MATH 3305 General Relativity Problem sheet 2
Please hand in your solutions Friday, 23 October 2009

Problem 1 (10 points) Some 3-vector identities and index gymnastics. In index notation show that

$$
\begin{align*}
& \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b}) . \tag{1}\\
& \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \tag{2}\\
& \nabla \times(f \mathbf{a})=\nabla f \times \mathbf{a}+f \nabla \times \mathbf{a}, \tag{3}
\end{align*}
$$

where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are 3 -vectors and f is a smooth function.

Problem 2 (30 points) Let the metric of Euclidean three-dimensional space be given by

$$
\begin{equation*}
d s^{2}=d x^{2}+d y^{2}+d z^{2} \tag{4}
\end{equation*}
$$

What are the components of the metric in the new coordinate system

$$
\begin{align*}
r & =\sqrt{x^{2}+y^{2}+z^{2}} \tag{5}\\
y / x & =\tan \phi \tag{6}\\
z / r & =\cos \theta . \tag{7}
\end{align*}
$$

(Hint: three-dimensional spherical coordinates)
Problem 3 (30 points) In (x, y) coordinates for the plane, let us consider the $\binom{1}{0}$-tensor W^{i} with components

$$
W^{1}(x, y)=0, \quad W^{2}(x, y)=1
$$

Compute \widetilde{W}^{i} in polar coordinates (r, θ), and show that

$$
g_{i j} W^{i} W^{j}=\widetilde{g}_{i j} \widetilde{W}^{i} \widetilde{W}^{j}=1,
$$

when $g_{i j}$ is the Euclidean metric in coordinates (x, y) and $\widetilde{g}_{i j}$ is the metric in polar coordinates.

Problem 4 (30 points) Suppose $A^{i}\left(X^{1}, \ldots, X^{n}\right)$ are components for a $\binom{1}{0}$ tensor. How does

$$
\begin{equation*}
\frac{\partial A^{i}}{\partial X^{j}} \tag{8}
\end{equation*}
$$

transform under coordinate transformations? (Hint: compute $\frac{\partial \widetilde{A}^{i}}{\partial \tilde{X}^{j}}$) Is this quantity a tensor? Do you think the partial derivative is a good differential operator in tensor analysis? What property should a good operator have?

