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Introduction

e A Gaussian beam is a solution to Maxwell’s equations that look
like this:

e A Gaussian beam propagate along a curve:

e Motivation: Gaussian beams could (maybe) be used to solve

the traveltime problem in EM.




Initial assumptions

Everything is smooth
M 3-manifold, bounded /unbounded

Media is anisotropic, non-homogeneous, no time or frequency

dependence

e, 1w real, positive definite, simultaneously diagonalizable. For

some orthogonal matrix R,
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Gaussian beam definition

Trial: E(z,t) = Re{eP'@UE(x,t)}

P > 0 large constant, Ey complex 1-form, # complex phase function
e Trial is a “separation of variables”

e Let c: I — M be a curve, and let

o) = 0(e(t) 1),
pilt) = S (elt), ),

020

Hz(t) Oxt O1J (C(t)vt)a

Then F is a G.B. on c if ¢(t), p;(t) are real, and Im H;; is
positive definite.




Basic property of (Gaussian beams

Let us fix t, and let

z=2z(x) =x — c(t)

then by Taylor’s theorem,

P
exp (—5 2 ImH -2

(Gaussian bell curve




Propagating Gaussian beams

e Hamilton-Jacobi equation for 6: 2% = h(df) where Hamiltonian

h: T*M — R (h = h4 depend only on media)

e Expanding both sides as a Taylor series at z = 0 gives sufficient

condition on ¢, ¢, p, H:

— ¢ is constant

— (¢, p) is a solution to Hamilton’s equations
dc Oh
dt 0&;
dpz- Oh
dt ox’

o (¢, p),

o (¢, p).

— H is a solution to a matrix Riccati equation (depending on

h)




Geometry of T'M vs. geometry of T M

TM

e On T'M, a curve c: I — M has a canonical lift, ¢: I — T'M.

e “Traditional” geometry (metric tensor, curvature tensors, etc.)
exist on T'M.

e Finsler norm F: TM — R, (in Riemannian case:

F(y) = /gij(x)y'y?,y € Tu M)
— (Geodesic equation — Geodesics

T*M
e T M has a canonical symplectic structure.

e Hamiltonian function: h: T"M — R

— Hamilton equations — bicharacteristics




Legendre transformation

e In mechanics: Hamilton eqgs. < Euler-Lagrange eqgs.

e Mathematical interpretation: Legedre transformation:

Symplectic geometry < Riemann-Finsler geometry

e Legendre transformation: bijection L: T*M — T M that

preserves structure. Examples:

— h strongly convex, 1-homogeneous — Finsler geometry

— h = /pos. def. quadratic form — Riemann geometry




Legendre transformation for quadratic Hamiltonians

e Suppose h: T*M — R has the form

bz, €) = /hi (1)€;.

where h% is positive definite for each .

= L:T"M — TM,
9
oxJ

fzdac’ —> hijgj

is a bijection, and

Iyl = hoL ') = /hij(@)iyl, hiy = ()]

1s a norm induced by a Riemannian inner product g;; = h;;.

e (c,p) is a bicharacteristic w.r.t. h = c¢ is geodesic w.r.t. g.

e cis geodesic w.r.t. ¢ = L~ ! o ¢ is a bicharacteristic w.r.t. h




Hamiltonians h.

e For (z,&) e T*M, let

2
S

o hy:T*"M — R are continuous functions such that

o(M(z,8)) = £40,hy (2, 8), h(2,8)},
and hi(z,&) > 0.

Ex 1
M(z,§) = e

o o(M(z,§)) is coordinate invariant, but A4 are not well defined.

Example: In isotropic media, ¢ = e(x)I, p = pu(x)l,
1

he(z,z) = O I2][-
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Computer algebra: If (z,£) € T*M and n =det R R - &, then
A€ o(M(z,€)) if and only if

NN =S nP A2+ [|F-n)* |N-n|?) =0,

1/\/577 mg = 1/@7

diag <\/e§m§ + e3m3, \/e%mg + e2m7, \/e%mg + e%m%) ,

diag (6263, €1€s3, 6162)7

diag (m2m3, mims, m1m2)7

V/* is the pos. square root,

| - || Euclidean norm.

11



e (Quadratic solution formula:

oM@6) = +{0. S5 \/Is P £ VDO,

where +-signs are independent and D is the 4-homogeneous

polynomial
D(z,&) = IS -nl|* =4l F - nl* [N -nl*.

e This gives

1
- ﬁ\/HS-nIP + /D 6).
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The A;;-symbols

e Fori,j=1,2,3 let

2 2 2 2

If two A;;-symbols vanish, then all symbols vanish.
3 possibilities: all A;; =0, one A;; = 0, none A;; = 0.

h-functions behave qualitatively differently depending on how
many of the A;;-symbols vanish.

Computer algebra:
D = (Aos&f + A13&5 + A12835)° — 40190038783

(Aggéi + A1365 + Ag163)* — 4091 A136565
(Agofs + A13€s + A12€3)? — 4A13A36565.
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The three media classes

Proposition 0.1 (Characterization of media I, A;; all zero)

The following are equivalent:
1. All A;j-symbols vanish.
2. At least two A;;-symbols vanish.
3. hy =h_
4. The medium matrices satisfy
€ = pu

for some p > 0.
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Proposition 0.2 (Characterization of media ITI) The

following are equivalent:

1. At least one of the A;;-symbols vanishes.

2. hqe = /pos. def. quadratic form

3. hy are smooth on R3\ {0}.

4. h_ is convezr on R3.
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Characterization of media III: All A;; #0

V]
0 0.10.20.30.40.50.60.7
y=0

0 0.10.20.30.40.50.60.7
y=0. 05
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0 0.10.20.30.40.5
y=0.4




Examples

Aoz = 0, that is, eguo = o3
grii(x) = (R™'-diag (e3pu2,c1u3,c1p2) - R)ij
g_ii() = (R™'-diag (e3p2,e3p1,c2p1) - R)ij
Media: (€1,€2,€2), (U1, f2, t2),
gt.ij(x) = pa(R™'-diag (e9,€1,61) - R)ij

g—ij(x) = ea(R™'-diag (u2, 1, 11) - R)ij

Media: (e1,€2,€2), (p1, f1, f41),
gris(@) = pa(R'-ding (ez.61,e1) Ry
g—,ij(r) = eap2di

Media: (e1,e1,¢e1), (p1, f1, f41),

G+ ,ij = €14104;
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