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Plan of the talk

Introduction: A quick review of the Euclidean

case.

Aim: Construct a maximal function that is

smoother than the standard Hardy-Littlewood

maximal function.

Spaces: Sobolev, Hölder, Morrey, Campanato

and BMO.

Context: Metric measure spaces.

Tools: Approximations of unity and discrete

convolution.

Application: Lebesgue points for Sobolev func-

tions (NO extension theorems, NO representa-

tion formulas).
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Hardy-Littlewood maximal function

The centered Hardy-Littlewood maximal func-

tion is defined as

Mu(x) = sup
r>0

∫
B(x,r)

|u(y)| dy.

NOTE:∫
B(x,r)

|u(y)| dy =
1

|B(x, r)|

∫
B(x,r)

|u(y)| dy

= (|u| ∗ φr)(x),

with

φr(x) =
χB(0,r)(x)

|B(0, r)|
.

4



Maximal function of a Lipschitz function

Suppose that

|uh(y)− u(y)| = |u(y + h)− u(y)| ≤ L|h|

for every y, h ∈ Rn, where

uh(y) = u(y + h).

Since the maximal function commutes with

translations and the maximal operator is sub-

linear, we have

|(Mu)h(x)−Mu(x)|
= |M(uh)(x)−Mu(x)|
≤M(uh − u)(x)

= sup
r>0

∫
B(x,r)

|uh(y)− u(y)| dy

≤ L|h|.
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Maximal function on Sobolev spaces

Let 1 < p ≤ ∞. Then there is c = c(n, p) such

that

‖Mu‖1,p ≤ c‖u‖1,p.

Moreover, |DMu| ≤M |Du| almost everywhere.

Proof:

‖(Mu)h −Mu‖p = ‖M(uh)−Mu‖p
≤ ‖M(uh − u)‖p
≤ c‖uh − u‖p
≤ c‖Du‖p|h|.

(Kinnunen, 1997)

REMARK: Maximal operator is also continu-

ous in Sobolev spaces. (Luiro, 2007)
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Remark

The Hardy-Littlewood maximal operator does

not preserve higher order regularity.
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An open question

What happens in W1,1(Rn) or BV (Rn), when

n ≥ 2?
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Capacity

The Sobolev p-capacity of the set E ⊂ Rn is

capp(E) = inf
u∈A(E)

∫
Rn

(
|u|p + |Du|p

)
dx,

where

A(E) =
{
u ∈W1,p(Rn) : u ≥ 1

on a neighbourhood of E
}
.
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Maximal function as a test function

Let u ∈ W1,p(Rn), suppose that λ > 0 and

denote

Eλ = {x ∈ Rn : Mu(x) > λ}.

Then Eλ is open,

Mu

λ
∈ A(Eλ)

and

capp(Eλ) ≤
1

λp

∫
Rn

(
|Mu|p + |DMu|p

)
dx

≤
c

λp

∫
Rn

(
|u|p + |Du|p

)
dx.

This weak type inequality can be used in study-

ing the pointwise behaviour of Sobolev func-

tions by the standard methods.
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Fractional maximal function

Let 0 ≤ α ≤ n. The fractional maximal func-

tion is defined as

Mαu(x) = sup
r>0

rα
∫
B(x,r)

|u(y)| dy.

REMARK: When 0 < α < n, there is a close

connection to the Riesz potential

Iαu(x) =
∫
Rn

|u(y)|
|x− y|n−α

dy.

Indeed,

Mαu(x) ≤ cIαu(x)

for every x ∈ Rn and

c−1‖Mαu‖p ≤ ‖Iαu‖p ≤ c‖Mαu‖p

for every 1 < p <∞.
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Behaviour in Sobolev spaces

Let 1 < p <∞ and let 0 ≤ α < n/p. Then there

is c = c(n, p, α) such that

‖Mαu‖1,q∗ ≤ c‖u‖1,p
with

q∗ =
np

n− αp
.

Proof: The same as for the Hardy-Littlewood

maximal operator together with the Sobolev

inequality.

(Saksman and Kinnunen, 2003)

12



A smoothing property

Let u ∈ Lp(Rn) with 1 < p < n and 1 ≤ α < n/p.

Then there is c = c(n, p, α) such that

‖Mαu‖q∗ ≤ c‖u‖p

and

‖DMαu‖q ≤ c‖u‖p

with

q∗ =
np

n− αp
and q =

np

n− (α− 1)p
.

(Saksman and Kinnunen, 2003)

(Heikkinen, Kinnunen, Korvenpää and Tuomi-

nen, 2015)
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Conclusion

The fractional maximal operator does not only

preserve the first order Sobolev spaces, but

it also maps Lp spaces boundedly into certain

first order Sobolev spaces.

This smoothing property is similar to the Riesz

potential.
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An unexpected problem

The standard Hardy-Littlewood maximal func-

tion does NOT preserve smoothness of the

functions in more general metric measure spaces.

It may happen, that the maximal function of a

continuous function is NOT continuous.

(Buckley, 1999)
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Metric measure space

(X, d, µ) is a metric measure space.

The measure is doubling, if there exists a con-

stant cD ≥ 1 such that

µ(B(x,2r)) ≤ cDµ(B(x, r))

for all x ∈ X and r > 0.

(Coifman and Weiss, 1971)
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Upper gradient

A nonnegative Borel function g on X is an up-

per gradient of an extended real valued func-

tion u on X if for all x, y ∈ X and for all paths

γ joining x and y in X,

|u(x)− u(y)| ≤
∫
γ
g ds.

(Heinonen and Koskela, 1998)
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Sobolev spaces

For u ∈ Lp(X), let

‖u‖N1,p(X) = ‖u‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all upper gra-

dients of u.

The Sobolev space on X is

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if

‖u− v‖N1,p(X) = 0.

(Shanmugalingam, 2000)
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Poincaré inequality

The space X supports a Poincaré inequality, if

there exist constants cP > 0 such that for all

balls B(x, r) of X, all locally integrable func-

tions u on X and for all upper gradients g of

u, we have∫
B(x,r)

|u− uB(x,r)| dµ ≤ cP r
∫
B(x,r)

g dµ,

where

uB(x,r) =
∫
B(x,r)

u dµ

=
1

µ(B(x, r))

∫
B(x,r)

u dµ.
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Assumptions

From now on, we assume the measure is dou-

bling and that the space supports the Poincaré

inequality.
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Hardy-Littlewood maximal function

The centered Hardy-Littlewood maximal func-

tion on X is defined as

Mu(x) = sup
r>0

∫
B(x,r)

|u| dµ.

PROPERTIES:

I. Strong type estimate

‖Mu‖Lp(X) ≤ c‖u‖Lp(X), 1 < p ≤ ∞.

II. Weak type estimate

µ({Mu > λ}) ≤
c

λ

∫
X
|u| dµ, 0 < λ <∞.
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Coverings by balls

Let r > 0. There is a family of balls B(xi, r),

i = 1,2, . . . , such that

X =
∞⋃
i=1

B(xi, r)

and
∞∑
i=1

χB(xi,6r)
≤ c <∞.

This means that the dilated balls B(xi,6r) have

bounded overlap.

The constant c depends only on the doubling

constant and, in particular, it is independent

of the scale r.
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Partition of unity

There are functions φi, i = 1,2, . . . , such that

(i) 0 ≤ φi ≤ 1,

(ii) φi = 0 on X \B(xi,6r),

(iii) φi ≥ c on B(xi,3r),

(iv) φi is Lipschitz with constant c/ri with c

depending only on the doubling constant, and

(v)
∞∑
i=1

φi = 1

in X.
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Construction

Let

ϕi(x) =


1, x ∈ B(xi,3r),

2−
d(x, xi)

3r
, x ∈ B(xi,6r) \B(xi,3r),

0, x ∈ X \B(xi,6r)

and

φi(x) =
ϕi(x)∑∞
j=1ϕj(x)

.

It is not difficult to see that the functions sat-

isfy the required properties.
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Discrete convolution

Define an approximation of u ∈ L1
loc(X) at the

scale of 3r by setting

ur(x) =
∞∑
i=1

φi(x)uB(xi,3r)

for every x ∈ X.

The function ur is called the discrete convolu-

tion of u.

(Coifman and Weiss 1971, Maćıas and Segovia

1979)
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Properties

I. The discrete convolution is Lipschitz contin-

uous.

II. Suppose that u ∈ Lp(X) with 1 ≤ p ≤ ∞ and

let r > 0. Then ur ∈ Lp(X) and

‖ur‖Lp(X) ≤ c‖u‖Lp(X).

The constant c depends only on the doubling

constant.

Moreover,

‖ur − u‖Lp(X) → 0

as r → 0, when 1 ≤ p <∞.
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Sketch of a proof

The case p =∞:

|ur(x)| ≤
∣∣∣∣ ∞∑
i=1

φi(x)uB(xi,3r)

∣∣∣∣
≤
∞∑
i=1

φi(x)|uB(xi,3r)
|

≤ ‖u‖L∞(X)

∞∑
i=1

φi(x)

= ‖u‖L∞(X)

for every x ∈ X.

The case 1 ≤ p < ∞ and the Lp-convergence

are sligthly more involved.
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The discrete maximal function

Let rj, j = 1,2, . . . , be an enumeration of the

positive rationals. For every radius rj we take

a covering by balls B(xi, rj), i = 1,2, . . . .

The discrete maximal function related to the

coverings B(xi, rj), i, j = 1,2, . . . , is defined by

M∗u(x) = sup
j
|u|rj(x)

for every x ∈ X.
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Observations

I. The discrete maximal operator depends on

the chosen coverings. This is not a serious

matter, since the estimates are independent of

the coverings.

II. As a supremum of continuous functions, the

discrete maximal function is lower semicontin-

uous and hence measurable.

III.

M∗(αu)(x) = |α|M∗u(x).

IV.

M∗(u+ v)(x) ≤M∗u(x) +M∗v(x).
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Discrete ≈ Hardy-Littlewood

There is a constant c ≥ 1, which depends only

on the doubling constant, such that

c−1Mu(x) ≤M∗u(x) ≤ cMu(x)

for every x ∈ X.
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Proof of the first inequality

For each x ∈ X there exists i = ix such that

x ∈ B(xi, rj). This implies that

B(x, rj) ⊂ B(xi,2rj)

and hence∫
B(x,rj)

|u| dµ ≤ c
∫
B(xi,3rj)

|u| dµ

≤ cφi(x)
∫
B(xi,3rj)

|u| dµ

≤ cM∗u(x).

In the second inequality we used the fact that

φi ≥ c on B(xi, rj). The claim follows by taking

the supremum on the left side.
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Proof of the second inequality

Let x ∈ X and rj be a positive rational number.

Since φi = 0 on X \B(xi,6rj) and

B(xi,3rj) ⊂ B(x,9rj)

for every x ∈ B(xi,6rj), we have by the dou-

bling condition that

|u|rj(x) =
∞∑
i=1

φi(x)|u|B(xi,3rj)

≤
∞∑
i=1

φi(x)
µ(B(x,9rj))

µ(B(xi,3rj))

∫
B(x,9rj)

|u| dµ

≤ cMu(x),

where c depends only on the doubling con-

stant. The second inequality follows by taking

the supremum on the left side.
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Lp bounds

I. Strong type estimate

‖M∗u‖Lp(X) ≤ c‖Mu‖Lp(X) ≤ c‖u‖Lp(X),

where 1 < p ≤ ∞. The constant c depends

only on the doubling constant and p.

II. Weak type estimate

µ({M∗u > λ}) ≤ µ({Mu > cλ}) ≤
c

λ

∫
X
|u| dµ,

where 0 < λ < ∞. The constant c depends

only on the doubling constant.
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Sobolev spaces

If u ∈ N1,p(X) with p > 1, then M∗u ∈ N1,p(X)

with a norm bound.

In addition, the function cM∗gu is an upper

gradient of M∗u whenever gu is an upper gra-

dient of u. The constant c depends only on

the doubling constant.

Application: Pointwise bahaviour of the Sobolev

functions on metric measure spaces.

(Kinnunen and Latvala, 2002)
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Sketch of a proof

Let r > 0. Then

|u|r(x) =
∞∑
i=1

φi(x)|u|B(xi,3r)

= |u(x)|+
∞∑
i=1

φi(x)
(
|u|B(xi,3r)

− |u(x)|
)
.

This implies that

gr = gu +
∞∑
i=1

(
c

r

∣∣∣|u| − |u|B(xi,3r)

∣∣∣+ gu

)
χB(xi,6r)

is an upper gradient of |u|r.
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Let x ∈ B(xi,6r). Then B(xi,3r) ⊂ B(x,9r)

and∣∣∣|u(x)| − |u|B(xi,3r)

∣∣∣
≤
∣∣∣|u(x)| − |u|B(x,9r)

∣∣∣+
∣∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣∣.
We estimate the second term on the right side

by the Poincaré inequality and the doubling

condition as∣∣∣|u|B(x,9r) − |u|B(xi,3r)

∣∣∣
≤
∫
B(xi,3r)

∣∣∣|u| − |u|B(x,9r)

∣∣∣ dµ
≤ c

∫
B(x,9r)

∣∣∣|u| − |u|B(x,9r)

∣∣∣ dµ
≤ cr

∫
B(x,9r)

gu dµ.
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The first term on the right side is estimated

by a standard telescoping argument. Since µ-

almost every point is a Lebesgue point for u,

we have∣∣∣|u(x)| − |u|B(x,9r)

∣∣∣
≤
∞∑
j=0

∣∣∣|u|B(x,32−jr) − |u|B(x,31−jr)

∣∣∣
≤ c

∞∑
j=0

∫
B(x,32−jr)

∣∣∣|u| − |u|B(x,32−jr)

∣∣∣ dµ
≤ c

∞∑
j=0

32−jr
∫
B(x,32−jr)

gu dµ ≤ crMgu(x).

for µ-almost every x ∈ X.

We conclude that

gr(x) ≤ cMgu(x)

for µ-almost every x ∈ X.
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FACT: Suppose that ui, i = 1,2, . . . , are func-

tions and gi are upper gradients of ui, i =

1,2, . . . , respectively. Let

u = sup
i
ui and g = sup

i
gi.

If u < ∞ µ−almost everywhere, then g is an

upper gradient of u.

Since

M∗u(x) = sup
j
|u|rj(x)

and cM∗gu is an upper gradient of |u|rj for every

j, we conclude that it is an upper gradient of

M∗u as well.

The claim follows from the maximal function

theorem.
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Dimension related to the measure

The doubling condition implies that

µ(B(x,R))

µ(B(x, r))
≤ c

(
R

r

)Q
for every 0 < r ≤ R. Here c > 0 depends only

on the doubling constant and

Q = log2 cD.

We say that µ satisfies the measure lower bound

condition, if

µ(B(x, r)) ≥ crQ

for every r > 0 and x ∈ X.

From now on, we assume that this condition

holds.

39



Fractional maximal function

Let 0 ≤ α ≤ Q. The fractional maximal func-

tion of u is

Mαu(x) = sup
r>0

rα
∫
B(x,r)

|u| dµ.

40



The discrete fractional maximal function

The discrete fractional maximal function re-

lated to the coverings B(xi, rj), i, j = 1,2, . . . ,

is defined by

M∗αu(x) = sup
j
rαj |u|rj(x)

for every x ∈ X, where |u|rj is the discrete con-

volution as before.

(Heikkinen, Kinnunen, Nuutinen and Tuomi-

nen, 2013)

41



Properties

I. There is a constant c ≥ 1, which depends
only on the doubling constant, such that

c−1Mαu(x) ≤M∗αu(x) ≤ cMαu(x)

for every x ∈ X.

II. Let p > 1 and 0 ≤ α < Q/p. Then there is
a constant c, depending only on the the dou-
bling constant, constant in the measure lower
bound, p and α, such that

‖M∗αu‖Lp∗(X) ≤ c‖u‖Lp(X),

for every u ∈ Lp(X) with p∗ = Qp/(Q− αp).

III. Let 0 < α < Q. Then there is a constant
c > 0, depending only on the the doubling con-
stant, the constant in the measure lower bound
and α, such that

µ({M∗αu > λ}) ≤ c
(‖u‖1

λ

)Q/(Q−α)
,

for every u ∈ L1(X).
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Sobolev spaces

Let u ∈ N1,p(X) and that 0 < α < Q/p. Then

there is a constant c > 0, depending only on

the doubling constant, the constant in the mea-

sure lower bound, p and α, such that

‖M∗αu‖N1,p∗(X) ≤ c‖u‖N1,p(X)

with

p∗ =
Qp

Q− αp
.
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Conclusion

The discrete fractional maximal function pre-

serves the first order Sobolev spaces.

QUESTION: Does it smoothen the functions

as in the Euclidean case?

44



A smoothing property

Let u ∈ Lp(X) with 1 < p < Q and 1 ≤ α <

Q/p. Then there is a constant c, depending

only on the doubling constant, the constant in

the measure lower bound, p and α, such that

cM∗α−1u is an upper gradient of M∗αu.

Moreover,

‖M∗αu‖Lp∗(X) ≤ c‖u‖Lp(X)

and

‖M∗α−1u‖Lq(X) ≤ c‖u‖Lp(X)

with

p∗ =
Qp

Q− αp
and q =

Qp

Q− (α− 1)p
.
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Morrey spaces

A function u ∈ L1
loc(X) belongs to the Morrey

space Mp,β(X), if

‖u‖Mp,β(X)

= sup r−β
( ∫

B(x,r)
|u|p dµ

)1/p
<∞,

where the supremum is taken over all x ∈ X

and r > 0.
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Campanato spaces

A function u ∈ L1
loc(X) belongs to the Cam-

panato space Lp,β(X), if

‖u‖Lp,β(X)

= sup r−β
( ∫

B(x,r)
|u− uB(x,r)|

p dµ

)1/p
<∞,

where the supremum is taken over all x ∈ X

and r > 0.
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Properties

Morrey spaces, Campanato spaces, BMO and

functions in C0,β(X) have the following con-

nections:

I. Mp,β(X) ⊂ Lp,β(X),

II. Lp,β(X) = Mp,β(X) if −Q/p < β < 0 (here

we identify functions that differ only by an ad-

ditive constant),

III. L1,0(X) = BMO(X), and

IV. Lp,β(X) = C0,β(X) if 0 < β ≤ 1.
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Behaviour on Morrey spaces

Let α > 0 and β < −α. Let u ∈ Mp,β(X) with

1 < p < ∞. Then there is a constant c > 0,

depending only on the doubling constant, p, α

and β, such that

‖Mαu‖Mp/(1+α/β),α+β(X)
≤ c‖u‖Mp,β(X).

(Heikkinen, Kinnunen, Nuutinen and Tuomi-

nen, 2013)
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Behaviour on Hölder spaces

Let u ∈ C0,β(X) with 0 < β ≤ 1. If α + β < 1,

then M∗αu ∈ C0,α+β(X).

If α + β ≥ 1, then M∗αu is Lipschitz continu-

ous on each bounded subset A ⊂ X with the

Lipschitz constant max{1,diam(A)α+β−1}.

(Heikkinen, Kinnunen, Nuutinen and Tuomi-

nen, 2013)
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Behaviour on Campanato spaces

Let α > 0, 0 ≤ α + β ≤ 1 and let u ∈ Lp,β(X).

Then there is a constant c > 0, depending only

on the doubling constant p and α and β, such

that

‖M∗αu‖C0,α+β(X) ≤ c‖u‖Lp,β(X).

(Heikkinen, Kinnunen, Nuutinen and Tuomi-

nen, 2013)
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Coifman-Rochberg lemma

Let 0 < α < Q. Assume that u ∈ L1
loc(X)

is such that Mαu is finite almost everywhere.

Then Mαu is a Muckenhoupt A1-weight, that

is, ∫
B
Mαu dµ ≤ c ess inf

B
Mαu

for every ball B in X. The constant c does not

depend on u.

(Heikkinen, Kinnunen, Nuutinen and Tuomi-

nen, to appear)
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Summary

I. The standard Hardy-Littlewood maximal does

not preserve smoothness in metric measure spaces,

but it is possible to construct a discrete maxi-

mal function which has better regularity prop-

erties.

II. The construction is based on partitions of

unities and the discrete convolutions. The ob-

tained maximal function is pointwisely equiva-

lent to the standard maximal function.

III. The fractional maximal function does not

only preserve the smoothness but also smoothens

the function in the same fashion as the Riesz

potential.

IV. The techniques apply to a wide range of

spaces (Sobolev, Hölder, Morrey, Campanato,

BMO) in the context of metric measure spaces.
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