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Plan of the talk

Problem: Find a set with minimal surface

measure (perimeter) that separates two dis-

joint sets.

Context: Metric measure spaces.

Tool: Functions of bounded variation (BV ).
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Metric measure space

(X, d, µ) is a complete metric measure space

with µ(X) =∞.

The measure is doubling, if there exists a con-

stant cD ≥ 1 such that

µ(B(x,2r)) ≤ cDµ(B(x, r))

for all x ∈ X and r > 0.

(Coifman and Weiss, 1971)
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Upper gradient

A nonnegative Borel function g on X is an up-

per gradient of an extended real valued func-

tion u on X if for all x, y ∈ X and for all paths

γ joining x and y in X,

|u(x)− u(y)| ≤
∫
γ
g ds

whenever both u(x) and u(y) are finite, and∫
γ
g ds =∞

otherwise.

(Heinonen and Koskela, 1998)
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Poincaré inequality

The space X supports a weak (1,1)-Poincaré

inequality, if there exist constants cP > 0 and

τ ≥ 1 such that for all balls B(x, r) of X, all

locally integrable functions u on X and for all

upper gradients g of u, we have∫
B(x,r)

|u− uB(x,r)| dµ ≤ cP r
∫
B(x,τr)

g dµ,

where

uB(x,r) =
∫
B(x,r)

u dµ

=
1

µ(B(x, r))

∫
B(x,r)

u dµ.
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Bounded variation

For u ∈ L1
loc(X), we define the total variation

as

‖Du‖(X) = inf
{

lim inf
i→∞

∫
X
gui dµ :

ui ∈ Liploc(X), ui → u in L1
loc(X)

}
,

where gui is an upper gradient of ui.

We say that a function u ∈ L1(X) is of bounded

variation, u ∈ BV (X), if

‖Du‖(X) <∞.

(Ambrosio, 2001 and Miranda Jr., 2003)
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Perimeter

A measurable set E ⊂ X is said to have finite

perimeter if

‖DχE‖(X) <∞.

We denote the perimeter measure as

P (E) = ‖DχE‖(X).

Observe: If µ(E4E′) = 0, then P (E) = P (E′).

In particular, if µ(E) = 0, then P (E) = 0.
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The Euclidean case

In the Euclidean case with the Lebesgue mea-
sure, we have

‖Du‖(Rn) = sup
{ ∫

Rn
udiv f dx :

f ∈ C1
0(Rn;Rn), ‖f‖ ≤ 1

}
where

‖f‖ = sup
x∈Rn

|f(x)|

and

f = (f1, . . . , fn).

In particular,

P (E) = sup
{ ∫

E
div f dx :

f ∈ C1
0(Rn;Rn), ‖f‖ ≤ 1

}
.

If E is a set with smooth boundary, then

P (E) = Hn−1(∂E).
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An obstacle problem

Let E and F be disjoint obstacle sets in X.

Find a set G0 such that E ⊂ G0, G0 ∩ F = ∅
and

P (G0) ≤ P (G)

for every set G with E ⊂ G and G ∩ F = ∅.

In other words, find a set with a minimal sur-

face measure that separates the sets E and F .

Our work is a generalization of Euclidean re-

sults by De Giorgi, Colombini and Piccinini,

Frontiere orientate di misura minima e ques-

tioni collegate, Scuola Normale Superiore, Pisa,

1972.
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An existence result

Theorem. (KKST, 2009) Let E and F be

disjoint sets in X. Then there exists a set G0

with E ⊂ G0 and G0 ∩ F = ∅ such that

P (G0) ≤ P (G)

for every set G with E ⊂ G and G ∩ F = ∅.

This means that a minimizing set exists.
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Proof of the existence

Strategy: The direct methods in the calculus

of variations.

Step 1: Denote

λ = inf{P (G) : E ⊂ G, G ∩ F = ∅}.

Take a minimizing sequence of sets Gi, with

E ⊂ Gi and Gi ∩ F = ∅

for every i = 1,2, . . . , such that

lim
i→∞

P (Gi) = λ.
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Step 2: Use a compactness result (Miranda,

2003) to obtain a subsequence Gij, j = 1,2, . . . ,

and a Borel set G0 such that

χGij
→ χG0

in L1
loc(X)

as j →∞.

Step 3: By passing to a subsequence, if nec-

essary, we can also assume that

χGij
→ χG0

almost everywhere

as j → ∞. Hence, by changing G0 on a set

of measure zero, we may assume that E ⊂ G0

and G0 ∩ F = ∅. This implies λ ≤ P (G0).

Step 4: A lower semicontinuity result (Mi-

randa, 2003) implies that

P (G0) ≤ lim inf
j→∞

P (Gij) = λ.

This shows that λ = P (G0) and hence G0 is a

minimizing set.

13



An example

Let X = R2 with the Euclidean distance and

Lebesgue measure,

E = {x = (x1, x2) ∈ R2 : |x1| < 1, x2 = 0}

and

F = {x ∈ R2 : |x| ≥ 4}.

Then E itself will do as a minimizing set and

P (E) = 0 since the Lebesgue measure of E is

zero. Hence

inf P (G) = 0,

where the infimum is taken over all sets G with

E ⊂ G and G ∩ F = ∅.
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Problems

(1) The perimeter does not see sets of measure

zero.

(2) There are too many admissible test sets.

We can try to restrict ourselves to a smaller

class of test sets.
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A class of good test sets

We denote by G the collection of all E ⊂ X

such that E is µ-measurable,

lim sup
r→0

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0

for every x ∈ E, and

lim sup
r→0

µ(B(x, r) ∩ (X \ E))

µ(B(x, r))
> 0

for every x ∈ X \ E.

In other words, E ∈ G if both E and X \ E
are thick in the sense that the upper density

of the set is positive at all points belonging to

the set.
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Properties of good sets

It is possible to associate to every set E ⊂ X

a set E′ ∈ G so that µ(E4E′) = 0. Indeed,

there is a set in this class that differs from the

original set as little as possible.

Clearly E ∈ G if and only if X \ E ∈ G.
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A reformulated problem

Let E and F be disjoint sets in X. Find a set

G0 ∈ G with E ⊂ G0 and G0 ∩ F = ∅ such that

P (G0) ≤ P (G)

for every set G ∈ G with E ⊂ G and G ∩ F = ∅.

Problem: The example shows that there may

be no minimizing set in this class.
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In order to be able to obtain the existence of

a minimizing set G0 ∈ G, we need to relax the

conditions E ⊂ G and F ∩G = ∅.

We could try to minimize the functional

I(G) = 2Hn−1(E \G) + 2Hn−1(G ∩ F )

where G ∈ G.

Problem: No lower semicontinuity result.

We apply the following equivalent measure pro-

posed by De Giorgi that has better semicon-

tiuity properties.
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The De Giorgi measure

Let ε > 0. For E ⊂ X, let

σε(E) = inf
{
P (G) +

µ(G)

ε
: G ∈ G, E ⊂ G

}
.

The De Giorgi measure of E is

σ(E) = sup
ε>0

σε(E) = lim
ε→0

σε(E).
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Theorem. (KKST, 2009) The De Giorgi mea-

sure is a Borel regular outer measure. In par-

ticular,

σ(E) = inf{σ(B) : B is a Borel set, E ⊂ B}

for every E ⊂ X.
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A relaxed problem

Let E and F be disjoint sets in X. Find a set

G0 ∈ G such that

I(G0) ≤ I(G),

for every G ∈ G, where

I(G) = P (G) + σ(E \G) + σ(F ∩G).

Observe: The obstacles are described in the

penalty term.
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The example revisited

Let X = R2 with the Euclidean distance and

Lebesgue measure,

E = {x = (x1, x2) ∈ R2 : |x1| < 1, x2 = 0}

and

F = {x ∈ R2 : |x| ≥ 4}.

Then the minimizing set G0 = ∅ and

inf
G∈G

I(G0) = 4.
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An existence result for the relaxed problem

Theorem. (KKST, 2009) Let E and F be

disjoint sets in X. Then there exists G0 ∈ G
such that

I(G0) ≤ I(G)

for every G ∈ G.

Proof: The direct methods in the calculus of

variations: Compactness and lower semiconti-

nuity.
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A semicontinuity result

Theorem. (KKST, 2009) Let E and F be

disjoint sets in X. Suppose that G ∈ G satisfies

lim
r→0

µ(B(x, r) ∩G)

µ(B(x, r))
= 0

for every x ∈ E \G and

lim
r→0

µ(B(x, r) ∩ (X \G))

µ(B(x, r))
= 0

for every x ∈ G ∩ F . If Gi ∈ G, i = 1,2, . . . , are

such that

χGi → χG

in L1
loc(X) as i→∞, then

I(G) ≤ lim inf
i→∞

I(Gi).
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Density assumptions

In the collection of sets G′ ∈ G with

µ(G′4G) = 0

the set G satisfying

lim
r→0

µ(B(x, r) ∩G)

µ(B(x, r))
= 0

for every x ∈ E \ G has the largest possible

intersection with E.

Similarly, the set G satisfying

lim
r→0

µ(B(x, r) ∩ (X \G))

µ(B(x, r))
= 0

for every x ∈ G ∩ F has the smallest possible

intersection with F .
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A connection to the original problem

Theorem. (KKST, 2009) Let E and F be

disjoint sets in X and denote

λ = min{P (G) : E ⊂ G,G ∩ F = ∅},
γ = min{I(G) : G ∈ G} and

ν = inf{P (G) : G ∈ G, E ⊂ G,G ∩ F = ∅}.
Then

λ ≤ γ ≤ ν.

If

lim sup
r→0

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0

for every x ∈ E and

lim sup
r→0

µ(B(x, r) ∩ F )

µ(B(x, r))
> 0

for every x ∈ F , then

λ = γ = ν.
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Hausdorff measure of codimension one

Let E ⊂ X and R > 0. We define

HR(E) = inf
{ ∞∑
i=1

µ(B(xi, ri))

ri
: ri ≤ R,

E ⊂
∞⋃
i=1

B(xi, ri)
}

and

H(E) = lim
R→0

HR(E).

The number H(E), which is possibly infinite,

is called the Hausdorff measure of codimension

one of E.
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De Giorgi ≈ Hausdorff

Theorem. (KKST, 2009) There exist positive

constants c1 and c2, depending only on the

constants in the doubling condition and the

Poincaré inequality, such that

c1H(E) ≤ σ(E) ≤ c2H(E)

for every set E ⊂ X

Remark. In the Euclidean case, if E is a C1-

surface of codimension one, then

σ(E) = 2Hn−1(E).

(De Giorgi, Colombini and Piccinini, 1972)

A counterexample by Hutchinson (Boll. U.M.I.

(5) 18-B (1981), 619-628) shows that the equal-

ity does not hold in general.
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Two essential tools

(1) The total variation measure is concentrated
on the measure theoretic boundary by

L. Ambrosio, Fine properties of sets of finite
perimeter in doubling metric measure spaces,
Set-Valued Anal. 10 (2-3) (2002), 111–128.

(2) The boxing inequality proved in the metric
setting in

J. Kinnunen, R. Korte, N. Shanmugalingam,
and H. Tuominen, Lebesgue points and capac-
ities via boxing inequality in metric spaces, In-
diana Univ. Math. J. 57 (1) (2008), 401–430,

and independently in

T. Mäkäläinen, Adams inequality on metric
spaces, Rev. Mat. Iberoamericana (to ap-
pear).

30



Measure theoretic boundary

The measure theoretic boundary of E ⊂ X, de-

noted by ∂∗E, is the set of points x ∈ X, where

both E and its complement have positive den-

sity, that is,

lim sup
r→0

µ(E ∩B(x, r))

µ(B(x, r))
> 0

and

lim sup
r→0

µ(B(x, r) \ E)

µ(B(x, r))
> 0.
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Theorem. (Ambrosio, 2002) Assume that

E ⊂ X is a set of finite perimeter. Then

1

c
P (E) ≤ H(∂∗E) ≤ cP (E),

where c depends only on the doubling constant

and the Poincaré inequality.

Open question: Note that the theorem above

does not imply that the Hausdorff measure of

∂∗E would be infinite whenever the perimeter

measure of E is infinite.
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The boxing inequality

Theorem. (KKST, 2008) Let E ⊂ X be an

open set of finite perimeter with µ(E) < ∞, τ

the dilation constant in the weak (1,1)-Poincaré

inequality. Then there exists a collection of

disjoint balls B(xi, τri), i = 1,2, . . ., such that

E ⊂
∞⋃
i=1

B(xi,5τri),

1

2cD
<
µ(E ∩B(xi, ri))

µ(B(xi, ri))
≤

1

2

for i = 1,2, . . ., and

∞∑
i=1

µ(B(xi,5τri))

5τri
≤ c P (E).

The constant c depends only on the doubling

constant cD, the constants in the weak (1,1)-

Poincaré inequality.
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Summary

We study the existence of a set with minimal

perimeter that separates two disjoint sets in a

metric measure space equipped with a doubling

measure and supporting a Poincaré inequality.

A measure constructed by De Giorgi is used to

state a relaxed problem, whose solution coin-

cides with the solution to the original problem

for measure theoretically thick sets.

The De Giorgi measure on metric is compara-

ble to the Hausdorff measure of codimension

one, but has better lower semicontinuity prop-

erties.

The theory of functions of bounded variation

on metric spaces is used extensively in the ar-

guments.
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