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Mathematical setting
M is a manifold
TM is the tangent bundle
TM \ {0} is the slashed tangent bundle

The Problem
Suppose F is a diffeomorphism

F : TM \ {0} → TM \ {0}.

Characterize those F that can be written as

F = Dφ|TM\{0}.

for a diffeomorphism φ : M → M.

When φ exists, one say that F descends.

Note: Uniqueness result for inverse problems in anisotropic media
= existence result of isometry
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Canonical involution in the second tangent bundle

Definition: Let M be a manifold. Then the canonical involution is the
diffeomorphism

κ : TTM → TTM

that is locally given by

κ(x , y ,X ,Y ) = (x ,X , y ,Y ).

Note:
κ2 = identity.
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First main theorem:
If M is a manifold and F is a diffeomorphism

F : TM \ {0} → TM \ {0},

then the following are equivalent:
(i) There exists a diffeomorphism φ : M → M such that

F = Dφ|TM\{0}.

(ii) DF = κ ◦ DF ◦ κ
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A related result

Theorem [Robbin-Weinstein-Lie]:
Let F be a diffeomorphism

F : T ∗M → T ∗M.

Then the following are equivalent:
(i) F = φ∗ for a diffeomorphism φ : M → M.
(ii) F ∗θ = θ.

Here:
φ∗ = pullback of φ, φ(x , ξ) =

(
(φ−1)i(x), ∂(φ−1)i

∂xa ξi

)
θ = canonical 1-form θ ∈ Ω1(T ∗M), θ = ξidx i
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Suppose: DF = κ ◦ DF ◦ κ.
Claim: There exists a map φ : M → M such that F = Dφ|TM\{0}.

Proof: Let locally F (x , y) = (F1(x , y),F2(x , y)) . Then
DF (x , y ,X ,Y )

=

(
F1(x , y),F2(x , y),

∂F1

∂xa (x , y)X a +
∂F1

∂ya (x , y)Y a,

∂F2

∂xa (x , y)X a +
∂F2

∂ya (x , y)Y a
)
,

κ ◦ DF ◦ κ(x , y ,X ,Y )

=

(
F1(x ,X ),

∂F1

∂xa (x ,X )ya +
∂F1

∂ya (x ,X )Y a,F2(x ,X ),

∂F2

∂xa (x ,X )ya +
∂F2

∂ya (x ,X )Y a
)
.

First components: F1(x , y) = F1(x ,X ). Thus F1(x , y) does not
depend on y . Set φ(x) = F1(x , y).
Second components: F2(x , y) = ∂φ

∂xa (x)ya. Thus F = Dφ|TM\{0}.
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Second main theorem:
Suppose M is a connected manifold with dim M ≥ 2 and F is a
diffeomorphism

F : TM \ {0} → TM \ {0}.

If M has two complete Riemann metrics g and g̃ such that
(i) g has a trapping hypersurface Σ ⊂ M ⇔ Every geodesic of g

intersects Σ

(ii) for all p ∈ Σ,
gij(p) = g̃ij(p), Γi

jk (p) = Γ̃i
jk (p),

DF (ξ) = ξ, ξ ∈ T (TpM \ {0})

(iii) If J : I → TM \ {0} is a Jacobi field for g then
F ◦ J : I → TM \ {0} is a Jacobi field for g̃.

Then there exists a diffeomorphism φ : M → M such that
F = Dφ|TM\{0} and φ is an isometry.
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Addendum: Outline of proof:

1. F preserves integral curves since:
- every integral curve is a Jacobi field
- F preserves Jacobi fields
- Γi

jk = Γ̃i
jk and DF = Id on Σ

2. DF = κ ◦ DF ◦ κ since:

- F preserves Jacobi fields
- F preserves integral curves

3. Thus there exists a diffeomorphism φ : M → M such that
F = Dφ|TM\{0}.

4. φ is totally gedesic since:

- F = Dφ|TM\{0} preserves integral curves

5. Proposition: Let M be a connected manifold with two Riemann
metrics. If φ : M → M is totally geodesic and φ is an isometry at
one point, then φ is an isometry.
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