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Abstract

We study Maxwell’s equations on a 4-manifold where the electromagnetic
medium is modelled by an antisymmetric

(
2
2

)
-tensor with real coefficients.

In this setting the Fresnel surface is a fourth order polynomial surface that
describes the dynamical response of the medium in the geometric optics
limit. For example, in isotropic medium the Fresnel surface is a Lorentz
null cone. The contribution of this paper is the pointwise description of
all electromagnetic medium tensors κ with real coefficients that satisfy the
following three conditions:

(i) medium κ is invertible,

(ii) medium κ is skewon-free, or non-dissipative,

(iii) the Fresnel surface of κ is the union of two distinct Lorentz null cones.

We show that there are only three classes of media with these properties
and give explicit expressions in local coordinates for each class.
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We will study Maxwell’s equations on an orientable 4-manifold N where
the electromagnetic medium is represented by a suitable tensor κ on N .
We also assume that the medium is non-dissipative (or skewon-free). An
advantage of this formulation is that at each point in N , the medium may
depend on up to 21 real parameters. This freedom allows the modelling of
a wide array of different anisotropic behaviour including magneto-electric
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effects. In this setting, the Fresnel surface is a fourth order polynomial sur-
face that describes the dynamical response of the medium in the geometric
optics limit. Classically, the Fresnel surface can be seen as the analogue of
the dispersion equation, which parameterises signal speeds as a function of
direction [1, 2, 3]. For example, in isotropic medium the Fresnel surface is
a Lorentz null cone. In general the Fresnel surface is a fourth order surface
and can have multiple sheets and singular points.

From the above we see that there are two ways to describe an electromag-
netic medium: One description is the tensor κ that prescribes the coefficients
in Maxwell’s equations. This is the information required to solve the initial
value problem for Maxwell’s equations. The second description is the Fres-
nel surface of κ that gives the dynamical response of the medium for high-
frequency waves. If κ is known we can compute the Fresnel surface by an
explicit equation (see equation (11) below). A less well understood problem
is the converse dependence, or inverse problem [4, 5]: If the Fresnel surface of
a medium is known at a point p ∈ N , what can we say about the coefficients
in κ|p? In other words, if the behaviour of signal speed for an electromag-
netic medium is known, what can we say about the anisotropic structure of
the medium? In general, this relation is not well understood, and therefore
it is motivated to consider the problem under additional assumptions. The
purpose of this paper we study the special case when the Fresnel surface
is two distinct Lorentz null cones. For example, this is the characteristic
behaviour for signal speed in uniaxial crystals like calcite (CaCO3). In such
media, propagation does not only depend on direction, but can also depend
on the polarisation of the wave. That is, the medium can be birefringent,
and each of the two Lorentz null cones describes the signal speed behaviour
for different modes of polarisation.

The main result of this paper is Theorem 2.1. It gives the complete
pointwise description of all medium tensors κ with real coefficients for which

(i) medium κ is invertible,

(ii) medium κ is skewon-free, that is, non-dissipative,

(iii) the Fresnel surface of κ is the union of two distinct Lorentz null cones.

We show that there are only three medium classes with these properties
and give explicit expressions in local coordinates for each class. The first
class is a generalisation of uniaxial medium. The second and third classes
do not seem to have been studied before. The second class has the peculiar
property that a wave can propagate with three different phase velocities in
the same direction.
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Regarding the related problem of characterising media with a single
Lorentz null cone, see Section 1.2. For a further discussions and results
on the factorisability of the Fresnel surface, see [6, 7] and in 3 dimensions
[8, 9]. Of these [6], also studies the question in the presence of a skewon-
component.

The main idea of the proof is as follows. We will use the normal form
theorem by Schuller, Witte and Wohlfarth [10], which pointwise divides area
metrics into 23 metaclasses and gives explicit expressions in local coordinates
for each metaclass [10]. This result was also used in [11], and by [10] we
only need to consider the first 7 metaclasses. For each of these metaclasses,
the Fresnel surface can be written as Fp(κ) = {ξ ∈ R4 : f(ξ) = 0} for a
homogeneous 4th order polynomial f : R4 → R with coefficients determined
by κ|p. By the assumption f factors as

f(ξ) = f+(ξ)f−(ξ), ξ ∈ R4,

where f± are quadratic forms f± : R4 → R with Lorentz signatures. By
identifying coefficients we obtain a system of polynomial equations in co-
efficients of f and f±. In the last step we eliminate the coefficients in f±
from these equations whence we obtain constraints on f (and hence on κ|p).
To eliminate variables we use the technique of Gröbner bases, which is a
computer algebra technique for manipulating polynomial equations.

A limitation of Theorem 2.1 is that the explicit expression is only valid
at a point. The reason for this is that the normal form theorem in [10]
essentially relies on the Jordan normal form theorem for matrices, which is
unstable under perturbations. Another limitation is that we do not allow for
complex coefficients in κ which is common when working with time harmonic
fields.

This paper relies on computations by computer algebra. Mathematica
notebooks for these computations can be downloaded from the author’s
homepage.

1. Maxwell’s equations

By N we denote a 4 dimensional smooth manifold. Moreover, we will
assume that N is orientable and oriented so an oriented atlas has been
fixed for N . Unless otherwise specified, all local coordinates for N will be
assumed to be compatible with this chosen atlas. All objects are assumed
to be smooth and real where defined. Let TN and T ∗N be the tangent
and cotangent bundles, respectively. For k ≥ 1, let Λk(N) be the set of
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antisymmetric k-covectors, so that Λ1(N) = T ∗N . Also, let Ωk
l (N) be

(
k
l

)
-

tensors fields that are antisymmetric in their k upper indices and l lower
indices. In particular, let Ωk(N) be the set of k-forms. Let C∞(N) be
the set of functions. The Einstein summing convention is used throughout.
When writing tensors in local coordinates we assume that the components
satisfy the same symmetries as the tensor.

1.1. Maxwell’s equations on a 4-manifold

By an electromagnetic medium on N we mean an antisymmetric
(
2
2

)
-

tensor κ ∈ Ω2
2(N). Then we can treat κ as a map

κ : Ω2(N) → Ω2(N) (1)

and we say that fields F,G ∈ Ω2(N) solve the sourceless Maxwell’s equations
if

dF = 0, (2)

dG = 0, (3)

G = κ(F ), (4)

where d is the exterior derivative on N . Equation (4) is known as the
constitutive equation and acts as the model for the electromagnetic medium.
In this model, the medium is assumed to be linear, smoothly varying and
with a pointwise response.

Let us make two comments regarding this formulation. First, since we
assume N to be oriented, we may assume that F,G and κ are usual ten-
sors and not twisted tensors [1, 2]. Second, a key motivation for the above
formulation is that it allows us to write Maxwell’s equations with as little
mathematical structure as possible. For example, the above formulation is
independent of any geometric structure like a Lorentz metric. Therefore the
formulation is also known as the premetric formulation for electrodynamics.
In special cases, N may have a Lorentz metric that describes a gravitational
field. However, in the above formulation any such gravitational effects on
electrodynamics is assumed to be contained in κ. For a systematic presen-
tation, see [1, 2].

Let {xi}3i=0 be coordinates for N . We can then write

κ =
1

2
κijlmdx

l ⊗ dxm ⊗ ∂

∂xi
⊗ ∂

∂xj
, (5)

F = Fijdx
i ⊗ dxj and G = Gijdx

i ⊗ dxj , whence equation (4) reads

Gij =
1

2
κrsij Frs. (6)
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At each point on N , a general antisymmetric
(
2
2

)
-tensor κ depends on 36

free real components. In coordinates, it will be convenient to represent these
components by a smoothly varying 6 × 6 matrix. To do this, let O be the
ordered set of index pairs {01, 02, 03, 23, 31, 12}. If I ∈ O, we denote the
individual indices by I1 and I2. Say, if I = 31 then I2 = 1. Let also
dxI = dxI1 ∧ dxI2 . Then a local basis for Ω2(N) is given by {dxJ : J ∈ O},
that is, by

{dx0 ∧ dx1, dx0 ∧ dx2, dx0 ∧ dx3, dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2}, (7)

and equation (6) can be rewritten as

κ(dxJ) =
∑
I∈O

κJI dx
I , J ∈ O, (8)

where κJI = κJ1J2I1I2
. It follows that κ is locally determined by components

{κJI : I, J ∈ O}. By identifying O with indices {1, 2, . . . , 5, 6} and treating
I as a row index and J as a column index, these components define a 6× 6
matrix that we denote by (κJI )IJ .

To understand the physical interpretation of the different components
in (κJI )IJ , let us treat coordinate x0 as the time variable on N . Then we
may locally decompose F and G into temporal and spatial components and
write F = B+E ∧ dx0 and G = D−H ∧ dx0 for suitable forms B,E,D,H.
If we further define

E = (F10, F20, F30), B = (F23, F31, F12),

H = (G01, G02, G03), D = (G23, G31, G12),

then equations (2)–(3) are the usual Maxwell’s equations in R3 for vector
fields E,D,B,H. Moreover, equation (6) reads

(
H
D

)
=



κ0101 κ0201 κ0301 κ2301 κ3101 κ1201
κ0102 κ0202 κ0302 κ2302 κ3102 κ1202
κ0103 κ0203 κ0303 κ2303 κ3103 κ1203
κ0123 κ0223 κ0323 κ2323 κ3123 κ1223
κ0131 κ0231 κ0331 κ2331 κ3131 κ1231
κ0112 κ0212 κ0312 κ2312 κ3112 κ1212

 ·
(
−E
B

)

=

(
C t Bt

A t D t

)
·
(
−E
B

)
, (9)

where A ,B,C ,D are suitably defined 3×3 matrices [2, Section D.1.7], and
t denotes the usual matrix transpose. In other words, the 6 × 6 matrices
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in equation (9) represent the map (1) with respect to the basis (7). From
equation (9) we also see that −A t correspond to the permittivity matrix,
B−t (when invertible) corresponds to the permeability matrix and matrices
C and D correspond the the magneto-electric effect [1, 2, 10, 12, 13].

The medium is called axion-free if traceκ = 0 [2, 14]. In the main result
of this paper (Theorem 2.1) we will assume that κ is skewon-free, that is,

κ(u) ∧ v = u ∧ κ(v), for all u, v ∈ Ω2
2(N),

or in coordinates, A = A t, B = Bt and C = D t for the matrices in
equation (9). This symmetry reduces κ to only 21 free components at each
point [2]. Physically, such medium describe non-dissipative medium. For
example, in skewon-free medium Poynting’s theorem holds under suitable
assumptions.

Let us note that invertible skewon-free media are essentially in a one-
to-one correspondence with area metrics. See [10] and [15, Proposition 2.4].
Area metrics also appear when studying the propagation of a photon in a
vacuum with a first order correction from quantum electrodynamics [10, 16].
The Einstein field equations have also been generalised into equations where
the unknown field is an area metric [17]. For further examples, see [3, 10]
and for the differential geometry of area metrics, see [17, 18].

1.2. The Fresnel surface

Let κ ∈ Ω2
2(N). In this section we define the Fresnel surface of κ, which

describes the dynamical response of κ in the geometric optics limit. If κ is
locally given by equation (5) in coordinates {xi}3i=0, let

G ijkl
0 =

1

48
κa1a2b1b2

κa3ib3b4
κa4jb5b6

εb1b2b5kεb3b4b6lεa1a2a3a4 ,

where εl1···ln and εl1···ln are the Levi-Civita permutation symbols. In overlap-
ping coordinates {x̃i}3i=0, these coefficients transform as

G̃ ijkl
0 = det

(
∂xr

∂x̃s

)
G abcd
0

∂x̃i

∂xa
∂x̃j

∂xb
∂x̃k

∂xc
∂x̃l

∂xd
. (10)

Components G ijkl
0 thus define a tensor density G0 on N of weight 1. The

Tamm-Rubilar tensor density is the symmetric part of G0 and we denote

this tensor density by G [1, 2, 5]. In coordinates, G ijkl = G
(ijkl)
0 , where

parenthesis indicate that indices ijkl are symmetrised with scaling 1/4!.
Using tensor density G , the Fresnel surface at a point p ∈ N is defined as

Fp(κ) = {ξ ∈ T ∗pN : G ijklξiξjξkξl = 0}. (11)
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In each cotangent space, the Fresnel surface Fp(κ) is a homogeneous fourth
order polynomial surface, so it can have multiple sheets and singular points.
There are various ways to derive the Fresnel surface: by studying a propa-
gating weak discontinuity [1, 2, 19], using geometric optics [5, 20], or as the
characteristic polynomial of the full Maxwell’s equations [10]. Classically,
the Fresnel surface can be seen as the dispersion equation for a medium, so
that it constrains possible wave speed(s) as a function of direction.

By a pseudo-Riemann metric on N we mean a symmetric
(
0
2

)
-tensor g

that is non-degenerate. If N is not connected we also assume that g has
constant signature. By a Lorentz metric we mean a pseudo-Riemann with
signature (− + ++) or (+ − −−). At p ∈ N we define the null cone for a
pseudo-Riemann metric g as the set

Np(g) = {ξ ∈ T ∗pN : g(ξ, ξ) = 0}.

If g is a pseudo-Riemann metric on N , then the Hodge star operator is
the

(
2
2

)
-tensor κ = ∗g ∈ Ω2

2(N) with components

κijrs =
√
|det g| giagjbεabrs (12)

when κ is written as in equation (5), g = gijdx
i ⊗ dxj , det g = det gij and

gij is the ijth entry of (gij)
−1. One can show that ∗g is both skewon-free

and axion-free.
The importance of the Hodge star operator is that it gives a model for

isotropic electromagnetic medium. For example, if ε, µ > 0 and g is the

Lorentz metric g = diag(−1εµ , 1, 1, 1) on R4 then κ =
√

ε
µ ∗g is the medium

tensor for isotropic medium with permittivity ε and permeability µ. More
generally, we will say that κ ∈ Ω2

2(N) is isotropic if κ = f∗g for a non-zero
function f ∈ C∞(N) and a Lorentz metric g. For such an isotropic medium
κ = f∗g, we know that electromagnetic waves propagate along null-geodesics
of g. That is, the dynamical response of κ is modelled by Lorentz geometry
and

Fp(κ) = Np(g), p ∈ N. (13)

The converse claim is that isotropic medium is the only skewon-free and
axion-free medium tensor κ for which equation (13) holds for some Lorentz
metric g. This is a conjecture that has been formulated and studied in a
number of papers [1, 19, 21, 22, 23]. See also the book [2] by Hehl and
Obukhov. The conjecture has been proven in a number of cases: when
C = 0 (see equation (9)) by Obukhov, Fukui and Rubilar [19] and for a
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special class of nonlinear media by Obukhov and Rubilar [23]. Also, on
the level of the Fresnel polynomial, Favaro and Bergamin [11] have shown
that isotropic medium (as defined above) is the only class of skewon-free
and axion-free medium tensors with a bi-quadratic Fresnel polynomial of
Lorentzian signature. For additional results and discussions, see also [2, 4,
5, 24, 25, 26]. In particular, we refer to [5] for a description on how the
argument below changes to characterising medium with one Lorentz null
cone. Let us here note that when the Fresnel surface decomposes into two
distinct Lorentz null cones, then Propositions 1.3 and 1.4 below show that
the Fresnel polynomial G ijklξiξjξkξl factors into two Lorentzian quadratic
forms that essentially are uniquely determined. However, if Fp(κ) is only
one Lorentz null cone, then only one Lorentzian quadratic factor is uniquely
determined up to scaling. Since the Fresnel surface only contains the real
roots, one can not determine the second factor from Fp(κ) alone since it
could (without a further analysis [5]) be a positive definite factor like ξ20 +
ξ21 + ξ22 + ξ23 . See [5, Example 4.2].

1.3. Fresnel surfaces that decompose into two Lorentz null cones

For the remainder of this paper, we will study medium tensors for which
the Fresnel surface can be written as the union of two Lorentz null cones.
Let us therefore make the following definition.

Definition 1.1. Suppose κ ∈ Ω2
2(N). At p ∈ N we say that the Fresnel

surface of κ decomposes into two Lorentz null cones if there exists Lorentz
metrics g+ and g− defined in a neighbourhood of p such that

Fp(κ) = Np(g+) ∪ Np(g−) (14)

and Np(g+) 6= Np(g−).

Let us make two comments regarding this definition. First, we know
that two Lorentz metrics are conformally related if and only if their null
cones coincide [27]. The condition Np(g+) 6= Np(g−) thus excludes the case
Fp(κ) = Np(g±) which corresponds to a single Lorentz null cone. Second,
the typical example of a medium where the Fresnel surface decomposes into
two Lorentz null cones is a uniaxial crystal like calcite. The characteristic
difference between isotropic media and uniaxial crystals is that the latter
show birefringence, that is, due to the multiple sheets in the Fresnel surface,
propagation speed can not only depend on direction of propagation, but also
on the polarisation of the wave.
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In the next section we will prove Theorem 2.1, which shows that in
addition to uniaxial-type media there are two (and only two) additional
medium classes where the Fresnel surface decomposes into two Lorentz null
cones. We next collect three propositions that we will need in the proof of
Theorem 2.1. To prove of these propositions we will need some terminology
from algebraic geometry. If k = R or k = C, we denote by k[x1, . . . , xn] the
ring of polynomials kn → k in variables x1, . . . , xn. Moreover, a non-constant
polynomial f ∈ k[x1, . . . , xn] is irreducible if f = uv for u, v ∈ k[x1, . . . , xn]
implies that u or v is a constant. For a polynomial r ∈ k[x1, . . . , xn], let
V (r) = {x ∈ kn : r(x) = 0} be the variety induced by r, and let 〈r〉 = {fr :
f ∈ k[x1, . . . , xn]} be the the ideal generated by r. For what follows the
necessary theory for manipulating these objects can, for example, be found
in [28].

By a result of Montaldi [29], a Lorentz null cone can not contain a vector
subspace of dimension ≥ 2. The next proposition generalises this result to
Fresnel surfaces that decompose into two Lorentz null cones.

Proposition 1.2. Suppose g± are Lorentz metrics on a 4-manifold N . If
Γ ⊂ T ∗pN is a non-empty vector subspace such that Γ ⊂ N(g+) ∪ N(g−),
then dim Γ ≤ 1.

Proof. By [29, Proposition 2]) we may assume that g+ and g− are not confor-
mally related. If dim Γ ≥ 2, we can find linearly independent u, v ∈ Γ such
that span{u, v} ⊂ N(g+)∪N(g−). We may further assume that u ∈ N(g+).
Let

U = {θ ∈ R : cos θu+ sin θv 6∈ N(g−)}.

For w ∈ T ∗N let us write ‖w‖2 = g+(w,w). If U is empty, then span{u, v} ⊂
N(g−) and the result follows from the special case. Otherwise there exists
a θ0 ∈ U so that ‖ cos θu + sin θv‖2 = 0 for all θ in some neighbourhood
I0 3 θ0. Differentiating gives

1

2

(
‖v‖2 − ‖u‖2

)
· sin 2θ + g+(u, v) · cos 2θ = 0, θ ∈ I0.

By computing the Wronskian, it follows that 0 = ‖u‖2 = ‖v‖2 and g+(u, v) =
0. Thus span{u, v} ⊂ N(g+), but this contradicts [29, Proposition 2].

For two Lorentz metrics g and h we know that their null cones N(g) and
N(h) coincide if and only if g and h are conformally related [27, Theorem 3].
The next two propositions give an analogous uniqueness result for Fresnel
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surfaces that decompose into two Lorentz null cones. Let us emphasize that
these results are pointwise. For example, in equation (15) the two sides have
different transformation rules.

Proposition 1.3. Suppose κ ∈ Ω2
2(N), and the Fresnel surface of κ de-

composes into two Lorentz null cones at p ∈ N . If {xi}3i=0 are coordinates
around p, G ijkl are components for the Tamm-Rubilar tensor density for κ,
and g± = g± ijdx

i ⊗ dxj are as in Definition 1.1, then

G ijklξiξjξkξl = C (gij+ξiξj) (gkl− ξkξl) at p, {ξi}3i=0 ∈ R4, (15)

for some C ∈ R\{0}.

Proof. Let γ : R4 → R be the polynomial γ(ξ) = G ijklξiξjξkξl for ξ =
(ξi)

3
i=0 ∈ R4. Then the following holds:

(∗) If G = (Gij)3i,j=0 ∈ R4×4 has Lorentz signature and if

{ξ ∈ R4 : γ(ξ) = 0} ⊃ N for N = {ξ ∈ R4 : Gijξiξj = 0} (16)

then there exists a quadratic form H = (H ij)3i,j=0 ∈ R4×4 such that

γ(ξ) = (Gijξiξj)(H
klξkξl) for all ξ ∈ R4.

To see this, we may by changing coordinates and scaling assume that in-
clusion (16) holds for G = diag(−1, 1, 1, 1). By insisting that inclusion (16)
holds for all ξ ∈ {0,±1,±

√
2,±
√

3}4 ∩ N we obtain linear constraints on
the coefficients in γ. By eliminating variables in γ using these constraints,
computer algebra shows that γ has Gijξiξj as a factor and (∗) follows. For
a similar argument in Lorentzian geometry, see [30, Section II.4].

From the above it follows that there are quadratic forms H± = (H ij
± )3i,j=0

such that

γ(ξ) = (gij+ξiξj)(H
kl
+ ξkξl)

= (gij−ξiξj)(H
kl
− ξkξl), ξ ∈ R4.

By Proposition A.1 in Appendix A, gij±ξiξj are irreducible over R, and
Proposition 1.2 implies that γ is not constant. Hence unique factorisation
into irreducible factors [28, Theorem 5 in Section 3.5] implies that H ij

+ ξiξj is

irreducible if and only if H ij
− ξiξj is irreducible. If H ij

± ξiξj are reducible, then
Fp(κ) has a two dimensional subspace which contradicts Proposition 1.2.

Hence H ij
± ξiξj are irreducible and since Np(g+) 6= Np(g−), unique factorisa-

tion implies that H± are proportional to g∓ and equation (15) follows.
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Proposition 1.4. Suppose κ ∈ Ω2
2(N) and the Fresnel surface of κ decom-

poses into two Lorentz null cones at p ∈ N as in equation (14). Then g+|p
and g−|p are uniquely determined up to scalings and permutations.

Proof. The result follows by Proposition 1.3, Proposition A.1 in Appendix
A, and since any polynomial has a unique decomposition into irreducible
factors [28, Theorem 5 in Section 3.5].

On N = R4 let κ be the
(
2
2

)
-tensor determined by the 6 × 6 matrix

(κJI )IJ = diag(−1, 1, 0,−1, 1, 0). Then κ is skewon-free and κ has the Fresnel
surface

Fp(κ) = {ξ ∈ T ∗pR4 : ξ0ξ1ξ2ξ3 = 0}, p ∈ R4. (17)

It is clear that Fp(κ) has multiple decompositions into second order surfaces
and for κ there is no unique decomposition as in Proposition 1.4.

1.4. The normal form theorem for skewon-free medium

In arbitrary coordinates, a general skewon-free medium depends on 21
free components. Next we state the normal form theorem by Schuller, Witte
and Wohlfarth [10] in a form sufficient for the present setting. This normal
form theorem shows that by choosing the coordinates suitably, the number
of free components at a point p ∈ N can be reduced considerably. For our
application in Theorem 2.1, we may assume that κ is invertible and the
Fresnel surface contains no 2-dimensional subspace. This will imply that
there are only 7 possible normal forms and each normal form depends only
on 2, 4 or 6 free parameters. This reduction of parameters will make the
computer algebra feasible in the proof of Theorem 2.1.

To formulate the theorem let us first introduce some terminology. Sup-
pose L : V → V is a linear map where V is an n-dimensional real vector
space. If the matrix representation of L in some basis is A ∈ Rn×n and
A is written using the Jordan normal form we say that L has Segre type[
m1 · · ·mr k1k1 · · · ksks

]
when the blocks corresponding to real eigenvalues

have dimensions m1 ≤ · · · ≤ mr and the blocks corresponding to complex
eigenvalues have dimensions 2k1 ≤ · · · ≤ 2ks. Moreover, by uniqueness of
the Jordan normal form, the Segre type depends only on L and not on the
basis. For κ ∈ Ω2

2(N) and p ∈ N we define the Segre type of κ|p as the
Segre type of the linear map Ω2(N)|p → Ω2(N)|p. By counting how many
ways a 6×6 matrix can be decomposed into Jordan normal forms, it follows
that there are only 23 Segre types for a

(
2
2

)
-tensor. The main result of the

normal form theorem in [10] is to establish simple coordinate expressions for
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each of these Segre types, or metaclasses, under the assumption that κ|p is
skewon-free and invertible.

The below formulation of the normal form theorem in [10] is based on the
restatement in [15] but specialised to the setting of an orientable manifold.
The argument for excluding Metaclasses VIII–XXIII is Lemma 5.1 in [10].

Theorem 1.5. Suppose κ ∈ Ω2
2(N) and p ∈ N . If

(a) κ has no skewon part at p,

(b) κ is invertible at p,

(c) the Fresnel surface Fp(κ) does not contain a two dimensional vector
subspace,

then there exists coordinates {xi}3i=0 around p such that the 6 × 6 matrix
(κJI )IJ that represents κ|p in these coordinates is one of the below matrices:

• Metaclass I: (Segre type [11 11 11])

α1 0 0 −β1 0 0
0 α2 0 0 −β2 0
0 0 α3 0 0 −β3
β1 0 0 α1 0 0
0 β2 0 0 α2 0
0 0 β3 0 0 α3

 (18)

• Metaclass II: (Segre type [22 11])

α1 −β1 0 0 0 0
β1 α1 0 0 0 0
0 0 α2 0 0 −β2
0 1 0 α1 β1 0
1 0 0 −β1 α1 0
0 0 β2 0 0 α2

 (19)

• Metaclass III: (Segre type [33])

α1 −β1 0 0 0 0
β1 α1 0 0 0 0
1 0 α1 0 0 −β1
0 0 0 α1 β1 1
0 0 1 −β1 α1 0
0 1 β1 0 0 α1

 (20)
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• Metaclass IV: (Segre type [11 11 11])

α1 0 0 −β1 0 0
0 α2 0 0 −β2 0
0 0 α3 0 0 α4

β1 0 0 α1 0 0
0 β2 0 0 α2 0
0 0 α4 0 0 α3

 (21)

• Metaclass V: (Segre type [11 22])

α1 −β1 0 0 0 0
β1 α1 0 0 0 0
0 0 α2 0 0 α3

0 1 0 α1 β1 0
1 0 0 −β1 α1 0
0 0 α3 0 0 α2

 (22)

• Metaclass VI: (Segre type [11 11 11])

α1 0 0 −β1 0 0
0 α2 0 0 α4 0
0 0 α3 0 0 α5

β1 0 0 α1 0 0
0 α4 0 0 α2 0
0 0 α5 0 0 α3

 (23)

• Metaclass VII: (Segre type [11 11 11])

α1 0 0 α4 0 0
0 α2 0 0 α5 0
0 0 α3 0 0 α6

α4 0 0 α1 0 0
0 α5 0 0 α2 0
0 0 α6 0 0 α3

 (24)

In each matrix the parameters satisfy α1, α2, . . . ∈ R, β1, β2, . . . ∈ R\{0}
and sgnβ1 = sgnβ2 = · · · .

Proof. Let us first note that κ|p can not have a Jordan block of dimension
d ∈ {2, . . . , 6} that corresponds to a real eigenvalue λ ∈ R\{0}. In the setting
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of area metrics, this is Lemma 5.1 in [10]. However, let us also outline a direct
proof. For a contradiction, suppose κ|p has such a block. By considering
unit vectors in the normal basis, we can find non-zero e1, e2 ∈ Λ2(N)|p so
that κ(e1) = λe1 and κ(e2) = λe2 + e1. Writing out κ(e1) ∧ e2 = e1 ∧ κ(e2)
implies that e1 ∧ e1 = 0, so e1 = η1 ∧ η2 for some linearly independent
η1, η2 ∈ Λ1(N)|p. If W = span{η1, η2}, then

W ⊂ {α ∈ Λ1(N)|p : ξ ∧ κ(ξ ∧ α) = 0}

for all ξ ∈W whence Theorem 3.3 in [5] gives the contradiction W ⊂ Fp(κ).
In the terminology of [10], it follows that κ|p must be in one of Metaclasses I–
VII. By [15] there are coordinates {xi}3i=0 around p (that are not necessarily
compatible with the orientation for N) such that the 6×6-matrix (κJI )IJ that
represents κ at p is given by one of matrices (18)–(24) for some α1, α2, . . . ∈ R
and β1, β2, . . . > 0. If coordinates xi are compatible with the orientation of
N the claim follows. Let us therefore assume that coordinates xi are not
compatible with the orientation of N . For each metaclass, we then need to
find a coordinate transformation xi 7→ x̃i such that (i) the transformation is
orientation reversing and (ii) the transformation preserves the structure of
the matrix representation for the metaclass (while possibly exchanging the
signs of all βi). If {x̃i}3i=0 are coordinates defined as x̃i = J ijx

j for a 4 × 4

matrix J = (J ij)ij , then suitable transformation matrices are

Metaclass I II III IV V V I V II

Transformation matrix J J1 J2 J2 J1 J2 J1 J1

where J1 = diag(−1, 1, 1, 1) and J2 = diag(1, 1,−1, 1).

2. Non-dissipative medium tensors with two Lorentz null cones

The next theorem is the main result of this paper.

Theorem 2.1. Suppose κ ∈ Ω2
2(N) and suppose that at some p ∈ N

(i) κ|p has no skewon component,

(ii) κ|p is invertible as a linear map Λ2(N)|p → Λ2(N)|p,
(iii) the Fresnel surface Fp(κ) decomposes into two Lorentz null cones (see

Definition 1.1).

Then κ|p must have Segre type [11 11 11], [22 11] or [11 11 11].

14



I. Metaclass I: If κ|p has Segre type [11 11 11], there are coordinates
{xi}3i=0 around p such that the matrix (κJI )IJ that represents κ|p in
these coordinates is given by equation (18) for some α1, α2, α3 ∈ R
and β1, β2, β3 ∈ R\{0} with

α2 = α3, β2 = β3, sgnβ1 = sgnβ2 = sgnβ3

and either α1 6= α2 or β1 6= β2 or both inequalities hold. Moreover,
equation (14) holds for Lorentz metrics

g± = diag

(
1,−1,

1

2

(
−D3 ±

√
D2

3 − 4

)
,
1

2

(
−D3 ±

√
D2

3 − 4

))−1
,

where D3 > 2 is defined by

D3 =
(α1 − α2)

2 + β21 + β22
β1β2

. (25)

II. Metaclass II: If κ|p has Segre type [22 11], there are coordinates
{xi}3i=0 around p such that the matrix (κJI )IJ that represents κ|p in
these coordinates is given by equation (19) for some α1, α2 ∈ R and
β1, β2 ∈ R\{0} with

α1 = α2, β1 = β2.

Moreover, equation (14) holds for Lorentz metrics

g± =


±1 0 0 β1
0 −β1 0 0
0 0 −β1 0
β1 0 0 0


−1

.

IV. Metaclass IV: If κ|p has Segre type [11 11 11], there are coordinates
{xi}3i=0 around p such that the matrix (κJI )IJ that represents κ|p in
these coordinates is given by equation (21) for some α1, α2, α3, α4 ∈ R
and β1, β2 ∈ R\{0} with

α1 = α2, β1 = β2, α4 6= 0, α2
3 6= α2

4.

Moreover, equation (14) holds for Lorentz metrics

g± = diag

(
1,

1

2

(
−D1 ±

√
D2

1 + 4

)
,
1

2

(
−D1 ±

√
D2

1 + 4

)
,−1

)−1
,

where D1 ∈ R is defined by

D1 =
(α2 − α3)

2 + β22 − α2
4

β2α4
. (26)
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Conversely, if κ|p is defined by equation (18), (19) or (21) and αi and βi
satisfy conditions listed in cases I., II. or IV., respectively, then κ|p satisfy
properties (i)–(iii).

For an outline of the proof, see the introduction. The main mathematical
technique in the proof is to use the computer algebra technique of Gröbner
basis to eliminate variables from systems of polynomial equations. In more
detail, suppose V ⊂ Cn is the solution set to polynomial equations f1 =
0, . . . , fN = 0 where fi ∈ C[x1, . . . , xn]. If I is the ideal generated by
f1, . . . , fN , the elimination ideals are the polynomial ideals defined as

Ik = I ∩ C[xk+1, . . . , xn], k ∈ {0, . . . , n− 1}.

Thus, if (x1, . . . , xn) ∈ V then p(xk+1, . . . , xn) = 0 for any p ∈ Ik, and Ik
contain polynomial consequences of the original equations that only depend
on variables xk+1, . . . , xn. Using Gröbner basis, one can explicitly compute
Ik [28, Theorem 2 in Section 3.1]. In the below proof, the computation of
Gröbner bases has done using the built-in routine GroebnerBasis in Mathe-
matica.

Proof. In the below proof we will use the following index notation. If i ∈
{1, 2, 3}, then i′, i′′ are indices in {1, 2, 3} such that {i, i′, i′′} = {1, 2, 3} and
i′ < i′′. For example, if i = 1, then i′′ = 3 and if i = 3, then i′′ = 2. Suppose
(i)–(iii) holds. Then Theorem 1.5 implies that κ|p is of Metaclass I–VII,
and the proof divides into seven cases. In each case, there are coordinates
{xi}3i=0 such that (κJI )IJ at p is given by equation (18)–(24) for constants
αi, βi as in Theorem 1.5.

Metaclass I. We may exclude the possibility α1 = α2 = α3 and β1 =
β2 = β3 since that corresponds to a single Lorentz null cone. Let D1, D2 be
defined as

D1 =
(α2 − α3)

2 + β22 + β23
β2β3

, (27)

D2 =
(α3 − α1)

2 + β23 + β21
β3β1

, (28)

and let D3 be defined as in equation (25). Then D1, D2, D3 ≥ 2, and by
applying an orientation preserving coordinate change, we may assume that
2 ≤ D1 ≤ D2 ≤ D3. Since D1 = D2 = D3 = 2 implies that α1 = α2 = α3

and β1 = β2 = β3, it follows that D3 > 2. Furthermore, since D1 = D2 = 2
implies that D3 = 2 we also have D2 > 2.
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The Tamm-Rubilar tensor density for κ|p satisfies

C−1 G ijklξiξjξkξl = ξ40 + ξ41 + ξ42 + ξ43 −D0ξ0ξ1ξ2ξ3

+
3∑
i=1

Di

(
ξ2i′ξ

2
i′′ − ξ20ξ2i

)
, (29)

where C = β1β2β3 and D0 is given explicitly in terms of α1, . . . , β3, and
implicitly D0 satisfies

D2
0 = 4

(
4 +D1D2D3 −D2

1 −D2
2 −D2

3

)
. (30)

By Proposition 1.3, there are real symmetric matrices A = (Aij)3i,j=0 and

B = (Bij)3i,j=0 such that

C−1 G ijklξiξjξkξl =
(
ξt ·A · ξ

) (
ξt ·B · ξ

)
, ξ ∈ R4. (31)

Writing out these equations shows that A00B00 = 1. Hence A00 is non-zero,
and by rescaling A and B, we may assume that A00 = 1. This substi-
tution simplifies the equations so that by polynomial substitutions we may
eliminate all variables in B and variable D0. This results in a system of poly-
nomial equations that only involve D1, D2, D3 and the variables in A. By
eliminating the variables in A using a Gröbner basis, we obtain constraints
on D1, D2, D3 and these constraints imply that D1 = 2 and D2 = D3,
whence equation (30) implies that D0 = 0. The result follows since equa-
tion (31) holds with A = g−1+ and B = g−1− , where g± are the matrices in
the theorem formulation.

Metaclass II. As in Metaclass I, there are matrices A and B such that
the Fresnel polynomial satisfies equation (31) (with C = 1). As in Metaclass
I we can eliminate variables in B. Further eliminating all variables in A
using a Gröbner basis implies that α1 = α2 and β1 = β2. Then a direct
computation shows that equation (31) holds with A = g−1+ , B = g−1− and
C = β1. Metrics g± both have Lorentz signatures since det g± < 0.

Metaclass III. Decomposing the Fresnel polynomial as in equation (31)
(with C = 1) gives a system of polynomial equations for the variables in A,
B and κ|p. Computing the Gröbner basis for these equations implies that
β1 = 0. Thus κ|p can not be in Metaclass III.

Metaclass IV. Let us first note that α4 6= 0 since otherwise we have
span{dx1|p, dx2|p} ⊂ Fp(κ) which is not possible by Proposition 1.2. Then
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the Tamm-Rubilar tensor density satisfies

C−1 G ijklξiξjξkξl = ξ40 − ξ41 − ξ42 + ξ43 +D0ξ0ξ1ξ2ξ3 −
3∑
i=1

Diξ
2
0ξ

2
i

+D1ξ
2
2ξ

2
3 +D2ξ

2
1ξ

2
3 −D3ξ

2
1ξ

2
2 ,

where C = β1β2α4, D0 is determined explicitly in terms of α1, . . . , β2, D1 is
defined in equation (26), D3 ≥ 2 is defined in equation (25) and

D2 =
(α1 − α3)

2 + β21 − α2
4

β1α4
.

By decomposing and eliminating variables as in Metaclass I, it follows that
that D0 = 0 and D3 = 2. Thus we have proven that α1 = α2 and β1 = β2
whence D1 = D2 and equation (31) holds with A = g−1+ , B = g−1− and C as
above. Moreover, since det g± < 0, metrics g± both have Lorentz signatures.
Condition α2

3 6= α2
4 follows since detκ|p 6= 0.

Metaclass V. We may assume that α3 6= 0, since otherwise we have
span{dxi|p}3i=1 ⊂ Fp(κ). Decomposing and eliminating variables as in Meta-
class I gives that β1 is purely complex and κ|p can not be in Metaclass V.

Metaclass VI. We may assume that α4 and α5 are non-zero since oth-
erwise span{dxi, dx3} ⊂ Fp(N) for some i ∈ {0, 1} as in Metaclass IV. Then
the Tamm-Rubilar tensor density satisfies

C−1 G ijklξiξjξkξl = ξ40 + ξ41 − ξ42 − ξ43 +D0ξ0ξ1ξ2ξ3 −
3∑
i=1

Diξ
2
0ξ

2
i

+D1ξ
2
2ξ

2
3 −D2ξ

2
1ξ

2
3 −D3ξ

2
1ξ

2
2 ,

where C = β1α4α5 and D0, D1, D2, D3 ∈ R are defined in terms of αi and
β1. By decomposing the Fresnel tensor as in equation (31) and eliminating
variables using a Gröbner basis, it follows that there exists a σ ∈ {±1} such
that

D0 = 0, D1 = σ2, D2 = −σD3,

and moreover, equation (31) holds for A = g−1+ , B = g−1− and C as above,
where

g± = diag

(
1,−σ, 1

2

(
σD3 ±

√
D2

3 + 4

)
,
1

2

(
−D3 ∓ σ

√
D2

3 + 4

))−1
.
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These metrics satisfy det g± > 0 for σ = 1 and σ = −1, so the metrics are
not of Lorentz signature. Since this contradicts Proposition 1.3 and unique
factorisation, it follows that κ|p can not be in Metaclass VI.

Metaclass VII. We may assume that α4, α5, α6 6= 0 since otherwise
span{dxi|p, dx3|p} ⊂ Fp(κ) for some i ∈ {0, 1, 2} as in Metaclass IV. Then
the Tamm-Rubilar tensor density satisfies

C−1 G ijklξiξjξkξl = ξ40 + ξ41 + ξ42 + ξ43 +D0ξ0ξ1ξ2ξ3 −
3∑
i=1

Di(ξ
2
i′ξ

2
i′′ + ξ20ξ

2
i ),

where C = α4α5α6, constants D1, D2, D3 ∈ R are given by

D1 =
(α2 − α3)

2 − α2
5 − α2

6

α5α6
, (32)

D2 =
(α1 − α3)

2 − α2
4 − α2

6

α4α6
, (33)

D3 =
(α1 − α2)

2 − α2
4 − α2

5

α4α5
, (34)

and D0 ∈ R is given explicitly in terms of α1, . . . , β3, and implicitly D0

satisfies

D2
0 = 4

(
−4 +D1D2D3 +D2

1 +D2
2 +D2

3

)
. (35)

Decomposing the Tamm-Rubilar tensor density as in equation (31) and
eliminating variables using a Gröbner basis, gives polynomial equations for
D0, D1, D2, D3. Let us consider the cases D0 = 0 and D0 6= 0 separately. If
D0 = 0, there exists an i ∈ {1, 2, 3} and a σ ∈ {±1} such that

D0 = 0, Di = −σ2, Di′ = σDi′′ , (36)

where the last condition is a consequence of equation (35). Suppose i = 1.
Then Proposition 1.3 implies that for some invertible symmetric matrices
A,B ∈ R4×4 with Lorentz signatures we have(

ξt ·A · ξ
) (
ξt ·B · ξ

)
=

(
ξt · L+ · ξ

) (
ξt · L− · ξ

)
, ξ ∈ C4, (37)

where matrices L± ∈ C4×4 are defined as

L± = diag

(
1, σ,

1

2

(
−D2 ±

√
D2

2 − 4

)
,
σ

2

(
−D2 ±

√
D2

2 − 4

))
.(38)
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Since L± are invertible, equation (37), Proposition A.1 in Appendix A and
unique factorisation imply that L± are real and have Lorentz signatures.
Thus detL± < 0, but this contradicts equation (38), which implies that

detL± =
1

4

(
−D2 ±

√
D2

2 − 4

)2

≥ 0.

A similar analysis for i = 2, 3 shows that D0 = 0 is not possible. If D0 6= 0
it follows that there exists σ1, σ2, σ3 ∈ {±1} and distinct i, j, k ∈ {1, 2, 3}
such that

D0 6= 0, Di = σ12, Dj = σ22, Dk =
1

2
(−4σ1σ2 + σ3D0) , (39)

where the last equation follows from equation (35). If (i, j) = (1, 2) then k =
3 and Proposition 1.3 implies that for some invertible symmetric matrices
A,B ∈ R4×4 with Lorentz signatures, equation (37) holds for matrices L± ∈
C4×4 defined as

L± =


1 0 0 ±

√
D0√

8
√
σ3

0 −σ1 ∓
√
D0
√
σ3√

8
0

0 ∓
√
D0
√
σ3√

8
−σ2 0

±
√
D0√

8
√
σ3

0 0 σ1σ2

 . (40)

Since both sides in equation (37) should decompose into the same number
of irreducible factors, it follows that ξt ·L± ·ξ are irreducible in C[ξ0, . . . , ξ3].
Thus equation (37) and unique factorisation imply that L± are real and have
Lorentz signatures, so detL± < 0. However, this contradicts equation (40)
which implies that

detL± =

(
1

8
D0 − σ1σ2σ3

)2

≥ 0.

The cases (i, j) = (1, 3), (2, 3) are excluded by the same argument by using
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metrics

L± =


1 0 ±

√
D0
√
σ3√

8
0

0 −σ1 0 ∓
√
D0√

8
√
σ3

±
√
D0
√
σ3√

8
0 σ1σ2 0

0 ∓
√
D0√

8
√
σ3

0 −σ2

 ,

L± =


1 ±

√
D0√

8
√
σ3

0 0

±
√
D0√

8
√
σ3

σ1σ2 0 0

0 0 −σ1 ∓
√
D0
√
σ3√

8

0 0 ∓
√
D0
√
σ3√

8
−σ2

 ,

respectively. Thus κ|p can not be in Metaclasses VII.

The converse direction follows by computer algebra. For example, if κ|p is
defined as in equation (21) we have detκ|p = (α2

3−α2
4)(α

2
1+β21)(α2

2+β22).

3. Analysis of the three medium classes

In this section we give a more detailed analysis of the three medium
classes in Theorem 2.1. Let us first make four comments. First, it should be
emphasised that in Theorem 2.1, κ is assumed to be real. For complex coef-
ficients in κ, the setting becomes more involved. A chiral medium would be
an example of a physical electromagnetic medium, where the medium tensor
contains complex coefficients and for time harmonic fields, propagation is
determined by two Lorentz null cones. In such a medium, right and left
hand circularly polarised plane waves propagate with different wavespeeds
[13, 31]. However, (as a complex medium) it is not listed as a possibility
in Theorem 2.1. Second, the assumption that κ is invertible is only used
to show that α2

3 6= α2
4 in Metaclass IV and to exclude Metaclasses VIII—

XXIII. Third, from a mathematical point of view it is interesting to note
that if we set ξ0 = 0 in equation (29) we obtain the ternary quartic studied
in [32] and for this polynomial, D2

0 in equation (30) is one of the factors in
the discriminant.

3.1. Relative configuration of the two Lorentz null cones

In Theorem 2.1 each of the three medium classes is parameterised by 2
or 4 scalar parameters in the normal form coordinates, but the configuration
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of the Lorentz null cones is parameterised by only one parameter; D3 > 2 in
Metaclass I, β1 ∈ R\{0} in Metaclass II and D1 ∈ R in Metaclass IV. Here
D3 is defined by equation (25) and D1 is defined by equation (26). Next
we consider the relative configuration of the two Lorentz null cones for each
metaclass in Theorem 2.1.

Metaclass I.

Let us first note that by equation (25) we have D3 ≥ 2. Thus inequalities
α1 6= α2 and β1 6= β2 exclude the possibility D3 = 2, which would imply
that α1 = α2 = α3 and β1 = β2 = β3. Then κ|p = −β1 ∗g +α1 Id for the
locally defined Lorentz metric g = diag(−1, 1, 1, 1), and κ|p models isotropic
medium with a possible axion component. For this medium the Fresnel
surface is the single Lorentz null cone Fp(κ) = Np(g).

If we treat x0 as time and define E,D,B,H as in equation (9), then the
constitutive equation at p reads

(
H
D

)
=


−α1 0 0 −β1 0 0

0 −α2 0 0 −β2 0
0 0 −α2 0 0 −β2
−β1 0 0 α1 0 0

0 −β2 0 0 α2 0
0 0 −β2 0 0 α2

 ·
(

E
B

)
, (41)

where we have incorporated the minus sign in equation (9) into the coefficient
matrix. Here the parameters satisfy α1, α2 ∈ R, β1, β2 ∈ R\{0}, sgnβ1 =
sgnβ2 and [α1 6= α2 or β1 6= β2 or both inequalities hold].

This medium has permittivity matrix ε = −diag(β1, β2, β2), permeabil-
ity matrix µ = −diag(1/β1, 1/β2, 1/β2), and a possible magnetic-electric
effect modelled by matrices ±diag(α1, α2, α2). When α1 = α2 = 0 and
β1, β2 < 0 the medium is usual uniaxial medium, where wave propagation is
well understood [33, Section 15.3]. However, this medium class also allows
β1, β2 > 0 whence the medium has negative permittivity and permeability.
For α1 + 2α2 6= 0 the medium has an axion component.

For the medium in equation (41), the Fresnel polynomial G ijklξiξjξkξl is
a function of ξ0, ξ1, ξ

2
2 +ξ23 . It is therefore motivated to set ξ2 = 0 whence we

can plot Fp(κ) as a surface in R3. Figure 1 shows the relative configuration
of the two Lorentz null cones in Fp(κ) for different values of D3, where D3

is as in equation (25).
If metrics g± are as in Theorem 2.1, so that equation (14) holds then

writing out g+(ξ, ξ)± g−(ξ, ξ) = 0 implies that

Np(g+) ∩Np(g−) = {ξidxi|p : ξ0 = ±ξ1, ξ2 = ξ3 = 0}.
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Thus the intersection of the null cones N(g±) for Metaclass I is two distinct
lines through the origin in T ∗pN . When ξ0 is time, it follows that the two
sheets of the Fresnel surface coincide on the ξ1-axis. See Figure 1. Such an
axis is also known as an optical axis (motivating the name uniaxial medium).

Figure 1: Relative configuration for the two Lorentz null cones in Metaclass I for D3 = 2.05
(left), D3 = 2.3 and D3 = 3 (right). The Lorentz null cones coincide when D3 = 2.

Metaclass II.

Metaclass II in Theorem 2.1 is a subclass of the medium defined by
equation (19). To understand the relative configuration of Np(g±) in Fp(κ)
let us first note that if we flip the sign of β1, then Np(g+) and Np(g+)
exchange places. Let us therefore assume that β1 > 0. Since the Fresnel
surface does not depend on the axion component [2, equation (D.2.39)], let
us assume that traceκ = 0, whence α1 = 0.

Instead of studying the medium in the coordinates given by the normal
form theorem [10], it will be useful to study the medium in coordinates
{x̃i}3i=0 where x̃i =

∑3
j=0 Lijx

j and L = (Lij) is the Jacobian matrix

L =


0 0 0 1
0 0 1 0
1√
2

1√
2

0 0
1√
2
− 1√

2
0 0

 ·


0 0 1
2β1

(1− w) 1
2β1

(1 + w)

0 1 0 0
1 0 0 0
0 0 1 1


−1

, (42)

for

w =
√

1 + 4β21 . (43)

(The motivation for these coordinates is that the latter matrix diagonal-
izes g+ and the former is a matrix that permutates coordinates and diago-
nalises the permittivity and permeability matrices in a plane where g± are
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Euclidean.) Since detL > 0, it follows that xi and x̃i have the same orien-
tation. If we treat x̃0 as time as in equation (41) then in these coordinates
κ|p represents the constitutive equation

(
H
D

)
=

β1
w



0 0 0 −w2

β1
0 0

0 0 2 0 −w − 2 0
0 0 0 0 0 −w
−β1 0 0 0 0 0

0 −w 0 0 0 0
0 0 −w + 2 0 −2 0


·
(

E
B

)
,

where β1 > 0 and w is as in equation (43). In x̃i-coordinates, the medium
always has a magneto-electric effect, and the permittivity and permeability
3 × 3 matrices are both diagonal. Moreover, the permeability matrix is
always negative definite, and the permittivity matrix is negative definite for
w > 2, singular for w = 2 and indefinite for w ∈ (0, 2).

Computing the Fresnel polynomial G̃ ijklξ̃iξ̃j ξ̃kξ̃l shows that it is a func-

tion of ξ̃0, ξ̃1, ξ̃
2
2 + ξ̃23 . As in Metaclass I, we project Fp(κ) onto ξ̃2 = 0, and

we can plot Fp(κ) as a surface in R3. Figure 2 shows this projection for
three different values of β1. From these illustrations (or from metrics g±
directly) we see that the null cones N(g±) coincide in the limit β1 → ∞.
A peculiar property of this medium is that it can have one, two, or three
phase velocities in the same direction. This is illustrated in Figure 3, which
shows the behaviour of the inverse phase velocity in one spatial plane.

If metrics g± are as in Theorem 2.1, so that equation (14) holds then

Np(g+) ∩Np(g−) = {ξ̃idxi|p : ξ̃0 = ξ̃1, ξ̃2 = ξ̃3 = 0}.

Thus the intersection of the null cones N(g±) for Metaclass II is one line
through the origin in T ∗pN . When ξ̃0 is time, it follows that the two sheets

of the Fresnel surface coincide on the +ξ̃1-direction, but not in the opposite
spatial direction. See Figures 2 and 3.

Metaclass IV

Metaclass IV in Theorem 2.1 is a subclass of the medium defined by
equation (21). Treating x0 as time and writing the constitutive equation as

24



Figure 2: Relative configuration for the two Lorentz null cones in Metaclass II for β1 = 0.2
(left), β1 = 0.8 and β1 = 8 (right).
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Figure 3: Inverse phase velocity in the ξ1ξ2-plane for the media in Figure 2.

in equation (41) gives the constitutive equation

(
H
D

)
=



−α1 0 0 −β1 0 0
0 −α1 0 0 −β1 0
0 0 −α3 0 0 α4

−β1 0 0 α1 0 0
0 −β1 0 0 α1 0
0 0 −α4 0 0 α3

 ·
(

E
B

)
.

where α1, α3 ∈ R, β1, α4 ∈ R\{0} and α2
3 6= α2

4. In these coordinates, the
medium has a magneto-electric effect unless α1 = α2 = α3 = 0 and an axion
component unless 2α1 + α3 = 0. The permittivity and permeability 3 × 3
matrices are always invertible, and one is always indefinite.

The Fresnel polynomial is a function of ξ0, ξ
2
1 + ξ22 , ξ3. We may therefore

plot the Fresnel surface in the same way as in Metaclass I. This is illustrated
in Figure 4 for three different values ofD1 ∈ R, whereD1 is given by equation
(26).
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Figure 4: Relative configuration for Lorentz null cones in Metaclass IV for D1 = −3 (left),
D1 = 0 and D1 = 3 (right).

If metrics g± are as in Theorem 2.1, so that equation (14) holds then

Np(g+) ∩Np(g−) = {ξidxi|p : ξ0 = ±ξ3, ξ1 = ξ2 = 0}.

As in Metaclass I, the intersection of the null cones N(g±) for Metaclass IV
is two distinct lines through the origin in T ∗pN . When ξ0 is time, the two
sheets of the Fresnel surface coincide on the ξ3-axis. See Figure 4.
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Appendix A. Irreducible quadratic forms

The next proposition characterises when a quadratic form is irreducible
as a complex polynomial. This technical result was used in Section 1.3 and
in the proof of Theorem 2.1. In the proposition, adjQ is the adjugate matrix
of all cofactor expansions of Q, and ξt is the matrix transpose.

Proposition A.1. Suppose Q ∈ C4×4 is a symmetric non-zero matrix and
f ∈ C[ξ0, . . . , ξ3] is the polynomial f(ξ) = ξt ·Q · ξ for ξ = (ξ0, . . . , ξ3) ∈ C4.
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Then f is irreducible in C[ξ0, . . . , ξ3] if and only if adjQ 6= 0.

Proof. If f is not irreducible, then f = uv for first order polynomials u, v ∈
C[ξ0, . . . , ξ3]. Then u and v are linear, that is, u(0) = v(0) = 0. (To see
this, we know that f(0) = 0, so we may assume that u(0) = 0. For a
contradiction, suppose that v(0) 6= 0. Then df |0 = 0 implies that du|0 = 0,
but then u = 0, whence Q would vanish identically.) It follows that there
are nonzero vectors a, b ∈ Cn such that

f(ξ) = (ξt · a) (ξt · b)

= ξt · 1

2
(abt + bat) · ξ, ξ ∈ Cn. (A.1)

Thus Q has rank 1 or 2, and by [34, Theorem 3.9.4] all 3 × 3 cofactor
matrices for Q vanish whence adjQ = 0. Conversely, if adjQ = 0, then all
3× 3 cofactor matrices for Q vanish whence Q has rank 1 or 2, and by [35,
Section 48] or [36, Theorem 12.3.6], there are non-zero a and b such that
equation (A.1) holds and f is not irreducible.
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