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In our examples, a sound signal is represented as a function

g : R → [−1, 1],

where the real variable is time (measured in seconds), and the value g(t0) refers to
a non-scaled deviance from the surrounding air pressure at time t0.

The standard air pressure is 1013 mBar (millibars). For human beings, the threshold
of pain at audible frequencies corresponds to the air pressure variation of less than
1 mBar. Consequently, we may think that g(t) corresponds to the air pressure

(1013 + g(t)) mBar.

The threshold of hearing at audible frequencies is roughly 10−6 mBar (i.e. 0.000001
mBar, a millionth of 1 mBar), so that a vibration g with the amplitude lower than
10−6 is inaudible as far as we can tell.

The frequency of a sound signal within a time period is the momentary number of
oscillations per second, measured in Hertz, abbreviated Hz. This is readily under-
stood for sinusoidal vibrations like

g(t) = sin(kt) :

here the frequency is k/(2π) Hz, where π ≈ 3.14159. For humans, audible fre-
quencies range from 20 to 20000 Hz. Now let the signal g have the form

g(t) = sin(w(t))

for some smooth-enough function w : R → R. If w is increasing or decreasing
within the time period [t0, t0 + h], then there are about |w(t0 + h) − w(t0)|/(2π)
vibrations during this time interval of h seconds. Thus, within this time interval the
average frequency is

|w(t0 + h) − w(t0)|
2πh

,
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and if we let the variable h tend to 0, we get the frequency of the signal g at the time
instant t0:

lim
h→0

|w(t0 + h) − w(t0)|
2πh

=
|w′(t0)|

2π
;

the instantaneous frequency is the absolute value of the derivative of w divided by
2π.

Sound signals

The sampling rate is 1/δ = 44100 Hz and the unit for the variable t is seconds.

White noise (4a)

The characteristic for the white noise is that the samples of the signal are uncor-
related random numbers distributed uniformly over [−1, 1]. Thus this noise does
not vary in time, and all the possible frequencies are present with equal magnitude;
the closest everyday instance is the sound of an untuned TV or radio channel. The
noises encountered in nature are typically coloured, i.e. some frequency ranges are
prevalent: for instance, a hum of a wind, sizzling of boiling water, etc.

S
1 (2c) and S

1000000 (1d)

Of the nine sounds, only two were instrumental-like. These are the sounds of S
1

and S
1000000 ringing. To distinguish these two from each other, a first observation

is that one signal sounded like a plucked string and the other like a bell. We know
that plucked string instruments have harmonic overtones. It also holds that bells
(together with gongs) do not have harmonic overtones. Suppose ∆ is the Laplace
operator on S

n with respect of the metric induced from R
n+1. We assume known

that the eigenvalues of −∆ on S
1 are 1, 2, 3, . . .. This implies that the sound of S

1

has harmonic overtones. From this it follows that S
1 has the sound of a plucked

string. Therefore, by exclusion, S
1000000 must sound like a bell.

Generally, the eigenvalues of −∆ on S
n are λk =

√

k(k + n − 1) for k = 0, 1, 2, . . .,
and the sound of S

n was defined as

g(t) = e−t

∞
∑

k=1

2−k sin
(

2π220
λk

λ1

t
)

.

Here, we have normalized the eigenvalues, such that the fundamental frequency of
the signal is always 220 Hz. For n = 1, we obtain λk

λ1

= 1, 2, 3, . . .. On the other
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Figure 1: Exponential decay of the S
1 signal(2c) and the first 10 ms of the signal.
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Figure 2: First 100 ms of the S
1000000 vibrations (1d). In this signal, there is no

period.

hand, when n is very large, we have

λk

λ1

=

√

k(k + n − 1)

n

=

√

k2 − k

n
+ k

≈
√

k,

so S
1000000 does not have harmonic overtones.

Amplitude modulation (6e)

g(t) =
sin

(

40 sin(2π10t)
)

1 + sin sin t
.

This signal was the only signal with a clear variation in volume. This can be seen
from the relatively slowly oscillating denumerator, which varies between 1−sin 1 ≈
0.16 and 1 + sin 1 ≈ 1.84. See Figure 3.
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Figure 3: The first figure shows the amplitude modulation (6e), the second shows
the signal for the first 100 ms, and the last shows the instantaneous frequency over
the first 0.15 s.
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Topologist’s sinusoid (7b)

g(t) = sin
(

2π 50
1

t

)

.

At t = 0, the signal has infinite instantaneous frequency, which smoothly drops
below the audible range in less than 2 seconds. This results into a familiar sci-fi
sound effect. See Figure 4.

Karplus–Strong (5i)

g(t) =

{

sin 9πt

2∆
, when t < ∆,

1

2

(

g(t − ∆) + g(t + δ − ∆) · (S ◦ g)(t − ∆)
)

, when t ≥ ∆.

Here ∆ = 10 ms and S(t) = sign sin sinh(100 t).

This function is an implementation of the Karplus-Strong algorithm, which is a
standard algorithm for producing plucked string and drum sounds. The algorithm
starts with an initial signal (here sin 9πt

2∆
for t ∈ (0, ∆)), which is inductively mutated

using the lower branch in the definition. With good accuracy, S randomly takes
values +1 and −1. Thus in the copy process, the signal is randomly passed through
a lowpass filter (when S = 1), or a highpass filter (when S = −1). In effect, the
sound becomes noisier over time while its amplitude decays. See Figure 5.

Recurring pulse with increasing frequency (3f)

g(t) = sin

(

2π100 sin50

(

2 sinh
t

4

) )

.

Since sin50 is almost zero for most of the time, this signal contains pulses, and since
sinh grows exponentially, these pulses become more frequent over time. Also, from
the expression for the instantaneous frequency, one can see that the frequency of the
signal grows exponentially. This effect can be seen in Figure 6.

Frequency modulation (8g)

g(t) = sin
(

150t2 + 70 sin(2π 40
√

t)
)

.

For this sound, the instantaneous frequency is
∣

∣

∣

∣

1

2π

(

300t + 2800π
cos(2π40

√
t)√

t

)
∣

∣

∣

∣

.

6



0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

A
m

pl
itu

de

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time [s]

In
st

an
ta

ne
ou

s 
fr

eq
ue

nc
y 

[H
z]

Figure 4: Topologist’s sinusoid (7b): entire signal and a plot of the instantaneous
frequency.
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Figure 5: Karplus-Strong (drum sound) (5i).
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Figure 6: Instantaneous frequency for (3f).

Due to the 1√
t
-term, the signal starts with infinite frequency which rapidly drops.

For large t, the 300t-term dominates. The overall effect is that the instantaneous
frequency is oscillating and the longterm average frequency is slowly rising. This
can be seen in Figure 7.

Squeak sound (9h)

g(t) =

{

0, when t < 0,
sin

(

4πt + g(t − 3δ) − t

20
g(t − 2δ) + g(t − δ)

)

, when t ≥ 0.

Using induction, one may show that g is continuous. Moreover, g is infinitely
smooth except for t = 0,±δ,±2δ, . . ..

Here, we have sampled the function at t = 0, δ, 2δ, . . ., that is, at the points where
g is continuous, but not necessarily smooth. This sound contains periodic clicks
occurring twice a second. It can therefore be recognized from the 4πt term.

To analyze this sound, let us define highpass and lowpass filters Hδ and Lδ, respec-
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Figure 7: Instantaneous frequency for (8g).
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tively. For a signal h, these filters are defined as

Hδh(t) =
h(t) − h(t − δ)

2
,

Lδh(t) =
h(t) + h(t − δ)

2
.

Suppose h(t) = sin(2πωt). Then using the summation formulas for sin and cos one
can show that

Hδh(t) = sin(πωδ) sin

(

2πω(t − δ

2
) +

π

2

)

≈ sin(πωδ) h(t),

Lδh(t) = cos(πωδ) sin

(

2πω(t − δ

2
)

)

≈ cos(πωδ) h(t),

where, in the approximations, we have assumed that δ is much smaller than ω. In
both cases, we see that the original signal is scaled by a function depending of the
angular frequency ω of h. Such a function is called a frequency response function.
Figure 8 shows how these filters indeed single out the high and low frequency com-
ponents of h. Note that the range of audible frequencies is roughly 20 to 20000 Hz.
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Frequency response for lowpass filter

Figure 8: Lowpass and highpass frequency responses.

Figure 9 shows the sound filtered through the lowpass and highpass filters, respec-
tively. Figure 10 shows the sound passed through both of these filters. (The filters
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commute, LδHδ = HδLδ = 1

2
H2δ, so the order is irrelevant.) In Figure 10, the

clicks and squeaks are clearly seen.

Figure 11 shows zooms of some squeaks in the original signal.
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Figure 9: Lowpass and highpass filtered squeak sound (9h).
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Figure 10: Squeak sound (9h), both lowpass and highpass filtered.
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Figure 11: Zooms of the eighth and tenth period of the squeak sound (9h).
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