Electromagnetic Gaussian beams and Riemannian geometry

Matias Dahl
Institute of Mathematics,
Helsinki University of Technology

Instructor: Kirsi Peltonen

Steklov institute, 15.11.2005, St. Petersburg

Introduction

• A Gaussian beam is a solution to Maxwell's equations that look like this:

• A Gaussian beam propagate along a curve:

• Motivation: Gaussian beams could (maybe) be used to solve the traveltime problem in EM.

Initial assumptions

- Everything is smooth
- M 3-manifold, bounded/unbounded
- Media is anisotropic, non-homogeneous, no time or frequency dependence
- ε, μ real, positive definite, simultaneously diagonalizable. For some orthogonal matrix R,

$$\varepsilon = R^{-1} \cdot \begin{pmatrix} \varepsilon_1 & & \\ & \varepsilon_2 & \\ & & \varepsilon_3 \end{pmatrix} \cdot R \qquad \mu = R^{-1} \cdot \begin{pmatrix} \mu_1 & & \\ & \mu_2 & \\ & & \mu_3 \end{pmatrix} \cdot R$$

Gaussian beam definition

Trial:
$$E(x,t) = \operatorname{Re}\{e^{iP\theta(x,t)}E_0(x,t)\}$$

P > 0 large constant, E_0 complex 1-form, θ complex phase function

- Trial is a "separation of variables"
- Let $c: I \to M$ be a curve, and let

$$\phi(t) = \theta(c(t), t),$$

$$p_j(t) = \frac{\partial \theta}{\partial x^j}(c(t), t),$$

$$H_{ij}(t) = \frac{\partial^2 \theta}{\partial x^i \partial x^j}(c(t), t),$$

Then E is a G.B. on c if $\phi(t)$, $p_i(t)$ are real, and Im H_{ij} is positive definite.

Basic property of Gaussian beams

Let us fix t, and let

$$z = z(x) = x - c(t)$$

then by Taylor's theorem,

$$\theta(x(z),t) = \phi(t) + p_i(t) \cdot z^i + \frac{1}{2} H_{ij}(t) z^i z^j + \cdots$$

Then

$$|\exp(iP\theta)| = \exp\left(-\frac{P}{2}z^T \cdot \operatorname{Im} H \cdot z\right)$$

= Gaussian bell curve

Propagating Gaussian beams

- Hamilton-Jacobi equation for θ : $\frac{\partial \theta}{\partial t} = h(d\theta)$ where Hamiltonian $h: T^*M \to \mathbb{R}$ $(h = h_{\pm} \text{ depend only on media})$
- Expanding both sides as a Taylor series at z=0 gives sufficient condition on c, ϕ, p, H :
 - $-\phi$ is constant
 - -(c, p) is a solution to Hamilton's equations

$$\frac{dc^{i}}{dt} = \frac{\partial h}{\partial \xi_{i}} \circ (c, p),$$

$$\frac{dp_{i}}{dt} = -\frac{\partial h}{\partial x^{i}} \circ (c, p).$$

-H is a solution to a matrix Riccati equation (depending on h)

Geometry of TM vs. geometry of T^*M

TM

- On TM, a curve $c: I \to M$ has a canonical lift, $\hat{c}: I \to TM$.
- "Traditional" geometry (metric tensor, curvature tensors, etc.) exist on TM.
- Finsler norm $F:TM\to\mathbb{R}$, (in Riemannian case:

$$F(y) = \sqrt{g_{ij}(x)y^iy^j}, y \in T_xM)$$

 \rightarrow Geodesic equation \rightarrow Geodesics

T^*M

- T^*M has a canonical symplectic structure.
- Hamiltonian function: $h: T^*M \to \mathbb{R}$
 - \rightarrow Hamilton equations \rightarrow bicharacteristics

Legendre transformation

- In mechanics: Hamilton eqs. \leftrightarrow Euler-Lagrange eqs.
- Mathematical interpretation: Legedre transformation: Symplectic geometry ↔ Riemann-Finsler geometry
- Legendre transformation: bijection $L: T^*M \to TM$ that preserves structure. Examples:
 - -h strongly convex, 1-homogeneous \longrightarrow Finsler geometry
 - $-h = \sqrt{\text{pos. def. quadratic form}} \longrightarrow \text{Riemann geometry}$

Legendre transformation for quadratic Hamiltonians

• Suppose $h: T^*M \to \mathbb{R}$ has the form

$$h(x,\xi) = \sqrt{h^{ij}(x)\xi_i\xi_j}.$$

where h^{ij} is positive definite for each x.

$$\Rightarrow L: T^*M \to TM,$$

$$\xi_i dx^i \mapsto h^{ij} \xi_j \frac{\partial}{\partial x^j}$$

is a bijection, and

$$||y|| = h \circ L^{-1}(y) = \sqrt{h_{ij}(x)y^iy^j}, \quad h_{ij} = (h^{ij})_{ij}^{-1}$$

is a norm induced by a Riemannian inner product $g_{ij} = h_{ij}$.

- (c, p) is a bicharacteristic w.r.t. $h \Rightarrow c$ is geodesic w.r.t. g.
- c is geodesic w.r.t. $g \Rightarrow L^{-1} \circ \hat{c}$ is a bicharacteristic w.r.t. h

Hamiltonians h_{\pm}

• For $(x,\xi) \in T^*M$, let

$$M(x,\xi) = \begin{pmatrix} \varepsilon_1 & & \\ & \ddots & \\ & & \mu_3 \end{pmatrix} \cdot \begin{pmatrix} & \xi \times I \\ -\xi \times I & \end{pmatrix}$$

• $h_{\pm}: T^*M \to \mathbb{R}$ are continuous functions such that

$$\sigma(M(x,\xi)) = \pm \{0, h_{+}(x,\xi), h_{-}(x,\xi)\},\$$

and $h_{\pm}(x,\xi) \geq 0$.

• $\sigma(M(x,\xi))$ is coordinate invariant, but h_{\pm} are not well defined.

Example: In isotropic media, $\varepsilon = \varepsilon(x)I$, $\mu = \mu(x)I$,

$$h_{\pm}(x,z) = \frac{1}{\sqrt{\varepsilon(x)\mu(x)}} ||z||.$$

Computer algebra: If $(x,\xi) \in T^*M$ and $\eta = \det R \ R \cdot \xi$, then

 $\lambda \in \sigma(M(x,\xi))$ if and only if

$$\lambda^{2} (\lambda^{4} - ||S \cdot \eta||^{2} \lambda^{2} + ||F \cdot \eta||^{2} ||N \cdot \eta||^{2}) = 0,$$

where

$$e_i = 1/\sqrt{\varepsilon_i}, \quad m_i = 1/\sqrt{\mu_i},$$

$$e_i = 1/\sqrt{\varepsilon_i}, \quad m_i = 1/\sqrt{\mu_i},$$

$$S = \operatorname{diag}\left(\sqrt{e_2^2 m_3^2 + e_3^2 m_2^2}, \sqrt{e_1^2 m_3^2 + e_3^2 m_1^2}, \sqrt{e_1^2 m_2^2 + e_2^2 m_1^2}\right),$$

$$F = \text{diag } (e_2e_3, e_1e_3, e_1e_2),$$

$$N = \text{diag}(m_2m_3, m_1m_3, m_1m_2),$$

 $\sqrt{\cdot}$ is the pos. square root,

 $\|\cdot\|$ Euclidean norm.

• Quadratic solution formula:

$$\sigma(M(x,\xi)) = \pm \left\{ 0, \frac{1}{\sqrt{2}} \sqrt{\|S \cdot \eta\|^2 \pm \sqrt{D(x,\xi)}} \right\}, \tag{1}$$

where \pm -signs are independent and D is the 4-homogeneous polynomial

$$D(x,\xi) = ||S \cdot \eta||^4 - 4||F \cdot \eta||^2 ||N \cdot \eta||^2.$$

• This gives

$$h_{\pm}(x,\xi) = \frac{1}{\sqrt{2}} \sqrt{\|S \cdot \eta\|^2 \pm \sqrt{D(x,\xi)}}.$$

The Δ_{ij} -symbols

• For i, j = 1, 2, 3 let

$$\Delta_{ij} = e_i^2 m_j^2 - e_j^2 m_i^2.$$

- If two Δ_{ij} -symbols vanish, then all symbols vanish.
- 3 possibilities: all $\Delta_{ij} = 0$, one $\Delta_{ij} = 0$, none $\Delta_{ij} = 0$.
- h_{\pm} -functions behave qualitatively differently depending on how many of the Δ_{ij} -symbols vanish.
- Computer algebra:

$$D = (\Delta_{23}\xi_1^2 + \Delta_{13}\xi_2^2 + \Delta_{12}\xi_3^2)^2 - 4\Delta_{12}\Delta_{23}\xi_1^2\xi_3^2$$

$$= (\Delta_{23}\xi_1^2 + \Delta_{13}\xi_2^2 + \Delta_{21}\xi_3^2)^2 - 4\Delta_{21}\Delta_{13}\xi_2^2\xi_3^2$$

$$= (\Delta_{32}\xi_1^2 + \Delta_{13}\xi_2^2 + \Delta_{12}\xi_3^2)^2 - 4\Delta_{13}\Delta_{32}\xi_1^2\xi_2^2.$$

The three media classes

Proposition 0.1 (Characterization of media I, Δ_{ij} all zero)

The following are equivalent:

- 1. All Δ_{ij} -symbols vanish.
- 2. At least two Δ_{ij} -symbols vanish.
- 3. $h_{+} = h_{-}$
- 4. The medium matrices satisfy

$$\varepsilon = \rho \mu$$

for some $\rho > 0$.

Proposition 0.2 (Characterization of media II) The following are equivalent:

- 1. At least one of the Δ_{ij} -symbols vanishes.
- 2. $h_{\pm} = \sqrt{pos. \ def. \ quadratic \ form}$
- 3. h_{\pm} are smooth on $\mathbb{R}^3 \setminus \{0\}$.
- 4. h_{-} is convex on \mathbb{R}^{3} .

Characterization of media III: All $\Delta_{ij} \neq 0$

Examples

$$\Delta_{23} = 0$$
, that is, $\varepsilon_3 \mu_2 = \varepsilon_2 \mu_3$

$$g_{+,ij}(x) = (R^{-1} \cdot \operatorname{diag}(\varepsilon_3 \mu_2, \varepsilon_1 \mu_3, \varepsilon_1 \mu_2) \cdot R)_{ij}$$

$$g_{-,ij}(x) = (R^{-1} \cdot \operatorname{diag}(\varepsilon_3 \mu_2, \varepsilon_3 \mu_1, \varepsilon_2 \mu_1) \cdot R)_{ij}$$

Media:
$$(\varepsilon_1, \varepsilon_2, \varepsilon_2), (\mu_1, \mu_2, \mu_2),$$

$$g_{+,ij}(x) = \mu_2(R^{-1} \cdot \operatorname{diag}(\varepsilon_2, \varepsilon_1, \varepsilon_1) \cdot R)_{ij}$$

$$g_{-,ij}(x) = \varepsilon_2(R^{-1} \cdot \operatorname{diag}(\mu_2, \mu_1, \mu_1) \cdot R)_{ij}$$

Media: $(\varepsilon_1, \varepsilon_2, \varepsilon_2), (\mu_1, \mu_1, \mu_1),$

$$g_{+,ij}(x) = \mu_2(R^{-1} \cdot \text{diag } (\varepsilon_2, \varepsilon_1, \varepsilon_1) \cdot R)_{ij}$$

 $g_{-,ij}(x) = \varepsilon_2 \mu_2 \delta_{ij}$

Media: $(\varepsilon_1, \varepsilon_1, \varepsilon_1), (\mu_1, \mu_1, \mu_1),$

$$g_{\pm,ij} = \varepsilon_1 \mu_1 \delta_{ij}$$