IP dy) ’
B(x,¢) B(x,¢)
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for every j=1,2,...,n. We note that

D;p(y)=D;j (Eincp(%)) = ginDj (¢(Z)) _ £n1+1pj¢(%), j=12,...,n.

£

Thus we have

1
7

( / |Dj¢g(x—y)|P’dy)” =( / |Dj¢g<y)|f"dy)
B(x,e) B(0,¢)

_ 1 1
T oentl BO
,€)

en+l
1

T oentl

Y

1
r » 1
D;¢(2)| dy)P < = ID bl zon B0, )]

L 1
= —-1-2 T
1D jplloomny(Qne™ e =& = 2 Qp | DPllLogny

for every j=1,2,...,n. This shows that

1
_ _1-n o7 _
ID@;):(x) <&~ 2Qp Dl eomny e llLewny

for every x € R” and for every i = 1,2,.... Since (u;) is a bounded sequence in

WLP(R™), we conclude that there exists a constant ¢ = c(n, p,M) such that

— _1-2
sup [D(u;)ellpooqmny <ce = P
ieN

Since
[(@i)e(x) — @)W < I1D@;)e | Loomnylx — ]
< ce_l_%lx—yl, i=1,2,...,
for every x,y € R?, we conclude that, for every ¢ > 0, the sequence ((;),) is
uniformly bounded sequence of Lipschitz continuous functions with uniformly

bounded Lipschitz constants. In particular, it is bounded and equicontinuous in
R™. =

Claim: For every 6 > 0 there exists a subsequence (u;,) of (u;) such that

limsup llu;, —u;, llLr@) <6.
k,l—o0

In other words, (u;,) is a Cauchy sequence in L?(Q).

Reason. By step (2) there exists a constant ¢ = c(n, p,Q,Q’) such that

— — 5
sup [(w;)e —uillLr@n) < 3.
1eN

By step (3) and the Arzela-Ascoli theorem, there exists a subsequence ((w;,)¢) of

((w):) which converges uniformly in R”. Thus there exists 25 € N such that
1@ )e = @i ellLe@ny = @iy e — @i )ellLr )
< @;,)e — (uy, )E”Lw(Qé)lﬂlgl

< I@sy)e — @i)ell Lo QL < §
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for every k,l = k5. It follows that

lwi, —wi e < llwi, — i lLewn)

< wy, — @iy ellLr@ny + 1@5,))e — @i)ellLr@ny + 1(@;))e — Ui, |l Lown)

< i, — @i e lLe@ny + 1(@;, e — Ui, Il Lo@ey + §
for every k,l = ks. Since

@i, — @i )ellLr@ny — 0 and  11(w;,)e —uj, llLpwey — 0
as k,l — oo, we conclude that there exists kg € N such that
6.,.6,8

luwi, —wilLry<5+5+5=0

for every k,1 > kj;. -

Since LP(Q2) is complete, the sequence (u;,) converges in LP(Q) and thus
there exists u € L?(Q) such that

lwi, —ullpr)—0
as k — co. Theorem 2.24 implies that u € WP (Q) with

lullwirq) < hkmg}f”uik lwir) < CSUNP lwillwpq) <oo.
- 1€

Letl<sg<p® and0<6<lsuchthat%:%+ lp_*e.Then

. 0 o 1-0
”ulk —ullpe < "ulk u”Lp(Q)”ulk u”LP*(Q)'

By Theorem 3.43 there exists a constant ¢ = ¢(n, p,Q2) such that

g, — u”Lp*(Q) <clu;, - u”WLP(Q)
< cllui, lwre) + lullwie )

<csupllu;llwipq) <oo
ieN

for every £ =1,2,.... It follows that
lwi, —ullpa@) — 0
as k — oo. a

Remark 3.45. Let 1 < p <n and assume that Q < R” is a bounded extension
domain. Assume that (u;) is a bounded sequence of functions u; € WhP(Q), i =
1,2,.... By Theorem 3.44 there exists a subsequence (z;,) and u € WL2(Q) such
that u;, — u in LY(Q) as k — oo for every 1 < q < p*. Since u;, — u in LY(Q) as
k — oo implies that there exists a further subsequence denoted again by (u;,) such

that u;, — u almost everywhere in Q as £ — oo.
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Example 3.46. Let Q =B(0,1)cR"” and 1< p <n. Consider u; : Q— R,

n-p
p

ir (=i, |xl<i,

uix) = 1
0, lxI=7.
Then (u;) is a bounded sequence in WHP(Q), but it does not have any converging

subsequence in L? "(Q) (exercise).

THE MORAL: The Rellich-Kondrachev theorem does not hold with ¢ = p*.
As an application of the Rellich-Kondrachev theorem, we obtain a general

version of the Sobolev-Poincaré inequality.

Theorem 3.47. Let 1 < p <n and assume that Q c R” is a bounded and connected

extension domain. Then there exist a constant ¢ = ¢(n, p,Q2) such that
1 1
* p* p
(/ lu—uql? dx) sc(/ IDulpdx)
Q Q

Proof Letv=u—-uq. Then ve W-P(Q), Dv =Du and vadx =0. By Theorem
3.43 there exists a constant ¢ = c¢(n, p,Q) such that

where p* = %.

llze - uQ"Lp*(Q) = ”U”Lp*(Q) < C”U”WLP(Q) < C(HU”LP(Q) + "Du”LP(Q))-
It is enough to prove that there exists a constant ¢ such that
lwlLr) < cllDwllLe@)

for every function w € WP (Q) with fQ wdx =0. Moreover, we may assume that
lwllLrq) > 0, since otherwise the claim is clear.

For a contradiction, assume that the inequality above is not true. Then, for
every i = 1,2,..., there exists a function w; € WH?(Q) such that lw;llLr) >0,
Jqwidx=0and

lwillLr) = ilDw;lLe(q)-

We may replace w; with and assume that |w;llLrq) = 1. It follows that

Wi
lwillLr )

IDw;llLr) < ;1-, i=1,2,...,

and thus (w;) is a bounded sequence in W1?(Q). By Theorem 3.44 there exists
a subsequence (w;,) and w € WLP(Q) such that w;i, — w in LP(Q) as k — oo.

Moreover, we have
. . 1
IDwllzr) = lim [Dw;, lLr) < lim 7 =0.
k—o0 k—oo Lk

Thus Dw = 0 almost everywhere in Q2 and w = wq almost everywhere in Q. On
the other hand, we have

‘/ wikdx—/wdx
Q Q

k—
s/ lw;, —w|dx > 0,
Q
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which implies that

/wdxz lim [ w;, dx=0.
Q k—oo Jq

It follows that w = wq = 0 almost everywhere in Q. This is a contradiction, since

lwlrr) = klgglo lw;llLr) = 1. O



Pointwise behaviour of Sobolev
functions

In this chapter we study fine properties of Sobolev functions. By definition, Sobolev
functions are defined only up to Lebesgue measure zero and thus it is not always
clear how to use their pointwise properties to give meaning, for example, to

boundary values.

4,1 Sobolev capacity

Capacities are needed to understand pointwise behavior of Sobolev functions.
They also play an important role in studies of solutions of partial differential

equations.

Definition 4.1. For 1 < p < oo, the Sobolev p-capacity of a set E c R” is defined
by

p

cap,(E) = ueg{}(fE) lu IIWL,,(R,L)

. p p
uegf}(fE) (”u”L”(R” * ”Du”L”(R"))

inf / (lul” + |Dul?)dx,
uedd(E) R”

where
A(E)={ue WHP(R") : u > 1 almost everywhere in a neighbourhood of E}.
If «/(E) = @, we set cap,(E) = co. Functions in &/(E) are called admissible func-

tions for E.

92
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THE MORAL: Capacity measures the size of exceptional sets for Sobolev
functions. Lebesgue measure is the natural measure for functions in L?(R") and

the Sobolev p-capacity is the natural outer measure for functions in W12 (R").

Remark 4.2. In the definition of capacity we can restrict ourselves to the admissi-
ble functions u for which 0 < u < 1. Thus

p

appB)= e “Iwisgny

where

A'(E)={ue WPR"):0<su<l,

u =1 almost everywhere in a neighbourhood of E}.

Reason. Since «'(E) c «/(E), we have

P

CapP(E) < ueld{lrf('E) llu“Wl’P(Rn)‘

For the reverse inequality, let € > 0 and let u € «/(E) such that

el

Who @) S cap,(E)+e.

Then v = max{0,min{u, 1}} € &'(E), |v| < |u| and by Remark 2.4 we have |Dv| <

|[Du| almost everywhere. Thus

p
Wl’p(IR”)

b
WI’P(R")

p

<
ol D o

inf )IIuII < flull

<cap,(E)+e¢
ued(E Pp

and by letting ¢ — 0 we obtain

inf |ul?
ued(E) W

Logn) S cap,(E).
Remarks 4.3:
(1) There are several alternative definitions for capacity and, in general, it
does not matter which one we choose. For example, when 1 < p <n, we
may consider the definition

capp(E)zinf/ [Dul? dx,
Rn

where the infimum is taken over all u € LP(R") with [Du| e LP(R"), u =0
and u =1 on a neighbourhood of E. Some estimates and arguments may
become more transparent with this definition, but we stick to our original
definition.

(2) The definition of Sobolev capacity applies also for p =1, but we shall not
discuss this case here.
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The Sobolev p-capacity enjoys many desirable properties, one of the most

important of which says that it is an outer measure.
Theorem 4.4. The Sobolev p-capacity is an outer measure, that is,

(1) cap,(®)=0,
(2) if E1 cE9, then capp(EI) < capp(Ez) and
(3) cap, (UX, Ei) <X, cap,(E;) whenever E; cR",i=1,2,....

THE MORAL: Capacity is an outer measure, but measure theory is useless

since there are few measurable sets.

Proof. Clearly cap,(#)=0.

A (E9) c «/(E1) implies capp(El) < capp(Eg) .

Let e > 0. We may assume that Z‘i’il capp(Ei) < 00. Choose u; € o/(E;) so
that

llu; ||;’VLP(R,,) <cap,(E)+e27, i=12,....

Claim: v = sup; u; is admissible for U‘i’zlE i
Reason. First we show that v € W-P(R"). Let
vp=maxu;, k=1,2,....
1<i<k
Then (v) is an increasing sequence such that v, — v pointwise as & — co. More-

over

lvpl = | max u;| < |supu;|=vl, k=1,2,...,
1<i<k i

and by Remark 2.4

[Dug| < Ima);e [Duj|<sup|Du;|, k=1,2,....

<i< i

We show that (v;,) is a a bounded sequence in W1?(R"). To conclude this, we

observe that
p — P P
I|kaIW1,p(Rn)—/R"|vk| dx+ - |Dvy|P dx

s/ supluilpdx+/ sup|Du;|P dx
no nog

o0 o0
lu;|P dx + [Du;|P dx
1 1

N

R” j= R j=

I
18

( lu; 1P dx + IDuilpdx)
3 R~ R~

1

2 I

< Y (cap,(E;)+€27")

2 1

< capp(Ei)+e<oo, k=1,2,....

~
Il
—
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Since v, — v almost everywhere, by weak compactness of Sobolev spaces, see
Theorem 2.24, we conclude that v € WHP(R™). Since u; € «/(E;), there exists an
open set O; o E; such that u; =1 on O; for every i = 1,2,.... It follows that
v=sup;u;=1on U‘i’zl 0O;, which is a neighbourhood of U‘l?zlEi. n

We conclude that

[e9) o0 o0
capy (UE:) 10851y ) < L 101y < X capp(Eo) e
1= 1=

1=

The claim follows by letting € — 0. d
Remark 4.5. The Sobolev p-capacity is outer regular, that is,

cap,(E) =inf{cap,(0) : E < O, O open}.
Reason. By monotonicity,

cap,(E) <inf{cap,(0): E <O, O open}.

To see the inequality in the other direction, let € > 0 and take u € «/(E)

such that

p

(A

)scapp(E)+£.

Since u € «/(E) there is an open set O containing E such that z =1 on O, which
implies
P

cap,(0) < IIuIIWL,,(R,Z)

<cap,(E)+e.

The claim follows by letting € — 0. n

THE MORAL: The capacity of a set is completely determined by the capacities

of open sets containing the set. The same applies to the Lebesgue outer measure.

Next we discuss monotone convergence theorems for capacity. Note that these
results do not immediately follow from the corresponding results in measure
theory, since there are few measurable sets for capacity. We begin with monotone

convergence for an increasing sequence of sets.

Theorem 4.6. Let 1 <p <ocoandlet E; cR",i=1,2,..., be arbitrary sets such
that E; cE; .1 forevery i =1,2,.... Then

(@

cap,, ( Ei):ilirgocapp(Ei).

i=1

~
I

Proof. Let E =2, Ei. By monotonicity, we have
ilir&capp(Ei) < cap,(E).

Note that monotonicity also implies that the limit on the left-hand side exists.
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For the reverse inequality, we may assume that
]elirrolocapp(Ek) < 00.

Let £ >0 and let vy, € o/(E}) be such that
€

o k=1,2,....

10k N1 ony < €BPp(ER) +

Let ug =0 and
u; =max{vp:k=1,...,i}, 1=12,....

By Remark 2.4 (1), we have

max{u;_1,v;} e WHP@RY) i=1,2,...,

and
min{u;_1,v;} e WHPRY), i=1,2,....
Moreover,
. Du;1 ae.in{u;_1<v;},
Dminf{u;_1,v;} =
Dvi a.e. in {ui_l > vi},
and

Du;_1 a.e.in{u;—1>v;},
Dmax{u;-1,v;} = ! ! !
Dv; a.e.in {u;—1 <v;}.
Let Eg = @. We note that u; = max{u;_1,v;} and min{u;_1,v;} = 1 in a neigh-

bourhood of E;_1,1=1,2,..., and thus we have

122 Ny oy + €2Pp(Ei-1)
p : P -
<| maX{ui—l,vi}lleP(Rn) +1 mln{ui—l,vi}llwl,p(w), i=12,....
where
||maX{ui—1,Ui}”€V1,p(Rn):/ (Imax{u;-1,v;}1” + 1D max{u;-1,v;}|")dx
Rn
=/ (Iui—1|p+lDui—1|p)dx+/ (lvil? + |Dv;|P)dx
{ui—1>v;} {u;j—1<v;}
and
IImin{ui—l,vi}||€V1,p(Rn)=/ (Iminfu;—1,v;}1P + 1D min{u;_1,v;}1”)dx
Rn
=/ (|ui—1|p+|Dui—1|p)dx+/ ([v;|? + |Dv;|P)dx.
{u;—1<v;} {uj-1>v;}
This implies that
p . P
Imax{w;-1, vl p gy + II0I0{U -1, Vi1 n)

= | (ui-1l” +1Du;-11P)dx+ | (lv;l? +|Dv;|P)dx
R™ R™

p

Wl,p(Rn

p

= -1l )t ||vi||W1,p(Rn)

£ .
< Nim1 1 p ) + AP (B + g 112
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Thus we have

£ .
123 51, gy ~ 18411,y < €8P (ED) — capy(Bi-1) + o, =12,
and consequently
P P _ p
||uz||W1,p(Rn) = ||uz||W1,p(R,,) ol gn)

(lee; 17

—MNu: 1IP
A AR LA

13
= Z 1, n
P Whp(R™)
L €
< Z (capp(Ei)— cap,(E;_1)+ E)
k=1
<cap,(E;)+e.
Since u;_1 < u;, the sequence (u;) is increasing and it converges pointwise. Let
u=lim u;.
1—00

Since u > u; > 1 in an open set O; > E;, we conclude that u > 1 in U2, O; and

U2 EicU2,0;. Since E; cE;41, 1 =1,2,..., by monotonicity, we have
supcap,(E;) = lim cap,(E;) < oo,
i i—00
and consequently (u;) is a bounded sequence in WHP(R"). By Theorem 2.24 we

conclude that u € WhP(R?), u; — u weakly in LP(Q) and Du; — Du weakly in
LP(Q;R™) as i — oo. It follows that u € «/(E). By Lemma 2.11, we obtain

cap,(E) < ||u||€vl,p(Rn) < liirnglfllui I|€V1,p(w)
<liminfcap,(E;)+¢
1—00
= lim cap,(E;) +e¢.
1—00
The claim follows by letting € — 0. a

Then we discuss monotone convergence for decreasing sequence of sets.

Theorem 4.7. Let K;,i=1,2,..., be compact sets in R” such that K;,; c K; for
everyi=1,2,.... Then
o0

cap, ([ K;) = lim cap,(K;).
i=1 100

Proof. Let K =72, K;. By monotonicity, we have
cap,(K) < lim cap,(K;).
1—00

Note that monotonicity also implies that the limit on the right-hand side exists.
We note that cap,(K) < co for every compact set K < R", see Remark 4.12 (1).
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For the reverse inequality, let € > 0 and let O o K be an open set such that
cap,(0) <cap,(K) +e.

Then OUU?,(R"\K;) is an open covering of K. Since K is compact, there exists
a finite subcovering, that is, the exists an index % such that

k k
K1cOU|JR"\K)=0u (R”\ ﬂKi) ~OU(R"\Kp).
i=1 i=1
Since K}, c K it follows that K;, < O. This implies that
ililglocapp(Ki) < cap,(K}p) < cap,(0) <cap,(K) +e.

It follows that that
lim cap,(K;) < cap,(K).
1—00

O
Remark 4.8. 1t is essential that the sets in Theorem 4.7 are compact. For example,
let F; =R®"\B(0,i),i=1,2,.... Then F;, i =1,2,..., are closed but unbounded and

by Lemma 4.9, we have
capp(Fi) = |Fpl=0c0, 1=1,2,...,

but

(e 9)
cap,, ([ Fi) = cap,(#)=0.
i=1

A similar example can also be constructed by applying bounded sets (exercise).

4.2 Capacity and measure

We are mainly interested in sets of vanishing capacity, since they are in some
sense exceptional sets in the theory of Sobolev spaces. Our first result is rather

immediate.

Lemma 4.9. |[E| < capp(E) for every E c R".

THE MORAL: Sets of capacity zero are of measure zero. Thus capacity is a

finer measure than Lebesgue measure.

Proof. If cap,(E) = oo, there is nothing to prove. Thus we may assume that
cap,(E) <oo. Let ¢ >0 and take u € «/(E) such that

p

1l )

<cap,(E)+e.
There is an open O o E such that u = 1 in O and thus

p

< < p <
|m\m\Lm|m\wn P o

) S Izl scapp(E)+£.

p
Lr(R"

The claim follows by letting € — 0. d
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Remark 4.10. Lemma 4.9 shows that cap,(B(x,r)) > 0 for every x € R", r > 0. This
implies that capacity is nontrivial in the sense that every nonempty open set has

positive capacity.
Lemma 4.11. Let x € R"” and 0 <r < 1. Then there exists ¢ = ¢(n, p) such that

cap,(B(x,r) <cr"?

THE MORAL: Forthe Lebesgue measure of a ball we have |B(x,r)| < cr”, but
for the Sobolev capacity of a ball we have cap,(B(x,r)) < cr"”?. Thus the natural
scaling dimension for capacity is n — p. Observe, that the dimension for capacity

is smaller than n — 1.

Proof. Define a cutoff function

1, yeBlx,r),
u(y)={2-22" yeB(x,2r)\Blx,r),
0, yeR"\B(x,2r).

Observe that 0 <u <1, u is %-Lipschitz and [Du| < % almost everywhere. Thus
u € A (B(x,r)) and

capp(B(x,r))s/ Iulpdy+/ |Dul? dy
B(x,2r) B(x,2r)
<(1+7rP)B(x,2r) < (r P +r7P)|B(x,2r)|
=2r P|B(x,2r)| =cr" 7P,
with ¢ = c¢(n, p) a

Remarks 4.12:
(1) Lemma 4.11 shows that every bounded set has finite capacity. Thus there
are plenty of sets with finite capacity.

Reason. Assume that E c R" is bounded. Then E < B(0,r) for some r,

1 <r < o0, and the proof of Lemma 4.11 gives
cap,(E) < cap,(B(0,r)) < crP™ P < co.
(2) Lemma 4.11 implies that cap,({x}) = 0 for every x € R" when 1< p <n.
Reason.
cap,({x}) <cap,(Bx,r)) <cr"?, 0<r<l.

The claim follows by letting r — 0. n
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(3) When 1 < p < n, by applying the Gagliardo—Nirenberg—Sobolev inequality
(Theorem 3.3), it is possible to show (exercise) that there exists a constant
c¢=c(n,p)> 0 such that

cap,(B(x,r)=cr" P, r>0.

Remark 4.13. LetxeR" and 0<r < % Then there exists ¢ = ¢(n) such that

1 1-n
cap,(B(x,r)) <c (log—) .
r
Reason. Use the test function

(10g%)*110gﬁ, y € B(x,1)\ B(x,r),
u(y)=41, yeB(x,r),
0, yeR"\B(x,1).

This implies that cap,({x}) = 0 for every x € R” when p = n (exercise). n

We have shown that a point has zero capacity when 1 < p < n. By countable
subadditivity all countable sets have zero capacity as well. Next we show that a

point has positive capacity when p > n.

Lemma 4.14. If p > n, then cap,({x}) > 0 for every x e R".

THE MORAL: For p>n every set containing at least one point has a positive
capacity. Thus there are no nontrivial sets of capacity zero. In practice this means

that capacity is a useful tool only when p <n.

Proof. Let x € R* and assume that u € o/ ({x}). Then there exists 0 < r < 1 such that
u(y)=1on B(x,r). Take a cutoff function n € C3°(B(x,2)) such that 0<n<1,n=1
in B(x,r) and |Dn| < 2. By Morrey’s inequality, see Theorem 3.23, there exists
c¢=c(n,p)> 0 such that

(u)(y)—(qu)2)| <cly - 2|17% 1D (nu)llLr @)

for almost every y,z € R*. Choose y € B(x,r) and z € B(x,4)\ B(x,2) so that
(mu)(y) =1 and (nu)(z) =0. Then 1 <|y—z| <5 and thus

ID(u))IP dy = 1D}, g
/B w2) Lr®R™)

=cly—z|""P(qu)(y) - (qu)(2)IP = ¢ >0.
—; ,

-~
>50-D =1
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On the other hand

/’ IDumdiys2p(/ IDnmpdy+/n mDquﬂ
B(x,2) B(x,2) B(x,2)
=2P / |D17|p|u|pdy+/ 0P |DulP dy
B(x,2)‘“2fp"’ B(x,Z)WI"

< 4P (/ Iulpdy+/ IDulpdy)
B(x,2) B(x,2)

Py, P
<Al pq)
This shows that there exists ¢ = ¢(n, p) > 0 such that ||u||€v1,p(m = ¢ > 0 for every
u € o/ ({x}) and thus cap,({x}) = ¢ > 0. a

In order to study the connection between capacity and measure, we need to
consider lower dimensional measures than the Lebesgue measure. We recall the

definition of Hausdorff measures.

Definition 4.15. Let E cR"” and s = 0. For 0 < § < oo we set

(o) o0

5 (E) = inf Z r$:Ec|JBx,r),ri<é;.

i=1 i=1

The (spherical) s-Hausdorff measure of E is
JO5(E) = limjfg(E) = sup]fg(E).

6—0 6>0

The Hausdorff dimension of E is

inf{s: #°(E) = 0} = sup{s : #°(E) = oo}.

THE MORAL: The Hausdorff measure is the natural s-dimensional measure
up to scaling and the Hausdorff dimension is the measure theoretic dimension of
the set. Observe that the dimension can be any nonnegative real number less or
equal than the dimension of the space.

We begin by proving a useful measure theoretic lemma. In the proof we need

some tools from measure and integration theory and real analysis.

Lemma 4.16. Assume that 0<s<n, f € L1 (R") and let

loc
n : 1
E=:x€eR :11msup—s Ifldy>0¢.
r—0 T JB(x,r)
Then #5(E) = 0.
THE MORAL: Roughly speaking the lemma above says that the set where

a locally integrable function blows up rapidly is of the corresponding Hausdorff

measure zZero.
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Proof. Assume first that £ € L1([R").
By the Lebesgue differentiation theorem

lim Ifldy =1f(x)] < oo,

r=0JB(x,r)
for almost every x € R”. If x is a Lebesgue point of |f|, then

1
limsup — |f|dy=climsupr"_s][ Ifldy=0.
r—0 I’ B(x,r) r—0 B(x,r)

This shows that all Lebesgue points of |f| belong to the complement of E and thus
|E| =

0.
Let e>0and

1
Eg—{xe[R” hmsup— |f|dy>£}.
r—0 B(x,r)

Since E. c E and |E| =0, we have |E.| =
Claim: /#5(E.) =0 for every € > 0.

Reason. Let 0 < < 1. For every x € E, there exists a r, with 0 <r, <§ such that

1
- Ifldy >e.
Iy B(x,ry)

By the Vitali covering theorem, there exists a subfamily of countably many pair-
wise disjoint balls B(x;,r;), i =1,2,..., such that

(o0}

E.c U B(x;,5r;).

i=1

This gives
o0 58

HE(E)< Y (5r)) < Z Ifldy == / If1dy.
i=1 € JUR,Bxi.ri)

B(xj,ri)

By disjointness of the balls

) i) ZlB(xz,r )|—CZT‘

/ Fldy
187‘ B(xur )

Ifldy—>0

SC

By absolute continuity of integral

6—0
/ iy =% 0.
U32 Bxi,rq)

53
st(Eg)—hme (E;) < —1lim |fldy=0.
€ 0=0Jux, B(x;,ri)

This shows that #°(E;) =0 for every € > 0. =

Thus
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By subadditivity of the Hausdorff measure

%S(E):%S(G&) f Ey)
=1 %) =

This shows that #*(E) = 0.
Assume then that f € Llloc(lR"). Then

1
H(E) = HA° ({xE[R” limsup — |f|dy>0})
r—0 T° JB,r

> 1
=4 {xE[R hmsup— If)(B(O,k)Idy>0}
k=1 r—0 B(x,r)

& 1
SZ]ﬁs({xER”:hmsup—s |f)(B(0’k)|dy>0})=0. O

r—0 T JB(x,r)

Next we compare capacity to the Hausdorff measure.

Theorem 4.17. Assume that 1 < p <n. Then there exists ¢ = ¢(n, p) such that
cap,(E) < cA" P(E) for every E cR".

THE MORAL: Capacity is smaller than (n—p)-dimensional Hausdorff measure.
In particular, #""7(E) = 0 implies cap,(E) =0.

Proof. Let B(xj,r;), i =1,2,..., be any covering of E such that the radii satisfy
r; < 6. Subadditivity implies
[e.°] (o] ne
cap,(E) < > cap,(B(x;,ri))<c > r L
i=1 i=1
By taking the infimum over all coverings by such balls and observing that 73 (E) <

J°(E) we obtain
cap,(E) < cjfg_p(E) <c A" P(E). 0

We next consider the converse of the previous theorem. We prove that sets of

p-capacity zero have Hausdorff dimension at most n — p.

Theorem 4.18. Assume that 1 <p <n. If E cR" with cap,(E) =0, then #°(E) =
Oforall s>n—p.

Proof. |(1)| Let E < R" be such that cap,(E) = 0. Then for every i = 1,2,..., there

exists u; € «'(E) such that ||u; IIWIP(W <27 Letu= Z‘i’glui.

Claim: u € o/ (E).
u;, k=1,2,.... Then vy € WHP(R") and

k
D Ui

i=1

Reason. Let vy, = Zl 1

Z llze; ||W1p([Rgn)
wlprr) i=1

lvellwege) =

_i

o0 o0 i
SZIIu lwiegny < Z P

i=1
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Thus (v3) is a bounded sequence in WhP(R"). Since 0 < u; < 1, we observe that
(v) is an increasing sequence and thus v, — u almost everywhere. Theorem 2.24
implies u € WLP(R"™). Moreover, u = 1 almost everywhere on a neighbourhood of E
which shows that u € «/(E). m

Claim:

lim sup][ udy=oco forevery xeckKE. (4.19)
Bl(x,r)

r—0
Reason. Let m e N and x € E. Then for r > 0 small enough B(x,r) is contained in
an intersection of open sets O;, i =1,...,m, with the property that u; = 1 almost

everywhere on O;. This implies that u =72, u; = m almost everywhere in B(x,r)

and thus
][ udy=m.
Bl(x,r)

This proves the claim. n

THE MORAL: This gives a method to construct a function that blows up on

any set of zero capacity.

Claim: If s >n — p, then

1
limsup — |IDul’dy =00 forevery x€kE.
r—0 T JB(x,r)

Reason. Let x € E and, for a contradiction, assume that
1
limsup—S |Dul? dy < oo.
r—0 T JB(x,r)
Then there exists ¢ < co such that
1
limsup—s [DulPdy<ec.
r—0 T JB(,r)

Then we choose R > 0 so small that

/ |Dul’dy<ecr®
B(x,r)

for every 0 < r < R. Denote B; = B(x,27*R), i = 1,2,.... Then by Hélder’s inequality

and the Poincaré inequality, see Theorem 5.25, we have

|uBi+1_'uBi|s.}’ |u“uBi|dJ
Bi+1

|B;| ][
< |u _'lLBi|(iy
IB;+1l JB;
1

P
sc(][ Iu—uBilpdy)
B;

1
<c2R (][ \DulP dy)p
B;

p—n+s

<c(27'R) »
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For % > j, we obtain

k-1 k=1
lu, —up;| < }_ lup,., —up|<c) (27'R) »
=] =]

and thus (up,) is a Cauchy sequence when s > n — p. This contradicts (4.19) and

thus the claim holds true. -

Thus

1
Ec{xeR”:limsup— IDulpdyzoo}
r—0 % JB(xr)
1
c{xeR”:limsup— IDulpdy>0}.
r—0 T° JB(xr)
Lemma 4.16 implies
1
F5(E) < FH° ({xE[R”:limsup—S IDulpdy>0})=O.
r—0 T JB(x,r)

This shows that /#°(E) = 0 whenever n — p < s < n. The claim follows from this,
since #°(E) = 0 implies ! (E) =0 for every ¢ = s. d

Remark 4.20. 1t can be shown that even #" P (E) < oo, 1< p <n, implies cap,(E) =
0.

4.3 Quasicontinuity

In this section we study fine properties of Sobolev functions. It turns out that

Sobolev functions are defined up to a set of capacity zero.

Definition 4.21. We say that a property holds p-quasieverywhere in R” if there
exists a set E ¢ R" with cap,(E) = 0 such that the property holds for every x €
R*\E.

THE MORAL: Quasieverywhere is a capacitary version of almost everywhere.
A property holds p-quasieverywhere, if it holds outside a set of p-capacity zero.

Recall that by Meyers-Serrin theorem 1.21 WHP(R")NC(R"?) is dense in W12 (R"?)
for 1 < p < oo and, by Theorem 1.15, the Sobolev space W1-?(R") is complete. The
next result gives a way to find a quasieverywhere converging subsequence.

Theorem 4.22. Assume that u; € WEP(R")nC(R™), i =1,2,..., and that (x;) is a
Cauchy sequence in WP (R"). Then there is a subsequence of (z;) that converges
pointwise p-quasieverywhere in R”. Moreover, the convergence is uniform outside

a set of arbitrarily small p-capacity.
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THE MORAL: This is a Sobolev space version of the result that for every
Cauchy sequence in L?(R"), there is a subsequence that converges pointwise
almost everywhere. The claim concerning uniform convergence is a Sobolev space

version of Egorov’s theorem.
Proof: There exists a subsequence of (z;), which we still denote by («;), such that

o0

DYy — . 1P
_212 i = i1 gy < 00-
1=

Fori=1,2,...,1et

. [o¢]
E;={xeR":|u;(x)-u;11(x)| >27'} and F;=[JE;.
i=j
By continuity, the set E; c R” is open and 2 \u; —uj1l € A(E;) for everyi=1,2,....
Thus

cap,(Bi) <2 lui —tiv1llfy p gy 0=1,2,0.

By subadditivity we obtain

o0 o0
i p
cap,(Fj) < ;jcapp(Ei) < ;2”’ i = i1l p gy

Since ﬂ;‘;le cFjand Fj,1cFj, j=1,2,..., we have
oo
ca F;|< lim cap,(F;)
Pp (Jol J) et Ppllj
(&) .
<lim ) 27 fu; —ujl

]—'OOL':J'

p —
B o =0

Here we used the fact that the tail of a convergent series tends to zero.
We note that

k-1 k-1 o] . 1
lum(x) —up(x)| < Z lui(x) —ui1(x) < 27 g Z 272
i=m i=m i=m

for every £ > m > j and for every

xeR"\F;=R"\|JE,;,=(R"\E))
i=j i=j
= {xeR™:Ju;(x) —uir1(x) <27}
i=j
This shows that (u;(x)) is a Cauchy sequence if there exists j € N such that
x € R"\ F;. It follows that (u;(x)) is a Cauchy sequence, if

xe JR*\F)=R"\F,.
i=1 =1
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Since (u;(x)) converges if and only if it is a Cauchy sequence, we conclude that

(u;(x)) converges for every R™ \ ﬂ‘i’zl F; with

cap, (EFJ) =0.

Moreover, we have

sup |uj(x) —up(x) < gl-m
RA\F;

for every £ >m > j, which shows that the convergence is uniform in R" \ F; with

11 F)=0.
Jim cap,(F) 0

Definition 4.23. A function u : R* — [-00,00] is p-quasicontinuous in R” if for
every ¢ >0 there exists a set E such that cap,(E) < ¢ and the restriction of u to

R"™ \ E, denoted by u|g»\E, is a continuous real-valued function.

Remark 4.24. By outer regularity, see Remark 4.5, we may assume that the set E

is open in the definition of quasicontinuity above.

The next result shows that a Sobolev function has a quasicontinous represen-
tative.

Corollary 4.25. For every u € WLP(R") there exists a p-quasicontinuous function
v € WhP(R™) such that u = v almost everywhere in R”.

THE MORAL: Every L? function is defined almost everywhere, but every

WULP function is defined quasieverywhere.

Proof. By Theorem 1.21, for every function u € WhP(R"), there are functions
uj € WHP(R") nC(R™), i = 1,2,..., such that u; — u in WH2(R?) as i — co. By
passing to a subsequence, we may assume that u; — u almost everywhere in R”
as i — oo.

Let £ > 0. By Theorem 4.22 there exist a subsequence, denoted again by (u;),
and a function v : R" — [—o00,00] such that u; — v pointwise p-quasieverywhere
in R" as i — co. Moreover, there exists a set E with cap,(E) < ¢ such that the
sequence (u;) converges uniformly to v in R* \ E as i — co. Uniform convergence
implies continuity of the limit function v in R® \ E. This shows that v is p-
quasicontinuous in R”.

By Lemma 4.9, we may conclude that u; — v almost everywhere in R" as
i — oo. It follows that v = u almost everywhere in R”. This completes the proof.(]

Next we show that the quasicontinuous representative given by Corollary 4.25

is essentially unique. We begin with a useful observation.
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Remark 4.26. If G cR" is open and E cR" with |E| =0, then cap,(G) = cap, (G \
E).

Reason. [z Monotonicity implies cap,(G) = cap,(G \ E).
Let € >0 and let u € «/(G \ E) be such that

lul?

Whe®n) S cap,(G\E)+e.

Then there exists an open O c R"” with (G\ E)cO and u = 1 almost everywhere
in O. Since O UG is open G c (O UG) and u = 1 almost everywhere in O U(G \ E),

and almost everywhere in O UG since |E| = 0, we have u € o/(G).
capp(G) <|u "€VLP(R'1) < capp(G \E)+e.
By letting ¢ — 0, we obtain cap,(G) < cap,(G \ E). n

Theorem 4.27. Assume that u and v are p—quasicontinuous functions on R”. If

u =v almost everywhere in R”, then u = v p-quasieverywhere in R".

THE MORAL: Quasicontinuous representatives of Sobolev functions are

unique.

Proof. Let ¢ >0 and let G = R" be an open set such that cap,(G) < ¢ and that the
restrictions of u and v to R” \ G are continuous. Thus {x € R* \ G : u(x) # v(x)} is
open in the relative topology on R* \ G, that is, there exists open U c R” with

U\NG={xeR"\G : u(x) # v(x)}

and
IUNG|={x e R*"\ G : u(x) #v(x)}| = 0.

Moreover,
{xeR" tu@) Zv@)} cGU{x eR*"\G :ulx) Zv(x)} =GuUU.
Remark 4.26 (1) with G and E replaced by U UG and U \ G, respectively, implies
cap, ({x € R" : u(x) # v(x)}) < cap,(GUU) = cap,(G) < &.

This completes the proof. d

Remarks 4.28:
(1) The same proof gives the following local result: Assume that u and v are
p—quasicontinuous on an open set O c R". If u = v almost everywhere in

0O, then u = v p-quasieverywhere in O.

(2) Observe that if u and v are p—quasicontinuous and u < v almost ev-
erywhere in an open set O, then max{u —v,0} = 0 almost everywhere
in O and max{u —v,0} is p—quasicontinuous. Then Theorem 4.27 im-
plies max{u —v,0} = 0 p-quasieverywhere in O and consequently u <v

p-quasieverywhere in O.
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(3) The previous theorem enables us to define the trace of a Sobolev function
to an arbitrary set. If u € W?(R?) and E c R”, then the trace of u to E is
the restriction to E of any p—quasicontinuous representative of u. This

definition is useful only if cap,(E) > 0.

4.4 Lebesgue points of Sobolev functions

We consider the Hardy-Littlewood maximal function in Definition 5.1. By the
maximal function theorem with p =1, see Theorem 5.3 (1), there exists ¢ = ¢(n)
such that

e R : Mf(x)> A)| < %ufnLl(W)

for every A > 0. By Chebyshev’s inequality and the maximal function theorem
with 1 < p < o0, see Theorem 5.3 (2), there exists ¢ = c¢(n, p) such that

. 1 p ¢ p

for every A > 0. Thus the Hardy-Littlewood maximal function satisfies weak type
estimates with respect to Lebesgue measure for functions in L?(R"). Next we

consider capacitary weak type estimates for functions in WP (R").

Theorem 4.29. Assume that u € WIP(R?), 1 < p < co. Then there exists ¢ =
c¢(n, p) such that

p

¢
cap, (fx eR™ : Mu(x) > A}) < T ||u||W1’p([Rn).

for every 1 > 0.

THE MORAL: This is a capacitary version of weak type estimates for the
Hardy-Littlewood maximal function.

Proof. Denote Ej = {x € R” : Mu(x) > A}. Then E} is open and by Theorem 5.4

Mu e WLP(R™). Thus

M
T” e A(Ey).

Since the maximal operator is bounded on W12 (R"), see (5.5), we obtain

Mu||P

cap, (Ej) < 1

1 c
= — p < — p
wir@n) AP WMy gy < 7 1 s - O

This weak type inequality can be used in studying the pointwise behaviour of
Sobolev functions. We recall that x € R” is a Lebesgue point for u € Llloc([R{") if the
limit

u*(x) =lim u(y)dy
r=0JB(x,r)



CHAPTER 4. POINTWISE BEHAVIOUR OF SOBOLEV FUNCTIONS 110

exists and

lim lu(y)—u™(x)|dy =0.
r—0JB(x,r)

The Lebesgue differentiation theorem states that almost all points are Lebesgue
points for a locally integrable function. If a function belongs to WLP(R"), then
using the capacitary weak type estimate, see Theorem 4.29, we shall prove
that it has Lebesgue points p-quasieverywhere. Moreover, we show that the

p-quasicontinuous representative given by Corollary 4.25 is u*.

We begin by proving a measure theoretic result, which is analogous to Lemma
4.16.

Lemma 4.30. Let 1 < p <oo, f € LP(R") and

E:{xe[Rznzlimsuprp][ lf(y)lpdy>0}.
xX,r

r—0 s

Then cap,(E) = 0.

THE MORAL: Roughly speaking the lemma above says that the set where an
L? function blows up rapidly is of capacity zero. The main difference compared to
Lemma 4.16 is that the size of the set is measured by capacity instead of Hausdorff

measure.

Proof. The argument is similar to the proof of Lemma 4.16, but we reproduce it
here.
By the Lebesgue differentiation theorem

lim IfWIPdy =If(@)IP < oo,
r—0JB(x,r)

for almost every x € R”. If x is a Lebesgue point of |f|?, then

r—0

limsuper[ If(»)IPdy=0.
B(x,r)

This shows that all Lebesgue points of |f|? belong to the complement of E and
thus |E|=0.

Let£>0and

E.= {x €R" : limsupr? ][ IF()IPdy > e}.
B(x,r)

r—0

Since E. c E and |E| =0, we have |[E.| =0. We show that capp(Eg) =0 for every
&> 0, then the claim follows by subadditivity. Let 0 < < % For every x € E, there

is r, with 0 < r, < 6 such that

rgz][ FPdy >e.
B(x,ry)
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By the Vitali covering theorem, there exists a subfamily of countably many pair-
wise disjoint balls B(x;,r;), i =1,2,..., such that

[e.9]

EE c UB(xi,5I”i).

i=1

By subadditivity of the capacity and Lemma 4.11 we have
(e o] (oo} n—

cap,(Ec)< ) cap,(Blx;,bri))<c) r; ”
i=1

i=1

< g > lfWIPdy = g/ IFDWIP dy.

i=17 B(x;,r;) U2, Blx;,ri)

Here ¢ = ¢(n, p). Finally we observe that by the disjointness of the balls

00 00 s} rI.)
UB(i,r)| =) IBlxj,rl <) — lfFIPdy
i=1 i=1 i=1 € JB@;,ry)
o 60
< — lfNIPdy — 0.
to) R7
By absolute continuity of integral
6—0
/ FPdy 2o,
U2, Blxiry)
Thus
c 6—0
cap,(E;) < —/ lfIPdy — 0,
€ JuR, Bai,ry)
which implies that cap,(E.) = 0 for every £ > 0. a

Now we are ready for a version of the Lebesgue differentiation theorem for

Sobolev functions.
Theorem 4.31. Assume that u € WH?(R") with 1 < p < co.

(1) There exists a set E < R" such that cap,(E) =0 and
lim u(y)dy =u"(x)
r—0 JB(x,r)

exists for every x e R* \ E.

(2) Every extension of u*: R" \ E — R to the entire space R” is a p-quasiconti-
nuous function in R” and coincides with u almost eveywhere in R”.

(3) Moreover, there exists a set E’' < E such that

lim lu(y)—u*(x)dy=0
=0 JB(x,r)

for every x e R* \ E’.
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THE MORAL: A function in W-P(R?) with 1 < p < co has Lebesgue points
p-quasieverywhere. Moreover, the p-quasicontinuous representative is obtained
as a limit of integral averages.

Proof. By Theorem 1.21 there exist u; € C®°(R*)n WP (R") such that

—i 1 .
”u_ui”‘P;Vl,p(Rn)sz “o+ )’ l=1,2,....

Denote
E;={(xeR":Mu-u;)x)>27", i=12,....

By Theorem 4.29 there exists ¢ = ¢(n, p) such that

cap,(E;) < c2'lu-u; |I€V1’p(w) <c27' i=1,2,....

Clearly

[t (%) = uB(e,r| S][ lu;(x)—uldy
B(x,r)

(x,

<][ Iui(x)—ui(y)ldy+][ lu;(y)—u(y)dy,
B(x,r) B(x,r)

which implies that

limsup |u;(x) — up(,rl
r—0

slimsupJ[ |u,~(x)—ui(y)|dy+1imsupf lui(y)—uly)ldy
B(x,r) B(x,r)

r—0 r—0

<M(u; —u)x)< 27,
for every x e R* \ E;. Here we used the fact that

limsup][ lui(x)—ui(y)ldy=0, i=1,2,...,
r—0 JB(x,r)
since u; is continuous and

][ lui(y)—u(y)dy < M(u; —u)(x) forevery r>0.
B(x,r)

Let Fj, = U;’Z i E;, k=1,2,.... Then by the subadditivity of capacity we have

e} 00 .
cap,(F) < z;;capp(Ei) <c ;@27‘.
1= 1=

IfxeR*"\F} and i,j =k, then

lu; () — ()| < limsup |u;(x) — up(,r| +1limsup|up, ) — u (%)l

r—0 r—0

<27149277,
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Thus (u;) converges uniformly in R™ \ F;, to a continuous function vy in R" \ F},.

Furthermore
limsup [vg(x) — B, < Vg (%) — u;(x)] + limsup |u;(x) — up |
r—0 r—0

<vp(x) —u;i(x)| +27°

for every x € R” \ F,. The right-hand side of the previous inequality tends to zero
as i — oco. Thus

limsup |vg(x) —up,r| =0
r—0

and consequently

vp(x) = lim)[ u(y)dy=u"(x)
r=0 JB(x,r)

for every x e R" \ F},. Let F =2, F. Then

o .
cap,(F) < }}ir&capp(Fk) < clgirgoE;CZ_‘ =0
and
lim u(y)dy =u"*(x)

r—0 JB(x,r)
exists for every x € R” \ F'. This completes the proof of the first claim.
Let € >0 and let k € N be large enough that cap, (F}) < §. Since u”|pn\F, =
vy, is continuous, any extension of u*: R \ F — R to the entire space R" is p-

quasicontinuous in R”. Lemma 4.9 implies that
|F| < cap,(F)=0.
By the Lebesgue density theorem

lim u(y)dy=u"(x)
r—0 JB(x,r)
for almost every x € R”. It follows that u = u* almost everywhere in R” \ F. Thus

any extension of u*: R" \ F is a p-quasicontinuous representative of u.

Let

E:{xelR":limsuprp][ IDu(y)Ipdy>O}.
B(ax,r)

r—0
Lemma 4.30 shows that cap,(E) = 0. By the Poincaré inequality, see Theorem
5.25, we have

limsup][ Iu(y)—uB(x,r)Ipdysclimsupr”][ DuNPdy=0
B(x,r) B(x,r)

r—0 r—0

for every x e R" \E. Let F' = EUF, where F is the set in the proof of claim (1).
Then
cap,(F") = cap,(E UF) < cap,(E) + cap,(F) = 0.
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Since F c F', we have

lim u(y)dy =u"(x)
=0 JB(x,r)

exists for every x e R* \ F' cR" \ F.
We conclude that
limsup][ lu(y)—u*(@)dy
x,r

r—0 B(x,r)

1
slimsup(][ lu(y)—u™(x)P dy)p

r—0 Bl(x,r)

. p N *
<limsup (]{;( )Iu(y)—uB(x,r)Ip dy) +limsup|up,ry—u (x)| =0
x,r

r—0

r—
whenever x e R* \ F'. O
Remarks 4.32:

(1) Since the claims in Theorem 4.31 are local, the corresponding result also
holds for u € Wl-(Q), where Q c R” is open.

(2) Let n < p <oo. Lemma 4.14 implies that cap,({x}) > 0 for every x € R",
and Theorem 4.31 holds for every u € WhP(R") with E = @. Consequently,
every function u € W?(R") has a continuous representative and every
point x € R” is a Lebesgue point of u. Recall that this fact follows more
directly from Morrey’s inequality, see Theorem 3.23, which is also applied
in the proof of Lemma 4.14.

4.5 Sobolev spaces with zero boundary
values

In this section we return to Sobolev spaces with zero boundary values started in
Section 1.9. Assume that Q is an open subset of R” and 1 < p < co. Recall that
WO1 P(Q) with 1< p < oo is the closure of C5°(Q) with respect to the Sobolev norm,
see Definition 1.23. Using pointwise properties of Sobolev functions we discuss
the definition of WO1 Q).

The first result is a WO1 *P(Q) version of Corollary 4.25 which states that for
every u € WP (R?) there is a p-quasicontinuous function v € WP (R"?) such that

u =v almost everywhere in R”.

Theorem 4.33. If u € Wo1 P(Q), there exists a p-quasicontinuous function v €
WLP(R™) such that u = v almost everywhere in Q and v = 0 p-quasieverywhere in
R*\ Q.

THE MORAL: Quasicontinuous functions in Sobolev spaces with zero bound-

ary values are zero quasieverywhere in the complement.
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Proof. Since u € Wol’p(Q), there exist u; € C3°(Q), i = 1,2,..., such that u; — u in
WLP(Q) as i — co. Since (u;) is a Cauchy sequence in W1?(R"), by Theorem 4.22
it has a subsequence of (z;) that converges pointwise p-quasieverywhere in R"
to a function v € WL (R"). Moreover, the convergence is uniform outside a set
of arbitrary small p-capacity and, as in Corollary 4.25, the limit function v is

p-quasicontinuous. a

Theorem 4.34. If u e WP(R") is p-quasicontinuous and u = 0 p-quasieverywhere
in R\ Q, then u € W, " (Q).

THE MORAL: Quasicontinuous functions in a Sobolev space on the whole
space which are zero quasieverywhere in the complement belong to the Sobolev
space with zero boundary values. In particular, continuous functions in a Sobolev
space on the whole space which are zero everywhere in the complement belong to
the Sobolev space with zero boundary values.

Proof. We show that u can be approximated by W12 (R") functions with com-
pact support in Q. If we can construct such a sequence for u, = max{u,0}, then we
can do it for u_ = —min{u,0}, and we obtain the result for u = u, —u_. Thus we
may assume that u = 0. By Theorem 1.28 we may assume that u has a compact
support in R” and by considering truncations min{u, A}, A > 0, we may assume
that u is bounded (exercise).

Let 6 > 0 and let O < R" be an open set such that cap,(0) <6 and the
restriction of u to R™ \ O is continuous. Denote

E={xeR"\Q:u(x)#0}.
By assumption cap,(E) =0. Let v € /(O UE) such that 0<v <1 and

1012 1y <

see Remark 4.2. Then v =1 in an open set G containing O UE. Define
us(x) =max{u(x)—¢,0}, O<e<l.

Let x € 3Q\@G. Since u(x) = 0 and the restriction of u to R* \ G is continuous, there
exists r, > 0 such that u, =0 in B(x,r,) \G. Thus (1 -v)u, =0 in B(x,r,) UG for
every x € 3Q\ G. This shows that (1 —v)u, is zero in a neighbourhood of R" \ Q,
which implies that (1 —v)u, is compactly supported in Q. Lemma 1.27 implies
(1-v)uce WO1 P(Q2). We show that this kind of functions converge to u in W12 (R™).

Since
{u—s in {xeR”:u(x)=¢},
U =

0 in {xeR":u(x)<el},
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by Remark 2.4 we have

Du ae. in {xeR":u(x)=¢},
Du,=
0 ae.in {xeR":u(x)<e}.

Thus
lu—-(1- U)ug”Wl,p(Rn) < llu—uellwio@ey + lvuellyie ge).
Using the facts that u — u, < e and supp(u — u¢) < suppu, we obtain
lu —uellwipgny < llu—uellLpwn) + 1Du — DuellLe@gn)
< €l XsuppullLe @) + I X10<u<eatDullLr@ny — 0

as € — 0. Observe that, by the dominated convergence theorem, we have
1
. . P
lim || yo<u<etDullLe@n) = (hm/ Xio<us<eDul? dx)
e—0 e—0 R”

. v
= (/ th{0<usg}|Du|p dx) = 0,
rn €0

where Yo<y<elDul? <|DulP € LY(R™) may be used as an integrable majorant. On
the other hand,

lvuellwregny < lviellLewn) + 1D(ue)lLr @)
< lvueliLe@ny + lueDollLe ey + lvDuellLe@e)
< luvlippwny + luDvllLe@e) + lvDuell Lr@e)
< lullpo@mylvliLe ey + lullpo@n) Dl Le ey + lvDw | e @e)
< 2|lull Lo lv I ey + lvDwll Le @n)
< 267 |l poogam) + 0Dl Lo n)-
Since v =vs — 0 in LP(R") as § — 0, there is a subsequence (§;) for which v; =

vs;, — 0 almost everywhere as i — oo. By the dominated convergence theorem, we

have
1
. . p
lim |lv;Dullppger) = | lim lv;|P|Dul? dx
1—00 1—00 R7

1
=( (lim |Ui|p)|Du|pdx)p =0,
Rn 1—00
where |v;|?|Dul? < |DulP, so that [DulP € LY(R") may be used as an integrable

majorant. Thus we conclude that

1
lim [[vjuellyiegn) < lim (2557 lze|l Loomny + ”UiDu”LP([R”)) =0.
1—00 1—00

Thus
lw—(1- Ui)ug"WLp(Rn) -0
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as € — 0 and i — oo. Since
(1-v)u eWyP(@) and (1-v)ue—u in WLPRY
as € — 0 and i — oo, we conclude that u € Wol’p(Q). a

We obtain a very useful characterization of Sobolev spaces with zero boundary

values on an arbitrary open set by combining the last two theorems.

Corollary 4.35. u € Wg P(Q) if and only if there exists a p-quasicontinuous
function u* € WHP(R") such that u* = u almost everywhere in Q and u* =0
p-quasieverywhere in R” \ Q.

THE MORAL: Quasicontinuous functions in Sobolev spaces with zero bound-
ary values are precisely functions in the Sobolev space on the whole space which
are zero quasieverywhere in the complement. This result can be used to show that
a given function belongs to the Sobolev space with zero boundary values without

constructing an approximating sequence of compactly supported smooth functions.

Remark 4.36. Let p > n. Lemma 4.14 implies that empty set is the only set of
p-capacity zero. Thus a function is p-quasicontinuous if and only if it is continuous
in R™. Corollary 4.35 asserts that u € Wg P (Q) with p > n if and only if there exists
a continuous function u* € WHP(R") such that u* = u almost everywhere in Q and

u* =0 everywhere in R" \ Q.

There is also a characterization of Sobolev spaces with zero boundary values

using Lebesgue points for Sobolev functions.

Theorem 4.37. Assume that Q c R” is an open set and u € W1P(R?) with 1< p <
co. Then u € Wy P(Q) if and only if

lim u(y)dy=0
r—=0JB(x,r)

for p-quasievery x e R* \ Q.

THE MORAL: Afunction in the Sobolev space on the whole space belongs to
the Sobolev space with zero boundary values if and only if the limit of integral

averages is zero quasieverywhere in the complement.

Proof: Ifue W(} *P(Q2), then by Theorem 4.33 there exists a p-quasicontinuous
function u* € WHP(R") such that u* = u almost everywhere in Q and u* = 0
p-quasieverywhere in R” \ Q. Theorem 4.31 shows that the limit

u*(x) = lim u(y)dy
r=0JB(x,r)
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exists p-quasieverywhere and that the function u* is a p-quasicontinuous repre-

sentative of u. This shows that

lim u(y)dy=u"(x)=0
r—0JB(x,r)

for p-quasievery x € R* \ Q.
Assume then that u € WP(R") and

lim u(y)dy=0

r—0JB(x,r)
for p-quasievery x € R” \ Q. Theorem 4.31 shows that the limit

u*(x) = lim u(y)dy
r=0JB(x,r)

exists p-quasieverywhere and that the function ©* is a p-quasicontinuous repre-

sentative of u. We conclude that u*(x) = 0 for p-quasievery x € R” \ Q. The claim
follows from Corollary 4.35. a

Let E < Q be a relatively closed set, that is, there exists a closed F c R” such
that E = QN F, with |E| = 0. It is clear that W, (Q\ E) c W, *(Q). By

W, P(Q\E) = WyP ()

we mean that every u € WO1 "?(Q) can be approximated by functions in CP(Q\E)
or in Wy P(Q\E).

Theorem 4.38. Assume that E is a relatively closed subset of 2. Then WO1 PQ) =
Wy P(Q\ E) if and only if cap,,(E) = 0.

Proof: Assume cap,(E) =0. Lemma 4.9 implies |E| = 0 so that it is reasonable
to ask whether WO1 PQ) = WO1 P(Q\ E) when we consider functions defined up to a
set of measure zero.

It is clear that Wg PQ\E)c WO1 *P(QQ). To see reverse inclusion, let u; € C(Q),
i=1,2,..., be such that u; — u in WHP(Q) as i — oco. Since cap,(E)=0 there are
v; € ' (E), j=1,2,..., be such that lvjllwie@ny — 0 as j — oco. Then (1-v;)u; €
WLP(Q) and, since v; =1 in a neighbourhood of E, supp(1-v;)u; is a compact
subset of Q\E for every i, j = 1,2,.... Lemma 1.27 implies (1-v,)u; € Wy P (Q\E),
i,j=12,....

Moreover, we have

lu—-(1- Uj)ui ”WLP(Q) <lu-u; ”WLP(Q) +llvju; ”WLP(Q);
where |u — u;lly1pq) — 0 as i — oo and
lvjuillwieqy < llvjuilLe) + 1D ui)liLe )
< luillpe@llvjliLe@ + lvjDu;liLe) + lu; DvjliLeq)
< lwillpeo@livilize + lvjDuilie@) + lwill Loy 1Dl L)

< 2lluilliLo@llvjliwie ) + lviDu;llLe ).
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Since v; — 0 in LP(Q) as j — oo, there is a subsequence, still denoted by (v;),
for which v; — 0 almost everywhere as j — co. By the dominated convergence

theorem, we have
1
. . p
lim [lv;Du;llre) = (hm/ |vj|p|Dui|pdx)
J—0o0 J—00 /0

1
= (/(hm |vj|p)|Dui|pdx)p =0.
Q J—>®

Observe that [v;|P|Du;|P < |Du;|P for j=1,2,..., so that |Du;|P € L1(Q) may be

used as an integrable majorant. Thus
lu-(1-vjuilwipq—0 as i,j— oo
Since
1-v)u; EWOLP(Q\E) and (1-vj)u; —u in WLP(Q\E)

as i, j — oo, we conclude that u € Wol’p(Q \E).
Let x9 € Q and let ig € N be large enough that

dist(xo,R* \ Q) > %.

Define
Q; = {x e Q:dist(x,R"\Q)> $} N B(xg,i), i=ig,ig+1,....

Observe that Q; €Q;,1 €---€Qand Q= U‘i’zio Q;. Let u; :R" - R,
u;(x) = dist(x, R* \ Q9;).

Then u; is Lipschitz continuous, u; € Wo1 P(Q) and u;(x) = % for every x e ENQ;,
i=1,2,.... Since WyP(Q) = Wy *(Q\ E) we have u; e Wy P(Q\E), i = 1,2,....
Fix i and let v; € C3P(Q\E), j=1,2,..., such that v; — u; in WLP(Q\E) as

J — oo. Since 3i(u; —v;) = 1 in a neigbourhood of E N (2;,

cap,(EnQ;) <|3i(u; - v)IP

WLP(Q\E)
Cvanpr D Iz
=(8i)P|lu; U]”WLP(Q\E) 0-

Thus capp(E NQ;)=0,i=1,2..., and by subadditivity

oo (o)
capp(E)zcapp(U(EﬂQi)) <Y cap,(EnQ;)=0. -
i=1 i=1

Example 4.39. Let Q = B(0,1)\{0}. By Remark 4.12 (2) and Remark 4.13 we
have cap,({0}) = 0 when 1 < p <n. On the other hand, by Lemma 4.14, we have
cap,({0}) > 0 for every x € R” when p >n. Thus

Wy P (B(0,1) = Wy P (B(0,1)\ {0})
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if and only if 1 < p < n. Thus
WEP(B(O,1) = WaP(BO,D\{0)), 1<p<n,

and
W, (B0, 1) # Wy P (BO, D\ (0D, p>n.

THE MORAL: The Sobolev space with zero boundary values Wo1 P(B(0,1)\ {0})

does not see the boundary point {0} when 1< p <n.

Example 4.40. Let Q=B0,1)\{0}and u:Q - R, u(x)=1-|x|. Then u € Wg’p(Q)
for1<psnandu$W01’p(Q)forp>n.

Reason. The zero extension ug:R" — R,

1-|x|, x€B(0,1),
uolx) =
0, xe€R"\B(0,1),

is continuous in R” and thus p-quasicontinuous in R*. Moreover, we have ug €
WLP(R"). By Remark 4.12 (2) and Remark 4.13 we have cap,({0}) = 0 when
1< p <n. It follows that uog = 0 p-quasieverywhere in R” \ Q. Since ug =u in Q,
Corollary 4.35 implies that u € WO1 PQ).

By Remark 4.36 we may conclude that that u € WO1 Q) with p >n
if and only if there exists a continuous function u* € WP (R?) such that u* = u
almost everywhere in Q and u* = 0 everywhere in R” \ Q.

For a contradiction, assume that there exists a continuous function u* €
WLP(R") such that u* = u almost everywhere in Q and u* = 0 everywhere in
R”\ Q. In particular, ©*(0) = 0. This is a contradiction with the assumption that
u* = u almost everywhere in Q.

Second approach: Since ug € WHP(R?), by Corollary 4.37, we have u €
W,(Q) if and only if

lim uo(y)dy=0
r=0JB(x,r)

for every x € R* \ Q. However, a direct computation shows that

lim uo(y)dy =1.
r=0JB(0,r)

It follows that u ¢ Wy P (Q). .

THE MORAL: Afunction that belongs to the Sobolev space with zero boundary

values does not have to be zero at every point of the boundary.



Maximal function approach to
Sobolev spaces

5.1 Maximal operator on Sobolev spaces

We recall the definition of the maximal function.
Definition 5.1. The centered Hardy-Littlewood maximal function Mf : R* —
[0,00] of f ELlloc(IR”) is

Mf(x)=sup
r>0 [B(x,7)| JB(x,r)

If(ldy,

where B(x,r) ={y e R" : |y — x| < r} is the open ball with the radius r > 0 and the

center x € R".

THE MORAL: The maximal function gives the maximal integral average of

the absolute value of the function on balls centered at a point.

Note that the Lebesgue differentiation theorem implies

[f ()| = lim

d
i Bl B(x’r)lf(y)l y

< dy=M
< Srl>l§ |B(x,r)| B(x,r) Fldy fe

for almost every x € R".
We are interested in behaviour of the maximal operator in L?-spaces and begin

with a relatively obvious result.

Lemma 5.2. If f € L°(R"), then Mf € L(R") and | Mf || Loon) < |l f llLoon)-

121
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THE MORAL: Ifthe original function is essentially bounded, then the maximal
function is essentially bounded and thus finite almost everywhere. Intuitively this
is clear, since the integral averages cannot be larger than the essential supremum
of the function. Another way to state this is that M : L*°(R") — L*°(R") is a
bounded operator.

Proof. For every x € R* and r > 0 we have

1
dy <
B, Jpen T O S B ]

I £ | Looqmny| B, )| = | f | Loomr).

By taking supremum over r > 0, we have M f(x) < || f | L) for every x € R* and
thus [MfllLeown) < I f llLoomn). O

The following maximal function theorem was first proved by Hardy and Little-

wood in the one-dimensional case and by Wiener in higher dimensions.

Theorem 5.3 (Hardy-Littlewood-Wiener).
(1) If f € LL([®R"), there exists a constant ¢ = ¢(n) such that

|{x€[R":Mf(x)>/l}|s%IIfIILl(Rn) for every A>0.

2) If fe LP(R"), 1 < p < oo, then Mf € LP(R") and there exists a constant
¢ =c(n,p) such that
IMFf e ey < el fllLe@wn).
THE MORAL: The first assertion states that the Hardy-Littlewood max-

imal operator maps LY (R") to weak L!(R") and the second claim shows that
M :LP(R") — LP(R"™) is a bounded operator for p > 1.

WARNIN G : f € LI(R") does not imply that Mf € L1(R") and thus the Hardy-
Littlewood maximal operator is not bounded in L(R"). In this case we only have
the weak type estimate.

Assume that u is Lipschitz continuous with constant L, that is
lup(y)—u)| = lu(y +h)—u(y) < Ll|h|

for every y,h € R", where we denote uj(y) = u(y + k). Since the maximal function
commutes with translations and the maximal operator is sublinear, we have

[((Mu)p(x) — Mu(x)| = |M(up)(x) — Mu(x)|
<SM(up —u)x)

=sup ——— lup(y)—uy)ld
r>0p |B(x,r)| B(x,r) i ey

< L|h|.
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This means that the maximal function is Lipschitz continuous with the same
constant as the original function if Mu is not identically infinity. Observe, that
this proof applies to Holder continuous functions as well.

Next we show that the Hardy-Littlewood maximal operator is bounded in

Sobolev spaces.

Theorem 5.4. Let 1 < p < oco. If u € WHP(R?), then Mu € WP (R"). Moreover,

there exists ¢ = ¢(n, p) such that

||Mu||W1,p(Rn) < c||u||W1,p(Rn). (55)

THE MORAL: M:WV'P(RY) - WLP(R?), p > 1, is a bounded operator. Thus

the maximal operator is not only bounded on LP(R") but also on WhP(R") for p > 1.

Proof. The proof is based on the characterization of W?(R") by integrated dif-
ference quotients, see Theorem 2.32. By the maximal function theorem with
1< p <o, see Theorem 5.3 (2) , we have Mu € L (R") and

I(Mu)p, — Mul ey = IM@p) — Mulrrge)
< [|M(up —wllLewe)
<cllup —ullLrwr)

<cllDullLr@n)lhl
for every h € R”. Theorem 2.32 gives Mu € WHP(R") with
IDMullLrwny < cllDullLegwn).

Thus by the maximal function theorem

=

1My = (IMUIL gy + IDMUl )
< [Mullpr@ey + 1D Mullzp@ey
<c(lullLr@m) + 1D ullLe@n))

< C”u”Wl,p(Rn). Od
A more careful analysis gives a pointwise estimate for the partial derivatives.

Theorem 5.6. Let 1< p <oco. If u € WHP(R"), then Mu € WP (R") and
ID;Mu|<M@Dju), j=1,2,...,n, (5.7)

almost everywhere in R”.

THE MORAL: Differentiation commutes with a linear operator. The sublinear

maximal operator semicommutes with differentiation.
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Proof. If xp(o,r is the characteristic function of B(0,r) and

_ XB(,r)
RTINSk

then

lu(ydy = lu(x—y)ldy

1
|B(0,7)| /B,

1
ulx—y)|d
|B«L”|A;X3®ﬁ| »ldy

=(lul * xr)(x),

IB(x,r)I B(x,r)

where * denotes the convolution. We observe that |u| * y, € WLP(R") and
Di(lul*x-)=xr*Djlul, j=1,2,...,n,

almost everywhere in R” (exercise).

Let r,,, m=1,2,..., be an enumeration of positive rationals. Since u is locally
integrable, we may restrict ourselves to the positive rational radii in the definition
of the maximal function. Hence

Mu(x) = sup(lul * x,,, )x).
m
We define functions v :R"* - R, £ =1,2,..., by
V(%) = max (lul * xr,,)(x).
1sms<k

Then (vp) is an increasing sequence of functions in W12 (R"), which converges to

Mu pointwise and
Dvpl < max (D ;(|u|*
| J kl 1$m<k| J(| | er)|
= max *Dilu
1smsk|xrm Jl ||

<MD;lu)=MWD;u), j=12,...,n,

almost everywhere in R”. Here we also used Remark 2.4 and the fact that by
Theorem 2.3
IDjlul| =1Djul, j=1,2,...,n,

almost everywhere. Thus

n
IDvgllLo@ey < Y 1D jvkliLo@ny < Y IMD ju)lLomn

n
=1 =1

and the maximal function theorem implies that

n
logllwre@n < IMullpogn + Y IMD ju)llLe@n
j=1

n
<clulrr@n +c Z 1D ullpr@n) <c <oo
J=1
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for every £ =1,2,... Hence (v3) is a bounded sequence in WP (R") which converges
to Mu pointwise. Theorem 2.24 implies Mu € WP (R"), v, — Mu weakly in LP(R")
and D jv;, — D jMu weakly in LP(R") as k& — oo.

Next we prove the pointwise estimate for the gradient. By Mazur’s lemma, see
Theorem 2.17, there is a sequence of convex combinations such that

mp,
wk:Zak)levlﬁDjMu, Jj=1,...,n,
1=k

in LP(R™) as k — co. There is a subsequence of (wj) which converges almost
everywhere to D jMu. Thus we have

mp, mp,
lwel <Y ar;|Djvr| <Y arMDju) =MD ju)
=k I=k

for every £ =1,2,... and finally
|D;Mu| =k}im lwpl<M@Dju), j=1,...,n,
—00

almost everywhere in R”. This completes the proof. d
Remarks 5.8:
(1) Estimate (5.5) also follows from (5.7). To see this, we note that

2

n 2 n
IDMulz(ZIDjMuI2) s(ZIM(Dju)Iz)
j=1 J=1

1
n 2
< (ZIM(IDuI)IZ) =vnM(|Dul)

Jj=1
almost everywhere in R”. Thus we may use the maximal function theorem,
see Theorem 5.3 (2), to obtain

IMullyiege) < | Mullpe@e) + 1D MullLegn)
< IMullpr@e) + VRIM(DuDllLe@e)
< c(lulzr@m) + VrlDullLe @)
< cllullwipegeys
where ¢ = c(n, p).

(2) If u € WL°(R™), then a slight modification of our proof shows that Mu
belongs to W1 °(R"). Moreover,

IMullyroomny = IMullLogn) + 1D Mu || Lown)
< lullzeo@ny + VRIM(Dul) Loown)
< lullpeon) + VRl Dull Loy
< cllullyroomn),

where ¢ = ¢(n). Recall, that after a redefinition on a set of measure zero
u € WH(R™) is a bounded and Lipschitz continuous function, see Theorem
3.31.
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5.2 Representation formulas and Riesz po-
tfentials

We begin with considering the one-dimensional case. If u € C(l)([R{), there exists an
interval [a,b] c R such that u(x) =0 for every x € R\ [a,b]. By the fundamental

theorem of calculus,

u(x)=u(a)+/ u'(y)dyz/ u'(y)dy, (5.9)

o0

since u(a) = 0. On the other hand,

b oo
O=u(b)=u(x)+/ u’(y)dyzu(x)+/ u'(y)dy,

so that o
u(x)=—/ u'(y)dy. (5.10)

Equalities (5.9) and (5.10) imply

2u(x)=/ u'(y)dy—/ u'(y)dy

(o¢]

:/ u(y)(x—y)dy+/ u(y)(x—y)dy
N x [x =yl
=/ u'(y)x—y) dy,

R lx—yl

from which it follows that

1 ! -
u(x)=—/wdy for every x€eR.
2Jr  lx—yl

Next we extend the fundamental theorem of calculus to R”.

Lemma 5.11 (Representation formula). If u € C(l)([R"), then

1 Du(y)-(x—y)

dy forevery xeR”,
Wn-1 Jre  lx—yI"

u(x)=

where w;,_1 = n{, is the (n — 1)-dimensional measure of dB(0,1).

THE MORAL: Thisis arepresentation formula for a compactly supported
continuously differentiable function in terms of its gradient. A function can be

integrated back from its derivative using this formula.
Proof. If x e R™ and e € dB(0, 1), by the fundamental theorem of calculus

u(x)=—/ g(u(x+te))alt=—/ Du(x+te)-edt.
o Ot 0
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By the Fubini theorem

wWp—1u(x) =u(x) 1dS(e)
0B(0,1)

:-/ / Du(x+te)-edtdS(e)
8B(0,1)Jo

—/ / Du(x+te)-edS(e)dt (Fubini)
0 8B(0,1)

00 y 1
- Du(x+y)-= ——dS(y)dt
/o /aB(O,t) t ¢l

(y =te,dS(e)=t""dS(y))

* y
—/ / Du(x+y)- —dS(y)dt
o JaB©, |yl

Du(x+y)-y
o 2TV g,
Rr ly|™
D (s —
__/ Mdz (z=x+y,dy=dz)
n |z — x|

:/ Du(y)-(x—y)
o lx—y|®

dy. a

Remark 5.12. By the Cauchy-Schwarz inequality and Lemma 5.11, we have

1 D . -
o)l = 4V gy
Wn-1 Jgr X —Yl
< 1 IDu(y)IIx—yldy

Wp-1 Jgn  lx—y|"
1 Du

/ | (yld
wn-1 Jgr lx—yI"

I1(IDul)(x),

n-1

where I,f, 0 < a <n, is the Riesz potential

Iaf(x)=/ Ldy
R

n X =y

THE MORAL: This gives a useful pointwise bound for a compactly supported
smooth function in terms of the Riesz potential of the gradient.

Remark 5.13. A similar estimate holds almost everywhere if u € WHP(R?) or
ueE WO1 P(Q) (exercise).

We begin with a technical lemma for the Riesz potential for @ = 1.

Lemma 5.14. If E c R” is a measurable set with |E| < oo, then

1 1
———dy<c(n)E|r.
/Elx—yl"‘1
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Proof. Let B = B(x,r) be a ball with |B| = |E|. Then |E| = |EnB]|+|E\B| and
|B| =|BnNE|+|B\ E| which implies that |[E \ B| = |B\ E|. Since |x — y| = r for every
yeE\B and |x—y| <r for every y € B\ E, we have

1 1
/ ——d |E\B|— IB\E|—— < / —dy.
E\B lx— Yl B\E lx—yl

It follows that

1 1 1

/ n-1 dy:/ n-1 dy+/ n-1 dy
E lx—yl E\B lx—y| EnB lx—yl
1 1

s/ — dy+/ — dy
B\E lx— I EnB 1x—YI

1
= —dy
/le—yl"*1

— c(n)r = c(n)|B|7 = c(n)|E|7. 0

Lemma 5.15. Assume that [Q| <oco and 1 < p <oo. Then

1
1I1(f 1 x)llLe) < c(n, PIQI7 |l Le ().

THE MORAL: If|Q|<oo, then I1:LP(Q)— LP(Q) is a bounded operator for

1<p<oo.

Proof. If p > 1, Holder’s inequality and Lemma 5.14 give

[f ()l _ [f ()l 1
n—-1 dy= 1 1 1 dy
alx—=yl Qx— ylp(n )| —yli(n_)
p 1 L
N
ale—yl* ale—yl*

1

L lf ()IP P
<clQ|™’ (/—d )
Q|x_y|n—1 Y

1
o ([ QP
Sl (/Q |x—y|n*1dy) '

For p =1, the inequality above is clear. Thus by Fubini’s theorem and Lemma

5.14, we have

P
/ L ly0)@P dx < cl0) 5 / / LG
alx—yl*"

sC|Q|T|Q|i/ IFDIP dy. U
Q

Next we show that the Riesz potential can be bounded by the Hardy-Littlewood
maximal function. We shall do this for the general a although a =1 will be most

important for us.
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Lemma 5.16. Let 0 < a < n. Then there exists a constant ¢ = ¢(n,a) such that

/ MdyS(:r“Mf(x)
B

(x,7) [x —y|*~@

for every x € R” and r > 0.

Proof Let x € R* and denote A; = B(x,r27%),i=0,1,2,.... Then

/ If ()] dy = f/ If ()] dy
B(x,r) lXx—yI"7¢ 20Jana;,, lx—ylne

<3 (5] [ rondy

i=0

x© (1 a-n r a r -n
;0(2) (2) 9(2) /Aify Y
o (107 ()@ 1
N Fold
20(2) (2) |A,-|/Aify Y
<emfre § ()
=0

=cr®Mf(x). O

Theorem 5.17 (Sobolev inequality for Riesz potentials). Assume that a >
0, p >1 and ap < n. Then there exists a constant ¢ = c(n, p,a) such tha

pn
n—ap

”Iaf”Lp*(Rn) < C”f"LP(IR”)a P* =

for every f € LP(R") we have

THE MORAL: Thisis the Sobolev inequality for the Riesz potentials. Observe
that p* is the Sobolev conjugate of p if @ = 1.

Proof. If f =0 almost everywhere, the claim is clear. Thus we may assume that
f # 0 on a set of positive measure and thus Mf > 0 everywhere. By Holder’s
inequality

1 1
/ L,)L'-adys(/ If(y)lpdy)p (/ e =y @ dy |
RA\B(x,r) 1€ — VI R \B(x,r) RP\B(x,r)

where

o0
/ lx—y|@P dy = / / lx - y1“"P" dS(y)dp
R2\B(x,r) r 0B(x,p)

(o0}
=/ p(a—n)p’/ 1dS(y)dp
r 8B(x,p)
—_——

Zﬂ)nflp'k1
* (a—n)p’ 1
— a—n +n—
=wp-1 / p P dp
r
Wn-1 —(n—-a)p’'
n r (n oc)p'

- (n—-a)p’'—n
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The exponent can be written in the form
n—(n—a)p':n—(n—a)L = ap—n’
r-1 p-1
and thus Ol
/ %dy <cr® 2| flipp@n).
RM\B(x,r) 1% = ¥l
Lemma 5.16 implies
lf )l
I < ————d
| af(x)| /[R{” lx — y|n—@ Y
_ / O, / [
BGx,r) [X— I RA\B(x,r) 1€ — VI
<c[r"MF@+r" F I f Iom).
By choosing
_p
e
(Fa 2D
we obtain -
Laf@)] < M@ TN g (5.18)
By raising both sides to the power p* = nfﬁp , we have
* a—pp*
|I(Xf(x)|p $ CMf(x)p ”f”L’;’(R"’)
The maximal function theorem, see Theorem 5.3 (2) , implies
* al *
o f ()P dyscllf”fp&n)/ (Mf(x)Pdx
R" R®
_ Fp* P
=c "f ”Lp([Rn) ”Mf"Lp(Rn)
oL p
< C||f||Lp(Rn)||f||Lp(Rn)
and thus w . b
M afllpp® @ny < C||f||L';(R5; =cllfllzr@n). o

Remark 5.19. From the proof of the previous theorem we also obtain a weak type

estimate when p = 1. Indeed, by (5.18) with p =1, there exists ¢ = ¢(n,a) such

that .
Laf @< cMFE" M IFI7 g

and thus the maximal function theorem with p = 1, see Theorem 5.3 (1), implies

e €R" o f () > 1] < | € R 1 M PG5 171, gy > 1}

< Hx ER": Mf(x)> ctia ||f||;f(['$}

< et @ I 1 It ny

__n_ s
=t w NI,
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for every t > 0. This also implies that

e R" 1 | f 0] > 8}l < ct™ 75 IF I,

for every ¢ > 0.

This gives a second proof for the Sobolev-Gagliardo-Nirenberg inequality, see
Theorem 3.3.

Corollary 5.20 (Sobolev-Gagliardo-Nirenberg inequality). If 1 < p <n, there

exists a constant ¢ = c(n, p) such that

"u”LP*(IRn)sc”Du”LP(R"), p* = n_p’

for every u € C(l)([R").

THE MORAL: The Sobolev-Gagliardo-Nirenberg inequality is a consequence
of pointwise estimates for the function in terms of the Riesz potential of the

gradient and the Sobolev inequality for the Riesz potentials.

Proof. By Remark 5.12

I:(|IDul)(x) for every xeR",

lu(x)| <
n—1

Thus Theorem 5.17 with a =1 gives

”u“Lp*(Rn) < c”Il(lDul)”Lp*(Rn) < C"Du”LP(Rn).
Aj={xeR":2 <|u)|<2/*Y), jez,
and let ¢ : R — R, ¢(¢) = max{0, min{¢, 1}}, be an auxiliary function. For j € Z define
u; R —[0,1],
0, lu()l<2/,
uj(®) = @V u@)| -1 ={ 21 u@x)| -1, 2! <|ux)] <2/,
1, lux)>2/.

A version of Lemma 2.1 for Lipschitz functions (exercise) implies that u; €
WLL(R?), j € Z. Observe that Du; = 0 almost everywhere in R*\A;_;, j€ Z.
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Then

|Aj| < {x € R™ : [u(x)] > 27}
=lxeR"u@=1}  (u@®|>2 = 2" u)|-1>1)
<|[{xeR":I1(Du;)(x) > w,-1}|  (Remark 5.12)

<c ( [Duj(x)| dx) " (Remark 5.19)
Rﬂ

=
zc(/ IDuj(x)Idx)
Ajfl

sc ( / @' Y7 lux)| - D21 | Du(x)| dx)
Ajfl

n

n-1
:czfn"_l( / |Du(x)|dx) )
Aj,1

By summing over j € Z, we obtain

Iu(x)lﬁdeZ/ Iu(x)lﬁdx
R" jezJA;

< Y 22Ut
JeZ

e
scz (/ IDu(x)Idx)
jez\JAj-1

e
<c ( [Du(x)| dx)
jGZ A]fl

71
= c( IDu(x)Idx) .
Rn
In the last equality we used the fact that the sets A, j € Z, are pairwise disjoint.C]

Remark 5.21. The Sobolev-Gagliardo-Nirenberg inequality for u € WP (R") fol-
lows from Corollary 5.20 by using the fact that C(l)(IR”) is dense in WLP(R?),
l1<p<n.

5.3 Sobolev-Poincaré inequalities

Next we consider Sobolev-Poincaré inequalities in balls, compare with Theorem
3.12 and Theorem 3.13 for the corresponding estimates over cubes.

First we study the one-dimensional case. Assume that u € C(R) and let
y,z € B(x,r) = (x—r,x +r). By the fundamental theorem of calculus

y
u(z) —u(y) = / u'(t)dt.
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Thus ) .
Iu(2)—u(y)|</ |u,(t)|dt$/ Iu'(t)ldtz/ lu'(t) d¢
z x B(x,r)

-r

and

[u(2) = up@,nl =

w(z) - ][ u(y)dy'
B(x,r)

f w)dy - ][ u(y)dy‘
B(x,r) B(x,r)

>

S][ lu(z) —u(y)ldy S/ ' (y)dy.
B(x,r) B(x,r)

This is a pointwise estimate of the oscillation of the function. Next we generalize
this to R™.

Lemma 5.22. Let u € CLR") and B(x,r) c R". There exists ¢ = ¢(n) such that

|u(2)—UB(x,r)|$C/ |Du(y)|

B lz—yIn7t

for every z € B(x,r).

THE MORAL: Thisis a pointwise estimate for the oscillation of the function
in terms of the Riesz potential of the gradient.

Proof. For any y,z € B(x,r), we have
1 9 1
u(y)—u(z)= / a(u(ty +(1-1t)z))dt = / Du(ty+1—-1t)z)-(y—2z)dt.
0 0
By the Cauchy-Schwarz inequality

1
lu(y)—u2)| <y —zl/ |Du(ty +(1-1t)z)|d¢t.
0
Let p > 0. In the next display, we make a change of variables

w=ty+(1l-t)z=y= %(w ~(1-1z), dS(y)=t""dSw).
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n—-1
Then we have |w—z| =t|y—z| and t* ! = (@) , where p = |y—z|. We arrive at

/ lu(y) —u(2)1dS(y)
B(x,r)NdB(z,p)
1
sp/ / IDu(ty +(1-1)2)|dS(y)dt
0 JB(x,r)ndB(z,p)

1
1
:p/ _1/ IDu(w)| dS(w)dt
0 t"7" JB&,InoB(,tp)

D
// DR 50 ar
B(x,r)ndB(z,tp) 12 —w|™

o 1/ / DUl i swyds  (s=tp, dt=1ds)
B

(x,/)NdB(z,s) |2 W™~ Jz —wlr-1

Du(w
=p" / l—()|1 dw.  (polar coordinates)
B(x,)nB(z,p) 12 —W|"

Since B(x,r) c B(z,2r), an integration in polar coordinates gives

|u(z)—uB(x,r)| S][ lu(z)—u()dy
B(x,r)

2r
- —u(2)|dS()d
|B(x,7)| / /B(x DB lu(y) —u(2)|dS(y)dp

2r
D
/ " 1/ | u(y)ll dy p
IB(x ) B(x,rnBz,p) 12— yI"

3 /2rp”‘1dp/ [Du(y)l dy
IB(x,r)l 0 B, lz—yIn7t

[Du(y)l
—en) | 2L
B, 12—y

Remarks 5.23:
(1) Assume that u € C}(R"). By Lemma 5.22 and Lemma 5.16, we have

[Du(y)l
[u(2) — uB(x,rml < C/ 1
B, 12—

=cI1(IDulxB(,r))(2)

< C/ D u(y)|XB(3i,;)(y) 4
B(z2r) lz—=yI"

< cerM(IDulype»)(2),

for every z € B(x,r).

Next we show that the corresponding inequalities hold true almost every-
whereifu € Wé’cp(R”), 1< p <oo. Since C®(B(x,r)) is dense in W2 (B(x, 1)),
there exists a sequence u; € C*°(B(x,r)), i = 1,2,..., such that u; — u in

WLP(B(x,r)) as i — co. By passing to a subsequence, if necessary, we
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obtain an exceptional set N; c R" with [N1| =0 such that
lim u;(2) = u(z) <oo
1—00

for every z € B(x,r)\ N1. By linearity of the Riesz potential and by Lemma
5.15, we have

71D u;lxBe,r)) - 11(IDuIXB(x,r))”LP(B(x,r))
= [ 12D wil = IDubXB@» | Lo @)
<c|Bx,r)n [1Dw;l = 1Dul]| o ge
which implies that
Li(Duilype,m) — I1(1Dulype,) in LP(B(x,r) as i— oo.

By passing to a subsequence, if necessary, we obtain an exceptional set
Ny c B(x,r) with |[Ng| = 0 such that

lim I3 (1Duil xBx,n)(2) = 11(IDulype,r)(2) < 00
for every z € B(x,r)\ Ny. Thus
lu(z) — upnl = iliI})lolui(Z) —(ui)B,nl
<c ilirgol1(|Dui [XB(x,))(2)
=cI1(IDulyB(,n)(2)
< crM(Dulype,n)(2),

for every z € B(x,r)\ (N1 UNy).
(2) By Lemma 5.22 and (5.18), we have
[Du(y)l
[u(2) — uB(x,rml < c/ %
B(x,r) |z —yl

=cl1(1Dul yB,r)(2)
_r 2
<cM(IDul XB(Jc,r))(Z)1 " “ \Dul ¥Bex,r) HLnP(IR")
for every z € B(x,r). The corresponding inequalities hold true almost
everywhere if u € Wli’f([R”), 1< p<oo.

This gives a proof for the Sobolev-Poincaré inequality on balls, see Theorem
3.13 for the correspoding statement for cubes. Maximal function arguments can

be used for cubes as well.

Theorem 5.24 (Sobolev-Poincaré inequality on balls). Assume that u € WhP(R")
and let 1 < p < n. There exists ¢ = ¢(n, p) such that

1 1
* * p
(][ lu = upgenl? dy)p <cr (][ |DulP dy)
B(x,r) B(x,r)

for every B(x,r) c R".
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THE MORAL: The Sobolev-Poincaré inequality is a consequence of pointwise
estimates for the oscillation of the function in terms of the Riesz potential of the

gradient and the Sobolev inequality for the Riesz potentials.

Proof. By Remark 5.23, we have
lu(y) = upe,rn| < cli(IDul xB,»))(y)

for almost every y € B(x,r). Thus Theorem 5.17 implies

N 1
. ¥ X r*
(/ |u—u3(x,r)|p dy) SC(/ Il(|Du|XB(x,r))p dy)
B(x,r) R®

%
<c (/ (|Du|XB(x,r))p dy)
[Rn

7
/ [Dul?d y) . O
B(x,r)

A similar argument can be used to prove a counterpart of Theorem 3.12 as

=cC

well.

Theorem 5.25 (Poincaré inequality on balls). Assume that u € WHP(R")and
let 1 < p < oco. There exists ¢ = c¢(n, p) such that

1
(][ Iu—uB<x,r)l”dy)p Scr(][ IDulpdy)p
B(x,r) B(x,r)

for every B(x,r) c R".
Proof By Remark 5.23, we have
lu(y) - uB(x,r)| < ch(|Du|XB(x,r))(y)

for almost every y € B(x,r). The maximal function theorem with p > 1, see

Theorem 5.3 (2) , implies
/ lu— uB(x,r)|p dy< cr? / M(|Du|XB(x,r))p dy
B(x,r) R™
< crp/ (IDulyBer)’ dy
[Rn
=crp/ |Du|? dy. O
B(x,r)

The maximal function approach to Sobolev-Poincaré inequalities is more in-
volved in the case p =1, since then we only have a weak type estimate. However,
it is possible to consider that case as well, but this requires a different proof. We

begin with two rather technical lemmas.
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Lemma 5.26. Assume that E c R” is a measurable set and that f : E — [0,00] is

a measurable function for which
[{x€E: f(x)=0} = LIE|
Then for every a € R and 1 > 0, we have
{xeE:fx)>M|<|{xeE:|f(x)-al>4}|.

Proof. Assume first that |a| < ’% If x € E with f(x)> A, then

A
If(x)—alzf(x)—|a|>§.
Thus {x€E: f(x)> AV} c {x € E : |f(x)—al > %} and
[{xeE:fx)> M| <|{xeE:|f(x)-al>4}|.

Assume then that |a| > % If x € E with f(x) =0, then

A
If(x)—a|=lal>§.

Thus
xeE:f(x)=0c{xeE: f(x)>4}.

If |E| = 0o, then by assumption
[{x€E:f(x)=0}|=LE|=0c0
and thus |[{x€E: f(x) = %H =o00. On the other hand, if |E| < oo, then

|{x€E:f(x)>/1}| s|E|—|{x€E:f(x)=0}|
<|{x€E:f(x)=0}
< erE:If(x)—a|> %}l

This completes the proof. d

Lemma 5.27. Assume that u € C%(R"), that is, u is a bounded Lipschitz contin-
uous function in R”, and let B(x,r) be a ball in R”. Then there exists 1g € R for
which

[{y € B(x,r):u(y)= Ao} = 3|B(x,r)| and |{y€B(x,r):u(y)<Ao}| = 3|Bx, 7).
Proof. Denote E) ={y € B(x,r):u(y) = A}, L€R, and set
Ao=sup{leR:|E,| = }|B(x,r)l}.

Note that [Ag] < lullpo@n) < co. Thus there exists an increasing sequence of real
numbers (1;) such that A; — 1¢ and

|Ex| = 21B(x,r)| forevery i=1.2,....
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Since E ), = n?Z1E/1i’ E; 2E),>... and |E,,| <|B(x,r)| < oo, we conclude that
|E | = lim |Ey,| = §|B(x, 7).
1—00
This shows that
[{y € B(x,r): u(y) = Ao}| = 1 1B(x, 7).

A similar argument shows the other claim (exercise). O

The next result is Theorem 5.24 with p = 1.

Theorem 5.28. Assume that u € Wli’cl(R”). There exists ¢ = ¢(n) such that
n-1

(][ |t~ up(e |71 dy) < cr][ [Duldy
B(x,r) B(x,r)

for every B(x,r) c R".
Proof. By Lemma 5.27 there is a number A € R for which
[{y € B(x,r):u(y)= Ao} = 3|B(x,r)| and |{y € B(x,r):u(y)<Ao}| = 3|Bx, 7).
Denote
vy =max{u — 19,0} and v_ =-min{u— Ay,0}.

Both of these functions belong to Wli’cl(an). For the rest of the proof v = 0 denotes
either v, or v_. All statements are valid in both cases.
Let
Aj={yeBx,r):2 <v(y)<2™}, jez,

and let ¢ : R — R, ¢(¢) = max{0,min{t, 1}}, be an auxiliary function. We define
vj:B(x,r)—10,1],
vi( =@ (-1, jez.

Lemma 2.1 implies v; € WL1(B(x,r)), j € Z. By Remark 5.23 (2) with p = 1, we
have

n 1
v () = )BT <MDl xB»))|| DVl XBe,r “ZI(IIR”)'
Lemma 5.26 with A = £ and a = (v;)p( ) gives
|A ;| < {y € B(x,r) :v(y)>2}|
<|{yeBx,r):vj(y)> %}’
<{y € Bx,r): [v;(y) - W)B,m| > 1}

<

1
{y €R" : M(IDv;lxB»))(¥) = c|| Ival)(B(x,r)HLII?Rn)H .

The last term can be estimated using the weak type estimate for the maximal
function, see Theorem 5.3 (1), and the fact that

IDv;| =2'7|Dvlya, ,
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almost everywhere in B(x,r). Thus we arrive at

_1
{y € R :MUDv,1 18 )3) > ¢ 1D0; 13 | i
1

sCIIIvaIQCB(x,r)IIIfT’(1 n)/ [Dv;i(WIxBe,H(Y)dy
[RVL

_n_
= c[IDv;jIxBen | g,
< 02_% || IDU|XAJ~_1OB(JC,P‘) ||Z?(1Rn)

Combining the above estimates for |A ;|, we obtain

_n_ _n_ Gt+hn
/ U(y)n—l dy:Z U(y)n—l dy: ZZ n—-1 |AJ|
B(x,r) jezZJA; jez

G+n jn _n_
<c) 21 270 [IDvlxa, nBen |,
Jjez
_n_
n-1
<C Z |DU |XAj,lﬂB(x,r)
jez

LI®")

<c|Dulype,r “ER")'

Since |u — Ayl = vy +v_, we obtain

L
][ lu—Apl»-Tdy
B(x,r)

n-1

n

_n_
(J[ lu— uB(x,r)l n-1 dy) <2
B(x,r)

sz(][ m(y)ﬁdy) ' +2(][ ot dy| "
B(x,r) B(x,r)

< c | IDulxBe | L1y

= C/ [Du(y)ldy.
B(x,r)

n-1

THE MORAL: The proof shows that in this case a weak type estimate implies
a strong type estimate. Observe carefully, that this does not hold in general. The

reason why this works here is that we consider gradients, which have the property

that they vanish on the set where the function itself is constant.

Next we give a maximal function proof for Morrey’s inequality, see Theorem

3.23 and Remark 3.25 (3).

Theorem 5.29 (Morrey’s inequality). Assume that z € C1(R") and let n < p <

oo. There exists ¢ = ¢(n, p) such that

1
Iu(y)—u(z)|<cr(][ IDuIPdw)p
)

(oc,r

for every B(x,r) cR™ and y,z € B(x,r).
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Proof. By Lemma 5.22

lu(y) —u(@)| < |u(y) —upu,rl + lupe,r) — w2

[Du(w)| [Du(w)|
B, ly—wl™ B(x,r) |2 —wl

for every y,z € B(x,r). HA{lder’s inequality gives

1 1

Du(w P / ?

/ l—(nidw<(/ IDulpdw)p(/ Iy—wl(lfn)p dw|’ ,
B, |y —wl B(x,r) Blx,r)

where

/ Iy—wl(l_”)p’dws/ Iy—wl(l_”)p/dw
B(x,r) B(y,2r)

2r
_ / / P10 dS(w)dp
o JoB(y,p)

2r
! !
— wn—l/ p(l—n)p +n-1 dp — crn—(n—l)p .
0

Since

N1 _1_n
(n—(n—l)p);—l >

1
Du(w _n ?
/ I—(idw e (/ IDulpdw) .
B, |y —w|® B(x,r)

The same argument applies to the other integral as well, so that

we have

1
Iu(y)—u(Z)Iscrl_% (/ |Du|pdw)p. O
B(x,r)

5.4 Sobolev inequalities on domains

In this section we study open sets Q < R” for which the Sobolev-Poincaré inequality

1 1
(/ Iu—uglp*dy)p so(p,n,Q)(/ IDulpdy)p, l<sp<n, p*= np ,
Q Q n—p

holds true for every u € WI?(Q). We already know that this inequality holds if Q
is a ball, but are there other sets for which it holds true as well? The following
example shows that, in general, a function u € WP(Q) is not integrable to any

power q > p.
Example 5.30. Let
Q= {(x1,x2) eR?: 0 <x1 < 1,]xa| < exp(—x72)}

and u: Q — R, u(x1,x2) = 23 exp(x;?). Then u € WHH(Q), but u ¢ LY(Q) for every
q > 1 (exercise).
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We begin by introducing an appropriate class of domains.

Definition 5.31. A bounded open set 2 c R” is a John domain, if thereiscy =1
and a point x¢ € Q so that every point x € Q can be joined to xo by a path y:[0,1] —
Q such that y(0) = x, y(1) = x¢ and

dist(y(),0Q) = ¢ x —y(2)|

for every t €[0,1].

THE MORAL: InadJohn domain every point can be connected to the distin-

guished point with a curve that is relatively far from the boundary.

Remarks 5.32:
(1) A bounded and connected open set Q < R” satisfies the interior cone condi-

tion, if there exists a bounded cone
C={xeR":x2+ - +x>_  <ax?,0<x, <b}

such that every point of Q is a vertex of a cone congruent to C and entirely
contained in Q. Every domain with interior cone condition is a John
domain (exercise). Roughly speaking the main difference between the
interior cone condition and a John domain is that rigid cones are replaced
by twisted cones.

(2) The collection of John domains is relatively large. For example, a domain
whose boundary is von Koch snowflake is a John domain.

Theorem 5.33. If Q cR” is a John domain and 1< p <n, then

1 1
(/ Iu—uglp*dx)p sc(p,n,CJ)(/ IDulpdx)p, l<p<n,
Q Q
for every u € C®(Q)nWLHP(Q).

THE MORAL: The Sobolev-Poincaré inequality holds for many other sets than

balls as well.

WARNING: Arooms and passages example shows that the Sobolev-Poincaré
inequality does not hold for all sets.

Proof. Let x¢ € Q be the distinguished point in the John domain. Denote By =
B(xg,rg), ro = %dist(xo,aQ). We show that there is a constant M = M(c,n) such
that for every x € Q) there is a chain of balls B; = B(x;,r;) < Q, i =1,2,..., with the

properties

(1) |Bl UBi+1| leBl r-]Bi+1|a l = 1)27“-7



CHAPTER 5. MAXIMAL FUNCTION APPROACH TO SOBOLEV SPACES 142

(2) dist(x,B;)<Mr;,r; —0,x; —x as i — oo and

(3) no point of Q belongs to more than M balls B;

To construct the chain, first assume that x is far from xg, say x € Q \ B(xg, 2r).
Let y be a John path that connects x to x¢. All balls on the chain are centered on
Y. We construct the balls recursively staring with By. Assume that By, ...,B; have
been constructed. Starting from the center x; of B; we move along y towards x
until we leave B; for the last time. Let x;;1 be the point on y where this happens
and define

1
Biy1=B(x;41,7i+1), Tit1=—lx—x;41l.
4cg

By construction B; < Q. Property (1) and dist(x,B;) < Mr; in (2) follow from
the fact that the consecutive balls have comparable radii and that the radii are
comparable to the distances of the centers of the balls to x.

To prove (3) assume that y € B;; n---NnB;,. Observe that the radii of Bl-j,
Jj=1,...,k, are comparable to |x — y|. By construction, if i j <i,,, the center of B; ,
does not belong to B;;. This implies that the distances between the centers of B;;
are comparable to [x — y|. The number of points in R” with pairwise comparable
distances is bounded, that is, if z1,...,2,, € R” satisfy

r
- <dist(z;,z;) <cr for i#],
c

then m < N = N(c,n). Thus % is bounded by a constant depending only on n and
cg. This implies (3). Property (3) implies , r; — 0, x; — x as i — co.
The case x € B(xg,2r() is left as an exercise.

Since
up; :]g u(y)dy — u(x)

for every x € Q as i — oo, we obtain

o0
|u(x)_uBo| < Z |uBi _uBi+1|

o0
Z (|uB —UB;nB;.1 | +1UB;nB;; — uBi+1|)

i=0

& |B;| ][ IBi+1l
lu—ug,|ldy+—-"—+-— lu—-up,,,|dy

L;g(|B NB; 1l B; |B; NB;+1l Bii1 .

<CZ B, lu—up,|dy (property (1))
i=07Bi

<c Z ][ [Duldy (Poincaré inequality, see Theorem 5.25)

/ IDuI
=0

Property (2) implies |x — y| < cr; for every y € B; and

1 c
— <
1

12

ﬁ for every yeB;.
x=y
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Thus = [ Duy) Du(y)|
o -uni<e 3 [ P <c/ Dul_
B; lx=yI" alx=yI""
The last inequality follows from property (3). We observe that
lu(x) —uql < lu(x)—up,l +lup, —ual,
where by Lemma 5.14 we have
1
IuBO—ugls@ lu(x) —up,ldx
/ / IDu(y)I
IQI alx—yl"" T4
1
=c— [ [Du( )I(/ d)d
il / P alw—yr T
<l / IDu(y)ldy.
Q
By the John condition we have
lel% = dist(xg,0Q) = c}llx—xol
and by taking supremum over x € Q) we obtain
diamQ < C(n,CJ)|Q|%
and thus
IQI_%1 <s—— forevery yeQ.
v =yt
This implies
lup, —ual< DUl
e P
and thus D)
u
lu(x) —uql < C/ %dy =cI1(1Dulyo)(x)
alx—yl
for almost every x € Q. Theorem 5.17 implies
L L
( / Ju(x) — uglP” dx)” < c( 1L (Du@) g dx)p
Q R®
1
<c ( (IDu()] g )P dx) !
Rn
1
p
=c (/ |Du(x)? dx) O
Q

Example 5.34. Since an annulus B(x,2r)\ B(x,r) cR"”, r > 0, is a John domain

with ¢y =c(n) if n = 2, we have

1
* p*
( / |t — uB(x 20 B, P dy) <c(p,n) ( / IDul? dy
B(x,2r)\B(x,r) B(x,2r)\B(x,r)

=
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for every u € C°(R") n W1?(Q). This version of the Sobolev-Poincaré inequality is
sometimes useful in PDEs. Note that the assumption n = 2 guarantees that an

annulus is connected.

Similar argument as in the proof of the Sobolev-Poincaré inequality gives the

following pointwise estimate.

Theorem 5.35. Assume that u € C}(R"). There exists a constant ¢ = ¢(n) such
that
[u(x) —u(y)l < clx— y|(M|Dul(x)+ M|Du|(y))

for every x, y e R™.

Proof. Let x,y € R". Then x, y € B(x,2|x — y|) and B(x,2|x — y|) € B(y,4|x — y|). By
Remark 5.23 we obtain

[u(x) — u(y)l < lu(x) — uB 21x—yp| + 1UBE 21—y — U(Y)l

<clx—y|(M[Du|(x) + M|Du|(y)). O
Remarks 5.36:
(1) If |Du| € LP(R"), 1 < p < oo, then by Theorem 5.3 (2) we have M|Du| €
LP(R™).
(2) If |[Du| € Ll([R”), then by Theorem 5.3 (1) we have M|Du| < co almost
everywhere.
(3) If IDu| € L*°(R"), then M|Du| < |M|Dulllpowr) < [Dullpown) everywhere.
Thus

lu(x) — u(y)l < clDullLeo@n)lx — ¥l

for every x, y € R”. In other words, u is Lipschitz continuous.

Theorem 5.37. Assume that u € WL2(R?), 1 < p < co. There exists a constant
¢ =c(n) and a set N c R" with |[N| =0 such that

lu(x) —u(y)l < clx— y|(M|Dul(x)+ M|Dul(y))
for every x, ye R*\ N.

Proof. C°(R") is dense in WLP(R") by Lemma 1.28. Thus there exists a sequence
u; e CPR"),1=1,2,..., such that u; — u in WLP(R") as i — co. By passing to a
subsequence, if necessary, we obtain an exceptional set N1 c R with |N1| = 0 such
that

lim u;(x) = u(x) < oo
1—00
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for every x € R\ N1. By the sublinearity of the maximal operator and the maximal

function theorem

[M1Du;1 = MIDul o gy < [MODwi1 = DD
< c||IDu;l = 1Dull| 15 gny

<cl|lDu; —Dullrrmgn)

which implies that M|Du;| — M|Du| in LP(R") as i — co. By passing to a sub-
sequence, if necessary, we obtain an exceptional set No c R” with |Ng| =0 such
that

lim M|Du;|(x) = M|Du|(x) < co

1—00
for every x € R” \ Ng. By Theorem 5.35
lu(x) = u(y)| = lim |u;(x) —u;(y)l
1—00
<clx—yl ilirgo(MlDuil(x) +M|Du;l(y))
<cle—yl(M|Dul(x)+ M|Dul(y))

for every x € R* \ (N1 UNy). a

Remark 5.38. Compare the proof above to Remark 5.23, which shows that the
result holds for u €e WHP(R?), 1< p < co.

The following definition motivated by Theorem 5.35.

Definition 5.39. Assume that 1 < p < oo and let u € LP(R"). For a measurable
function g : R" — [0,00] we denote g € D(u) if there exists a set N cR” such that
IN|=0 and

lu(x) —u(y)l < lx — yl(gx) + g(y)) (5.40)
for every x,y € R*" \ N. We say that u € L?(R") belongs to the Hajtasz-Sobolev
space MLP(R), if there exists g € LP(R") with g € 2(u). This space is endowed
with the norm

u 1, ny = ||[U ny+ inf ny.
lwllprio ey = 1l Le@e) ggg(u)llgllm(u&)

THE MORAL: The space M"P(R") is defined through the pointwise inequality
(5.40).

Theorem 5.41. Assume that 1 < p <oco. Then MP(R") = WLP(R") and the asso-
ciate norms are equivalent, that is, there exists ¢ such that

1
- lullwie ey < el prip@ey < cllellwiegn

for every measurable function u that belongs to M2 (R?) = WLP(R?).
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THE MORAL: Thisis a pointwise characterization of Sobolev spaces. This can

be used as a definition of the first order Sobolev spaces on metric measure spaces.

Proof. [2] Assume that u € W?(R™). By Theorem 5.37 there exists ¢ = ¢(n) and a
set N cR" with |N| = 0 such that

lu(x) —u(y)l < clx—y|(M|Dul(x)+ M|Dul(y))

for every x,y e R®*\ N. Thus g = cM|Dul| € 2(u) n L?(R") and by the maximal
function theorem
u ny = ||[U ny + lnf n
el pre@ey = el Lo ey st lgllLr®n)
< |ulLr@ny + lleM|DulllLr we)
< lulper@ny + cllDullr we)

< cllullyiegn),

where ¢ = c¢(n, p).
Assume then that u € M1P(R"). Then u € LP(R") and there exists g € LP(R")
with g € 2(u). Then

lu(x +h)—u(x)l < |hl(glx+h)+ g(x))

for almost every x, h € R” and thus

lu(x+h)—u@)IPdx<|h? [ (glx+h)+gx)Pdx
[ RP

<2PhP | (gx+h)P +gx)P)dx
Rﬂ

p+1 p p
<22 gl12 o 112

By the characterization of the Sobolev space with the integrated difference quo-
tients, see Theorem 2.32, we conclude u € WHP(R?) and

lwllwirgey < cllwliLe@n) + cllgllLe@n).

The inequality lellwre ey < clliell priegny follows by taking infimum over all g €
2(u)NLP(R™). O

WARNING: The characterization of WhP(R?), 1 < p <00, in Theorem 5.41 does
not hold for WH1(R").

Example 5.42. Let Q=(-%,3)cRand u: Q—R,

X
ulx)=————.
lx[log | x|
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Then u'(x) = |x|"1(log|x|)~? is the weak derivative of « in Q, v’ € LY(Q) and u €
L1(Q) (exercise). Thus u € WH1(Q). If g € D(u), then

2
“Toox - lu(x) — u(—x)| < 2x(g(x) + g(—x))
ogx

for almost every 0 < x < % It follows that

% % 2 1
/ gx)dx = / (g(x)+g(—x))dx = — ——dx =oo0.
- 0

i o logx

Thus u ¢ M51(Q). We may extend u to R in an appropriate way in oder to obtain

the corresponding example in W11(R).

WARNIN G : The characterization of W12(R?), 1 < p < oo, in Theorem 5.41 does
not hold for for W1P(Q), where Q is an open subset of R”.

Example 5.43. Let
Q={x=(x1,x2) €R?: x| < 1} \{(x1,0) e R%: =1 < x; <O} c R?
and u: Q — R,
u(x)=Q2|x|-1); argx,
where arg(x) = 0, where —m < 0 < 7 is the argument of x in polar coordinates. Then
u € WhP(Q) for every p > 1 (exercise). Let

A ={x=(x1,22)€Q:x1 < —%, +x9>0} and A=A_UA,.

Then

u@)>@2-3-1nZ=1.2>1

for every x € A+ and, similarly, u(x) < —% for every xe A_. If g € 2(u), then
lu(x1,29) — ulxg, —x2)l
[(x1,22) = (x1, —x2)]

u(x1,%9) —ulxy, —x2) S 1
2x9 2x9

g(x1,2x9) + g(x1,—x2) =

=

=

for almost every x = (x1,x2) € A;. Thus

1\?
/Ag(x)pdxz/A (2—362) dx1dxg =00

for every p > 1. Thus u ¢ M1 (Q).

Remark 5.44. The pointwise characterization of Sobolev spaces in Theorem 5.41 is
very useful in studying properties of Sobolev spaces. For example, if u € M 1P (R")
and g € 2(u) N LP(R"), then by the triangle inequality

1)l = [w()I] < lulx) - uy) < |x - yl(gx) + g(y))

Thus g € 2(lul)n LP(R™) and consequently |u| € MLP(R™).



CHAPTER 5. MAXIMAL FUNCTION APPROACH TO SOBOLEV SPACES 148

The pointwise characterization of Sobolev spaces in Theorem 5.41 can be used

to show a similar result as Theorem 2.24.

Lemma 5.45. The function u belongs to WHP(R") if and only if u € LP(R") and
there are functions u; € LP(R"), i = 1,2,..., such that u; — u almost everywhere
and g; € 2(u;) N LP(R") such that g; — g almost everywhere for some g € L (R").

Proof If u € WHP(R™), then the claim of the lemma is clear. To see the converse,
suppose that u,g € LP(R"), g; € 2(u;)nLP(R") and u; — u almost everywhere and
gi — g almost everywhere. Then

i) — ui(y)l < lx - yl(gi(x) + gi(¥) (5.46)

for all x,y e R*\ F; with |F;|=0,i=1,2,... Let A cR"” be such that u;(x) — u(x)
and g;(x) — g(x) forall x e R"\ A and |[A|=0. Write F = A UU‘i"z’lFi. Then |F|=0.
Let x,y e R"\F, x # y. From (5.46) we obtain

lu(x) - u)l < |x—yl(g(x) + g(»)

and thus g € 2(u) N LP(R™). This completes the proof. a

5.5 Pointwise estimates

In this section we revisit pointwise inequalities for Sobolev functions.
Definition 5.47. Let 0 < f <ocoand R > 0. The fractional sharp maximal function

of fe Llloc([R{”) is defined by

fir@)= sup r P \f = B! Ay,
’ 0<r<R B(x,r)

If R = co, we write fg(x).
THE MORAL: The fractional sharp maximal function controls the mean

oscillation of the function instead of the average of the function as in the Hardy-
Littlewood maximal function.

Next we prove a more general pointwise inequality than in Theorem 5.37.

Lemma 5.48. Assume that f € LIIOC(R”) and let 0 < 8 < co. Then there is ¢ = ¢(f,n)
and a set E with |E| =0 such that

IF@) = FOI< el = y1P (] 4+ Fh gy @) (5.49)

for every x,y e R*\ E.



CHAPTER 5. MAXIMAL FUNCTION APPROACH TO SOBOLEV SPACES 149

THE MORAL: Thisis a pointwise inequality for a function without the gradi-
ent.

Proof. Let E be the complement of the set of Lebesgue points of f. By Lebesgue’s
theorem |E| = 0. Fix x € R*\E, 0 < r < co and denote B; = B(x,27'r), i =0,1,...
Then

|f(x)_fB(x,r)| < Z |fBi+1 _fBiI
1=0

<3 1Bl | 1r-raiay
i:o|Bi+1| B; !

> . .
< CZ(Z_’r)ﬁ(Z_’r)_ﬁ][ \f —fB,|dy
i=0 B;
< crﬁfg,r(x).
Let y € B(x,r)\ E. Then B(x,r) < B(y,2r) and we obtain

lf () = FBan| <) = FB(y.2m| + |fB(y.2r) = [BGx,P)]

< crﬁfg’Zr(y) + Jl};(x " If —fB(y,2mldz

<crPflo )+ c]g( )If —fB(y2nldz

y,2r
<crf fh 2.
Let x,ye R"\E, x# y and r = 2|x — y|. Then x,y € B(x,r) and hence
lf @)= FDI<If @) = [Ban| +1f ()~ [Ba,nl
<clx _y|ﬁ(f/§,4lx—y\(x) + fg,‘l\x—yl(y))'

This completes the proof. d

Remark 5.50. Lemma 5.48 gives a Campanato type characterization for Hélder
continuity. Let 0 < f <1 and assume that f € Llloc([R”) with fg € L*°(R"). In other
words, there exists a constant ¢ < oo such that

r_ﬁ][ |f_fB(x,r)|dysc
B(x,r)

for every ball B(x,r) c R". By Lemma 5.48, there exists a set E cR" with [E|=0
such that

If @) = FI < cln, Bl = yI1P(Fi )+ FR()

for every x,y € R* \ E. This implies that

() = u(y)| < cr, P I Lol = y17,
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for every x,y € R" \ E with |E|=0. In other words, if fg € L°°(R"), then f can be
redefined on a set of measure zero so that the function is Holder continuous in R”
with exponent . On the other hand, if f € C%#(R"), then

|f(y)_fB(x,r)|:'f(y)_][ f(2)dz
B(x,r)

<f Ire)-fEldz<er?
B(x,r)
for every y € B(x,r). Thus

fa@=sup r P if)= fapldy <
’ 0<r<R Bl(x,r)

for every x € R” and this implies that fg € L°°(R"). Thus f can be redefined on a
set of measure zero so that the function is Hoélder continuous with exponent g if
and only if fg € L°°(R"). In the limiting case = 0 we obtain the space of bounded
mean oscillation BMO(R"), which consists of functions f € LIIOC(IR”) satisfying
fi e Lo®™M).

Definition 5.51. Let 0 < @ <n and R > 0. The fractional maximal function of

feLl (R")is

loc

Morf@)= sup rf ][ fidy,
0<r<R B(x,r)

For R = oo, we write My o = M,. If @ =0, we obtain the Hardy-Littlewood
maximal function and we write My = M.

Ifue Wli’cl([R{"), then by the Poincaré inequality with p = 1, see Theorem 5.28,

there is ¢ = ¢(n) such that

][ Iu—uB(x)r)Idyscr][ [Duldy
B(x,r) B(x,r)

for every ball B(x,r) c R". It follows that

ra_lf Iu—uB(x,r)IdySCr“J[ |Du|dy
B(x,r) B(x,r)

and consequently
u}_, p(®) <cMaRIDul(x) (5.52)

for every x e R” and R > 0. Thus we have proved the following useful inequality.

Corollary 5.53. Let u € Wli’cl([R”) and 0 < @ < 1. Then there exist a constant
c¢=c(n,a) and a set E c R” with |E| = 0 such that

lu(x) — u(y)l < clx -y~ (Mg g1y IDul(x) + Mg ajx—y | Dul(y))

for every x,y e R* \ E.
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Remark 5.54. Corollary 5.53 gives a Morrey type condition for Holder conti-
nuity. Compare to Remark 5.50, where Holder continuity was characterized
by a Campanato approach. Let 0 < a <1 and assume that u € Wlt’cl(lR”) with
M,|Vu| € L*°(R™). In other words, there exists a constant ¢ < oo such that

raJ[ [Duldy<c
B(x,r)

for every ball B(x,r) c R". By Corollary 5.53, there exists E c R” with |[E| =0 such
that
lu(x) — w(y)| < c(n, @)lx - yI'~* (M |Dul(x) + Mo |Dul(y)) (5.55)

for every x,y € R" \ E. This implies that
lu(x) — u(y)l < c(n, )| Mg|Dulllpognlx — yI' ™%,

for every x,y € R® \ E with |E| = 0. In other words, if M,|Vu| € L°°(R") then u can
be redefined on a set of measure zero so that the function is Holder continuous in
R™ with exponent 1— a. This shows that u is Holder continuous with the exponent

1 - a, after a possible redefinition on a set of measure zero.

Remark 5.56. From (5.55) we recover Morrey’s inequality in Theorem 3.23. To see
this, assume that u € WH?(R") with n < p < co. By Holder’s inequality we have

1
M% [Dul(x) < c(n)(MnIDulp(x))P <c(n)|Dullgrgn) < oo,

for every x € R”. Thus (5.55), with a = %, implies

lu(x) - u(y)| < c(n, p)IDullLo@mlc -y 7

for every x,y € R* \ E with |E| = 0. This shows that u is Hélder continuous with
the exponent 1 — ;7 after a possible redefinition on a set of measure zero.

The next result shows that this gives a characterization of W1-?(R?) for 1 <

p <oo.
Theorem 5.57. Let 1 < p <oo. Then the following four conditions are equivalent.

(1) ueWhHP(R).
(2) ue€LP(R"™) and there is g € L’(R"), g = 0, such that

[u(x) —u(y)l < |x—yl(gx)+ g(y)

for every x,y e R* \ E with |[E| =0.
(3) u € LP(R") and there is g € L?(R"), g = 0, such that the Poincaré inequality

][ Iu—uB(x,r)Idyscr][ gdy
B(x,r) B(x,r)

holds for every x € R" and r > 0.
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4) ueLP(R") and uf € LPR).

Proof. We have already seen that (1) implies (2).
To prove that (2) implies (3), we integrate the pointwise inequality twice
over the ball B(x,r). After the first integration we obtain

u(y) —][ u(z)dz
B(x,r)

|u(y) - uB(x,r)l =
< ][ lu(y)—u(z)ldz
B(x,r)

<2r (g(y)+]€g( )g(z)dz)

from which we have

fwo-usepar<z(f  ewaref el
B(x,r) B(x,r) B(x,r)

< 4r][ g(y)dy.
B(x,r)

»

To show that (3) implies (4) we observe that

1
u*{(x)zsup—][ Iu—uB(x,r)Idyscsup][ gdy=cMg(x).
r>0 I" JB(x,r) r>0 JB(x,r)

Then we show that (4) implies (1). By Lemma 5.48
|u(x) — u(y)l <l — i) +uiy)
for every x,y e R* \ E with |E| = 0. If we denote g = cu’{, then g € LP(R") and
lu(x) —u(y)l < |x - yl(g(x)+ g(y)

for every x,y € R® \ E with |E| = 0. Then we use the characterization of Sobolev
spaces WLP(R™), 1 < p < oo, with integrated difference quotients, see Theorem
2.32. Let h € R”. Then

lup(x) — (o) = lulx+h) —ulx) < |hl(gxx) + g(x)),
from which we conclude that
lun —ullLr@ey < BRI IILr @2y + 8 llLr @) = 21R11I 8 | @)
The claim follows from this. O

Remark 5.58. Tt can be shown that u € WH1(R") if and only if v € LY(R") and there
exists a nonnegative function g € LY(R") and ¢ > 1 such that
lu(x) — u(y)l < |x = y|(Mojx-y18(x) + Myx—y18(3))

for every x,y € R" \ E with |E| = 0. Moreover, if this inequality holds, then |Du| <
c(n,o0)g almost everywhere, see Theorem 4 in P. Hajlasz: A new characterization
of the Sobolev space, Studia Math. 159 (2003), no. 2, 263-275.
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5.6 Lipschitz truncation

Smooth functions in C*(Q) and C(Q2) are often used as canonical test functions
in mathematical analysis. However, in many occasions smooth functions can be
replaced by a more flexible class of Lipschitz functions. One highly useful property
of Lipschitz functions, not shared by the smooth functions, is that the pointwise
minimum and maximum over L-Lipschitz functions are still L-Lipschitz. The
same is in fact true also for pointwise infimum and supremum of L-Lipschitz
functions, if these are finite at a single point. In particular, it follows that if
u:A — Ris an L-Lipschitz function, then the truncations max{u,c} and min{u, c}
with ¢ € R are L-Lipschitz.

Theorem 5.59 (McShane). Assume that AcR” ,0<sL<ocoandthat f:A—R
is an L-Lipschitz function. There exists an L-Lipschitz function f* : R” — R such
that f*(x) = f(x) for every x € A.

THE MORAL: Every Lipschitz continuous function defined on a subset A of
R”™ can be extended as a Lipschitz continuous function to the whole R”.

Proof Let f*:R"—R,
f*(x)=inf{f(a)+Llx—al :a € A}.

We claim that £*(b) = £(b) for every b € A. To see this we observe that
f@)-fla)<|f(®)-fl@)|<L|b-al,

which implies f(b) < f(a)+ L|b —a| for every a € A. By taking infimum over a € A
we obtain f(b) < f*(b). On the other hand, by the definition f*(b) < f(b) for every
beA. Thus f*(b) = f(b) for every be A.

Then we claim that f* is L-Lipschitz in R”. Let x, y € R*. Then

f () =inf{f(@)+Llx—al:ac A}
<inf{f(a)+L(ly—al+lx—y)):a€ A}
sinf{f(a)+L|y—a| ta €A}+L|x—y|
=f"(+Llx-yl.

By switching the roles of x and y, we arrive at f*(y) < f*(x)+L|x— y|. This implies
that —L|x —y| < f*(x) - f*(y) < Llx - y|. O

Remark 5.60. The function f, :R” — R,

fi(x)=sup{f(a)-Llx—al:acA}.
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is an L-Lipschitz extension of f as well. We can see, that f* is the largest L-
Lipschitz extension of f in the sense that if g: R” — R is L-Lipschitz and g|4 = f,
then g < f*. Correspondingly, the function f is the smallest L-Lipschitz extension
of f.

Since C°(R") is dense in WLP(R™), also compactly supported Lipschitz func-
tions are dense in WHP(R"). By Theorem 5.37, we give a density result for
Lipschitz functions in W1?(R"). The main difference of the following Lipschitz
truncation result to the standard mollification approximation u. — u as € — 0 is
that the function is not changed in a good set {x € R” : u.(x) = u(x)} and there is an

estimate for the measure of the bad set {x € R” : u.(x) # u(x)}.

Theorem 5.61. Assume that u € WHP(R"), 1 < p < oco. Then for every ¢ > 0 there
exists a Lipschitz continuous function u, : R” — R such that
(1) {xeR":u.(x)# u(x)} <€ and

2) llu- u5||W1,p([Rn) <E.
Proof. Step 1: Let
E;={xeR":|lu(x)|<Aand M|Dul(x)< A}, A>0.

By Theorem 5.37, there exists a constant ¢ = ¢(n), and a set N c R" with |[N| =0,
such that

lu(x)—u(y) <clx—y|(M|Du|(x)+ M|Dul|(y)) < cAlx —y|

for every x, y € Ey \ N. This implies that u|g,\n is 2cA-Lipschitz continuous. By
the McShane extension theorem, see Theorem 5.59, there exists a 2cA-Lipschitz
function v, : R® — R such that v)(x) = u(x) for every x € E) \ N. We truncate v,

and obtain a 2¢A-Lipschitz function
u(x) = max{—A, min{v,(x), A}}.

Observe that |u (x)| < A for every x € R” and u (x) = vy(x) = u(x) for every x €
E;\N. By Theorem 3.31, we conclude that u; € WHX°(R"). In particular, this
implies that the weak gradient Du, exists and u) € WP (R™).

loc
Step 2: Since
R*\E} =R"\({xeR": |lux)| < A} n{xeR™: M|Dul|(x) < A})
=(R"\{xeR": |lux)| < AHUR*\{x e R" : M|Du|(x) < A})
={xeR":|ulx)>Au{xeR" : M|Du|(x) > A},
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and [N| =0, we have

Hx € R™ :up(x) # u(x)} < |R" \E,|
={x e R" : |u(x)| > A} + |[{x e R" : M|Dul(x) > A}|

< —/ lu(x)P dx + i (MIDuI(x))p dx

<—/ Iu(x)lpdx+— IDu)P dx 2222 0,
n Rn

where ¢ = ¢(n, p) is given by the maximal function theorem in L?(R"), p > 1, see
Theorem 5.3 (2). This proves the first claim.

Step 3: Next we prove an estimate for [[u — u,|ly1pogn). Since up(x) = u(x) for
every x € E3\ N and |u (x)| < A for every x € R", we have

lua—ull? =/ lup(x) — u(e)lP dx
LP®Y — Jon\g,

< 2P (/ lup(x) P dx+/ lu(x)|P dx)
R”\E,{ Rn\E/l

<2P (APIR"\E,1|+/

lu(x)|P dx).
RU\E,

By the dominated convergence theorem, we have
lim lu(x)|Pdx = / lim (Ju(x)? yre\g, (X)) dx
A—o0 R"\El R” A—00
= / [w@)IP xn,m0@ B &) dx =0,
Rn

since [ul? ype\g, <|ul? e L1(R"). Here we note that

(NR"\E))|=
A>0

= hm IR"\E,| =

and thus yn,.,@\£,)(x) = 0 for almost every x € R".
On the other hand, by Chebyschev’s inequality

M IR"\E | < AP {x e R" : |u(x)| > A} + AP |{x e R" : M|Dul(x) > A}|

< / [P dx + / (M|Du|(x))? dx 2= 0.
{xeR™:|u(x)|>A} {xeR*:M|Du|(x)>A}

Here we again applied the dominated convergence theorem to conclude that

im lu()IP dx :/ Lim ([0 X werr:ju)>1 ®) dx
{xeR™:|u(x)|>A} n A—00

A—o0

=/ [P Xm0 txeR:lu)> 1) (X)) dx = 0,
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since [u|P ¥ xern:u@)>4 < ulP € L1(®R"). We note that

() Hx e R™ : |u(x)| > A}

= lim [{x e R" : |u(x)| > A}
150 A—co

1
< lim — lu@)Pdx=0
A—o00 /’LP R

and thus yn,_,xerm:|u(x)>1) () = 0 for almost every x € R”. A similar argument in a

combination with the maximal function theorem in L?(R"), p > 1, see Theorem
5.3 (2) gives

lim (M|Dul(x))? dx = 0.
A—00 J(xeRP:M|Du|(x)> A}

In conclusion, we have

A—o00

luy—ullpr@e) < 2 (API[R"\E;LH/ Iu(x)lpdx)—>0.

RP\E

To prove the corresponding estimate for the gradients, we note that
Dup(x)—Du(x) = yrn\E, (x)Dup(x) — yre\g, (x)Du(x)

for almost every x € R". Here we applied the fact that u(x) — u(x) = 0 for almost
every x € E;. Since u) is 2cA-Lipschitz continuous and thus [Duj(x)| < 2cA for
almost every x € R"”, we have

ID @A =I5, n =/ IDuj(x) - u(x)|” dx
Lr®@) " o g

A

< 2P (/ [Dua(x)/P dx+/ |Du(x)|? dx)
RU\E, RAAE,

A—o0

<2P ((2cx1)p|IR” \E,| +/ |[Du(x)|? dx) 0. O

RP\E,

Remark 5.62. The claim

A—o0

M [{x € R" : M|Dul(x) > A}| 0

also follows by choosing f = |Du| in the following general fact for the Hardy-
Littlewood maximal function. If f € LP(R"), with 1 < p < oo, there exists a constant
¢ =c(n,p) such that

|{xeR”:Mf(x)>A}|si/ IF P dx, A>0.
AP wermif ()1>4)

With this approach we may conclude that Theorem 5.61 also holds if p = 1.

Next we discuss another approach to prove Theorem 5.61. Assume that
ueWhP(R*), 1< p <oo. Let

E;={xeR":M|Dul(x)<A}, A>0.

Let @;, i =1,2,... be a Whitney decomposition of an open set R” \ E; with the
following properties:
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* each @; is open and cubes ®;, i =1,2,..., are pairwise disjoint,

* R"\E;=U%,Q,,

e 4Q;cR"\E,,i=1,2,...,

* Y21 X2q; <N <ocoand

e ¢1dist(®;,E)) <diam(Q;) < codist(Q;,E ) for some constants ¢1 and cs.

For the Whitney decomposition, see [17], pages 167-170.

Then we construct a partition of unity associated with the covering 2Q);,
i =1,2,... This can be done in two steps. First, let ¢; € C°(2Q);) be a cutoff
function with 0 <¢@; <1, ¢; =1in @; and

c
Dyl < ——,
POilS Gam@y)
for i =1,2,... Then let
@i(x)
(X)) = =g —
(Pl ijl (Pj(x)
for every i = 1,2,.... Observe that the sum is over finitely many terms only since

¢; € C3°(2Q;) and the cubes 2Q;, i =1,2,..., are of bounded overlap. The functions
¢; have the property

Y ¢i(x) = xre\E, ()
i=1

for every x € R™.
We define the function u) by

u(x), xek,,
up(x) =
Zfﬁlqbi(x)in, xeR"\E;.
The function u, is a Whitney type extension of u|g, to the set R*\ E,.
THE MORAL: The extension is defined by integral averages in Whitney cubes.

Since the cubes 2Q;, i = 1,2,..., are of bounded overlap, the function u,
is locally a finite linear combination of smooth functions in R* \ E, and thus
uy € CPMR"\E)).

Claim: There exists a constant ¢ = ¢(n) such that u} is cA-Lipschitz continuous
on R”, that is,
lur(@)—ur(y) <cllx—yl

for every x,y € R™.
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Reason. Step 1: For every x € R \ E, there exists x € E) such that [x — x| <
2dist(x,E ). Then

u@) ) Pilx)— Y Pi(x)usg,
i=1 i=1

lup(x) —up(x)| =

u@ - ) Pi(x)usg,
i=1

Y i) u@) - usg,)
i=1

< Z ¢p; () (x) — ugg,)

i€l

< Z |u(E)_u2Qi|5

iel,

where i € I, if and only if x € 2Q;. By the properties of the Whitney decomposition,
there exists a constant a > 0 such that 2Q; c B(x, al(Q;)) = B(x,r;) for every i € I ..
As in the proof of Theorem 5.48, we obtain

lu(x) —ugq,;| < lu@) —upg |+ upg,r) — t2q;!

][ (u(x) -~ up,r,)dx
2Q;

< criu#{(f)+

< criuﬁ(i) +][ lu(x) —upz )l dx
2Qi (5.63)

|B(x,r;)|
L lu(x) —upg,r)ldx

< criuﬁ(i) + —|2Q'| )
12 xX,r;

1
< criu§(§)+cri— lu(x) —upg )l dx
ri JB(x,r;)
<criut@).
Since x € £, by (5.52) we have
u*(®) < cM|Du|(@) < cA.
This implies that
lu(x) —ugg,| < crid = cAl(Q;) < cAdist(x,E)) < cAlx — x|

for every i € I,. Since the cubes 2Q);, i = 1,2,..., have bounded overlap, the

cardinality of I is uniformly bounded and we obtain
lur(x) —up(x)| < cAlx — x| (5.64)

for every x e R*" \ E .
Step 2: Let x,y e R" \ E, and let

y = max{dist(x, E ), dist(y, E)}. (5.65)
If |x — y| = v, by (5.64) we have

lup(x) —upr(W)] < lua(x) —ua(@)) +ur®) —uar(@)] + lur(y) —uar(y)l

<cllx -+ u@) —u®@)|+cAly -7l



CHAPTER 5. MAXIMAL FUNCTION APPROACH TO SOBOLEV SPACES 159

Since x,y € R* \ E 4, Theorem 5.37 implies
lu(@) —uy)l < clx —yl(M|Dul(x) + M|Dul(y)) < cAlx -yl
for almost every x, ¥ and thus
luax) —ur)l < cAlx =%+ [x -3l +1y - ¥),
where [x —y|<|x—x|+|x—y|+ |y —Yy|. It follows that

lua@) = ur) < cAle =%+l -yl + 1y =)
<cllx—yl|
for every x,y e R* \E with |x—y|=7y.
Step 3: Let x,y e R* \ E} with |x—y| <y. Since

Y (@i - iy =0 and [¢i(x)—pi(y)] < ——|x—y]
i=-1 HQ)

for every x,y e R* \ E ;, we have

lua(e) —url = | Y ¢i(xusg, — D i(yusg,
i=1 i=1

=) (i) — pi(M)ugg,
i-1

(5.66)
=2 (i) — pi()(®) — uzq,)
i=1
1

<clx -yl ——u(x) —ugg,|.
,-Ehzu,y 1Q;) ?

By the properties of the Whitney decomposition and since |x — y| <y, there exists
a constant a > 0 such that 2Q; c B(x,al(Q;)) = B(x,r;) for every i e I, UI,. Asin
(5.63), we obtain

lu(®) —ugg,| < cr,-u*{(a_c) <criM|Dul(x) < cAl(Q;) (5.67)

for every i € I, Ul,. Since the cardinality of I, UI, is uniformly bounded, we
obtain

lupr(x) —ur(y) <cAlx -yl

for every x,y e R* \ E with |x—y| <7y.
Step 4: Step 2 and Step 3 imply

lua(x) —ur(y) <cAlx -yl

for every x,y e R* \ E ;. This shows that u, is cA-Lipschitz continuous in R* \ E .

For almost every x, y € E,, Theorem 5.37 implies

[ua(x) —ur(] = lulx) —u(y)| < clx— y|((M|Dul|(x)+ M|Dul(y)) < cAlx — yl.
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Since the points for which this holds true are dense in Ej, we conclude that u) is
Lipschitz on E .
IfxeR"\E, and y € E;, we have

lua(x) —ur(@ < lua(x) — uar@)l + lur(x) —ua(y)l.
By (5.64) we have
lup(x) —up(x)| < cAlx —x| < cAdist(x,E)) <cAlx—y|
and by Theorem 5.37 we have

lua(@) —uar(y)l = [u@) - uly)l < clx — y|(M|Du|(x) + M|Du|(y))
<cAlx—yl<cAMx—x|+|x—yl|)

< cAdist(x,E) +|x—y) <cAlx—y|.

It follows that
lur(@)—ur(y) <cllx—yl

for every x e R® \E, and y € E ;. This shows that ) is ¢A-Lipschitz continuous in

R™. [ ]
By Theorem 3.31, we have u € Wli’:o([R”). In particular, this implies that the

weak gradient Duj exists and u) € Wl})’f(Rn) and we can proceed as in the proof of

Theorem 5.61. However, we discuss a maximal function argument to show that

uy e WHP(R).

Claim: u ) € WLP(R™).

Reason. Step 1: Let x,y € R* \ E, with |x —y| <y, where y is as in (5.65). By

the properties of the Whitney decomposition and since |x — y| <y, there exists a

constant a > 0 such that 2Q; c B(x,al(Q;)) = B(x,r;) for every i e [, UI,. Asin
(5.66) and (5.67), we obtain

1
[ur(x) —ur(yl <clx -yl
A & i€IxZUIy Z(QL)

<clx—y|M|Dul(x)

lu(x) —ugg, |

for every x,y e R* \ E with |x—y| <7y.
Step 2: Let x,y e R" \ E} with |x—y| =7y. Then and applying

lur(x)—ur(y)l =

Y bilusg, — ) $i(yusg,
i=1 i=1

[eo)

Y (i) (usg, — ulx) — iy ugg, — u(y)) + (w(x) — u(y))

i=1

< ) lu@)—ugg, |+ Y lu(y)—usg, |+ lulx) —u(y)l

iely i€l
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As in (5.67), we obtain
Z lu(x)—ugg,I<c Z I(Q;)M|Du|(x) < cdist(x,E )M |Du|(x)
i€l i€l
<cyM|Dul(x) < clx—yIM|Dul(x)
and similarly
Y lu(y)—ugg,| < clx—yIM[Dul(y).
iely,
By Theorem 5.37 we have
lu(x) —u(y)l < clx — y(M|Dul(x) + M|Dul(y))
and we conclude that
[up(x) —upr(y)l < clx— y|(M|Dul(x) + M|Du|(y))
for every x,y € R* \ Ej with |x—y| =7y. Step 2 and Step 3 show that

lup(x) —upr(y)l < clx— y|(M|Dul(x) + M|Du|(y))

for every x,y e R*"\ E .
Step 3: Let x€e £} and ye R*\ E,. Then

lua(e) —ur)l = lu@) —ua()l =D Piyux) —ugg,)| < Y lulx)—ugg, |-
i=1

iel,
As above, we obtain

lu(x) —ugg,| < lulx) —u(y)l +uly) — uog,|
<clx—yl(M|Dul(x) + M|Dul(y)) + cl(@;)M|Du|(y)

for every i € I,,. Since [(®;) < cdist(y,E,) and dist(y,E,) < |x — y|, we obtain
lur(x) —ur(» <clx— yl(M|Dul(x)+ M|Dul(y))

for every x€e E) and ye R* \E,.
Step 4: By Step 1, Step 2 and Step 3, we have

lup(x) —upr(y)l < clx — y|(M|Dul(x) + M|Du|(y))

for almost every x,y € R*. Since |Du| € LP(R") with 1 < p < oo, the Hardy—
Littlewood—Wiener theorem, see Theorem 5.3 (2) , implies that M|Du| e LP(R").
It follows from Theorem 5.57 that u € WHP(R™). =

Claim: There exists a constant ¢ = ¢(n, p) such that

”uﬂ”WLP(R"\EA) < C"u”Wl,p([Rgn\Eﬂ)-
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Reason. Since the cubes 2Q;,i=1,2,..., are of bounded overlap, we have

(o) P o0
/ Iu;LI(x)dez/ |Z(pi(x)u2Qi| deCZ lugg, P dx
R"\EA RH\E)L =1 i=1 2Ql

chIQQiIJ[ Iu(x)lpdeC/ lux)|? dx.
i=1 2Q; R

n\E,

Then we consider an estimate for the gradient. We recall that
[e.e]
DO(x) = Z dilx)=1
i=1

for every x e R" \ E . Since the cubes 2Q;, i =1,2,..., are of bounded overlap, we
see that ® € C*°(R"\ E,) and

(e o]
D;®x)=Y Dijpix)=0, j=1,2,...,n,
i=1
for every x e R \ E ;. Hence we obtain
IDjur@)| = | Y- Djditousg,| = | X Djhitedut) - usg,)
i=1 i=1
[eo]
<c Z diam(Qi)_llu(x) —u2q,lx2q,(x)
i=1

and consequently

IDjur@)I” <c)_ diam(@;) P |u(x) — ugg, |” x2q,(x)
i=1
for every x € R” \ E ;. Here we again used the fact that the cubes 2Q;,i=1,2,...

are of bounded overlap. By applying the Poincaré inequality, we have

o0
/ IDJu,l(x)|P dx < C/ (Z diam(Qi)_P |u(x) - uZQi |px2Qi (x)) dx
R2\E R"\E, “i=1
o0
< Z diam(Q;) P |u(x) —ugg, |’ dx
i=1/2Q;

o0
<c Z [Du(x)Pdx < c/ |[Du(x)|? dx
i=1/2Q; R™\E}

for every j=1,2,...,n. ™
In particular, the previous claim implies that
lw — u7L||W1,p([Ran) =llu- u)L||W1,p([Rgn\Eﬂ)

<|u “WLP(R"\E;Q + ”u/l”WLP(IR"\EA)

< c”u”Wl,p(Rn\Ei)'

As in the proof of Theorem 5.61, we have |[R* \E | — 0 as A — oco. This implies
that uj) — u in WHP(R?) as A — oo.
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Remark 5.68. We know that u) € WLP(R*\E ;) and that it is Lipschitz continuous
in R®. Moreover u € W-P(R") and u = u, in E,. This implies that w = u —
uy € WH2(R*\ E,) and that w = 0 in E,. By the ACL property, u is absolutely
continuous on almost every line segment parallel to the coordinate axes. Take any
such line. Now w is absolutely continuous on the part of the line segment which
intersects R” \ E ;. On the other hand w =0 in the complement of E ;. Hence the
continuity of w in the line segment implies that w is absolutely continuous on the
whole line segment. By the ACL characterization of Sobolev spaces, see Theorem
2.36, we may conclude that w € WhP(R").
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