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Abstract. We study Maxwell’s equations on a 4-manifold where the
electromagnetic medium is described by a suitable antisymmetric

(2
2

)
-tensor

κ with real components. In this setting, the Tamm-Rubilar tensor density
determines a polynomial surface of fourth order in each cotangent space. This
surface is called the Fresnel surface and acts as a generalisation of the null cone
determined by a Lorentz metric; the Fresnel surface parameterises electromagnetic
wavespeed as a function of direction. We show that if (a) κ has no skewon
and no axion component, (b) κ is invertible and (c) the Fresnel surface is
pointwise a Lorentz null cone, then the medium is isotropic, that is, the medium
is proportional to a Hodge star operator of a Lorentz metric. In other words, in
a suitable class of media one can recognise isotropic media from wavespeed alone.
What is more, we study the nonunique dependence between the medium tensor κ,
its Tamm-Rubilar tensor density and Fresnel polynomial. For example, we show
that if κ is invertible then κ and κ−1 have the same Fresnel surfaces.
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1. Introduction

The purpose of this work is to study properties of propagating electromagnetic waves
on a 4-manifold N in the premetric setting [1]. Then the electromagnetic medium is
represented by a suitable antisymmetric

(
2
2

)
-tensor κ, whence the medium is pointwise

determined by 36 real parameters. For the study of wave propagation in this setting,
a key object is the Fresnel surface, which can be seen a generalisation of the null cone
[1, 2, 3]. In Lorentz geometry, the null cone is always a polynomial surface of second
order in each cotangent space. The Fresnel surface, in turn, is a polynomial surface
of fourth order. For example, the Fresnel surface can be the union of two Lorentz
null cones. This allows the Fresnel surface to describe the wavespeed behaviour also
in birefringent medium. That is, in medium where differently polarised waves can
propagate with different wavespeeds. In more detail, the Fresnel surface is determined
by the Tamm-Rubilar tensor density and we have following dependence:

Medium → Tamm-Rubilar tensor density → Fresnel surface

κ → G ijkl → {ξ : G ijklξiξjξkξl = 0}.
In Lorentz geometry, we know that the null cone of a Lorentz metric g uniquely
determines the metric g up to a conformal factor [4, Theorem 3]. In this work we
will study the analogue relation between a general electromagnetic medium tensor κ
and its Fresnel surface. By scaling invariance we can never uniquely determine the
medium from the Fresnel surface. However, we may still ask how much information
about the medium κ is contained in the Fresnel surface. Namely:

Question 1.1. Suppose κ is an electromagnetic medium on a 4-manifold N , and
suppose we know the Fresnel surface of κ at a point p ∈ N . How much can we say
about the coefficients in κ at p?

In terms of physics, Question 1.1 asks how much of the anisotropic structure of
an electromagnetic medium can be recovered from pointwise wavespeed information
alone. A proper understanding of this question is not only of theoretical interest.
Since wavespeed is a physical observable, the question is also of interest in possible
engineering applications like electromagnetic traveltime tomography. Question 1.1
is also similar is spirit to a question in general relativity, where one would like to
understand when the the conformal class of a Lorentz metric can be determined from
the five dimensional manifold of null-geodesics [5].

We know that in isotropic medium the Fresnel surface is one Lorentz null cone
at each point of N . That is, in isotropic medium wave propagation is described using
Lorentz geometry. A main result of this paper is to show that isotropic media is the
only class of medium with this property (under suitable assumptions). More precisely
we will show that if κ is a medium tensor with real coefficients and

(a) κ has no skewon and no axion component,

(b) κ is invertible,

(c) the Fresnel surface is pointwise a Lorentz null cone,

then κ must be isotropic, that is, κ must be proportional to the Hodge star operator
of a Lorentz metric. Thus, in media that satisfy (a) and (b), isotropic media can be
characterised by the behaviour of wavespeed alone. Below, this result is implication
(iii) ⇒ (ii) in Theorem 4.3. Here, the assumption that the medium has no skewon
and no axion component essentially means that the medium is non-dissipative.
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Apart from implications (iii) ⇒ (i) and (iii) ⇒ (ii), the other implications in
Theorem 4.3 are known. For a discussion, see Section 4. In particular, equivalence
(iii) ⇔ (i) is closely related to the following statement: if κ has no skewon component
and no axion component then κ satisfies the closure condition (κ2 = −λId for a
positive function λ) if and only if the Fresnel surface is pointwise a Lorentz null cone.
This is a conjecture that has been formulated and studied in a number of papers
[2, 6, 7, 8, 9]. See also the book [1] by Hehl and Obukhov. The conjecture has been
proven in a number of different settings: in the absence of magneto-electric effects
(that is, for C = 0 where C is as in Section 2.5) by Obukhov, Fukui and Rubilar
[8], and in a special class of non-linear media by Obukhov and Rubilar [9]. On the
level of the Tamm-Rubilar tensor density, Favaro and Bergamin have shown that if
G ijklξiξjξkξl = σ (gijξiξj)

2 for a factor σ and a Lorentz metric g, then the medium
must be isotropic [10]. See also [10] for a discussion about the analogous problem for
non-Lorentzian g. For further results and discussions, see also [2, 10, 11, 12, 13, 14, 15].
Implication (iii) ⇒ (i) in Theorem 4.3 shows that the above conjecture holds under
the assumption that κ is invertible.

The proof of implication (iii) ⇒ (i) in Theorem 4.3 is a slight modification of the
argument used in [15] to describe all invertible skewon-free medium tensors where the
Fresnel surface is the union of two distinct Lorentz null cones. This result is closely
related to characterising medium tensors with only one Lorentz null cone, but there
is also a small difference. With two distinct Lorentz null cones, the Fresnel surface
uniquely determines the two Lorentz metrics up to scaling [15, Proposition 1.3 and
1.4]. However, with only one Lorentz null cone, one needs to rule out a possible
positive definite factor in G ijklξiξjξkξl. See Example 4.2 and Lemma 4.6 below. The
proof of the latter lemma is a slight modification of the argument in [15]. Hence we
will only indicate how the argument changes. Let us note that the argument in [15]
relies on two main tools: first, the classification of skewon-free medium tensors into 23
normal forms by Schuller, Witte, and Wohlfarth [13] and second, the computer algebra
technique of Gröbner bases for eliminating variables from polynomial equations [16].

A second contribution of this paper is given in Section 5, which studies the non-
unique dependence of κ, its Tamm-Rubilar tensor density and the Fresnel surface. For
example, in Theorem 5.1 (iv) we show that if κ is invertible, then κ and κ−1 have the
same Fresnel surfaces. Also, in Example 5.3 we construct a κ with complex coefficients
on R4. At each p ∈ R4, this medium is determined by one arbitrary complex number,
and hence the medium can depend on both time and space. However, at each point,
the Fresnel surface of κ coincides with the usual null cone of the flat Minkowski metric
g = diag (−1, 1, 1, 1). Let us note that the use of complex coefficient medium is well
developed in time-harmonic fields [17, 18]. However, their use in a premetric setting
does not seem to be as well developed. For example, currently there does not seem
to exist a homogenous premetric description of chiral medium (which typically is
modelled using complex coefficients [18, 19]).

The paper is organised as follows. In Section 2 we review Maxwell’s equations
and linear electromagnetic medium on a 4-manifold. In Section 3 we describe how the
Tamm-Rubilar tensor density and Fresnel surface is related to wave propagation. To
derive these objects we use the approach of geometric optics. In Section 4 we prove
the main result Theorem 4.3, and in Section 5 we study non-uniqueness in Question
1.1. That is, we describe general results and examples where the Fresnel surface does
not determined the conformal class of the medium tensor.

This paper relies on a number of computations done with computer algebra.
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Mathematica notebooks for these can be found on the author’s homepage.

2. Premetric electrodynamics

By a manifold M we mean a second countable topological Hausdorff space that
is locally homeomorphic to Rn with C∞-smooth transition maps. All objects are
assumed to be smooth where defined. Let TM and T ∗M be the tangent and cotangent
bundles, respectively, and for k ≥ 1, let Λk(M) be the set of p-covectors, so that
Λ1(N) = T ∗N . Let Ωkl (M) be

(
k
l

)
-tensors that are antisymmetric in their k upper

indices and l lower indices. In particular, let Ωk(M) be the set of k-forms. Let also
X(M) be the set of vector fields, and let C∞(M) be the set of functions (that is,(

0
0

)
-tensors). By Ωk(M)×R we denote the set of k-forms that depend smoothly on a

parameter t ∈ R. By T (M,C), T ∗(M,C), Λp(M,C), Ωkl (M,C) and X(M,C) we denote
the complexification of the above spaces where component may also take complex
values. Smooth complex valued functions are denoted by C∞(M,C). The Einstein
summing convention is used throughout. When writing tensors in local coordinates
we assume that the components satisfy the same symmetries as the tensor.

To formulate Maxwell’s equations we will also need twisted tensors [1, Section
A.2.6], [20, Supplement 7.2A]. We will denoted these by a tilde over the tensor space.

For example, by Ω̃2(N) we denote the space of twisted 2-forms on N . Let also C̃∞(N)
be the set of twisted

(
0
0

)
-tensors on N . If M is orientable and oriented, then the

set of twisted tensors coincide with their normal (or untwisted) counterparts. Say,

Ω̃2
2(N) = Ω2

2(N). For the explicit transformation rules for elements in Ω̃2
2(N), see

equation (10) below.
The Levi-Civita permutation symbols are denoted by εijkl and εijkl. Even if these

coincide as combinatorial functions so that εijkl = εijkl, they are also different as they
globally define different objects on a manifold. Namely, if εijkl, ε

ijkl and ε̃ijkl, ε̃
ijkl

are defined on overlapping coordinate charts (U, xi) and (Ũ , x̃i), respectively, then

ε̃abcd = det

(
∂x̃i

∂xj

)
εpqrs

∂xp

∂x̃a
∂xq

∂x̃b
∂xr

∂x̃c
∂xs

∂x̃d
, (1)

ε̃abcd = det

(
∂xi

∂x̃j

)
εpqrs

∂x̃a

∂xp
∂x̃b

∂xq
∂x̃c

∂xr
∂x̃d

∂xs
. (2)

That is, εijkl defines a
(

4
0

)
-tensor density of weight −1 on N and εijkl defines a

(
0
4

)
-

tensor density of weight 1.

2.1. The sourceless Maxwell’s equations on a 4-manifold

Suppose E,D,B,H are forms that depend smoothly on a parameter t, E ∈ Ω1(M)×R
H ∈ Ω̃1(M) × R, D ∈ Ω̃2(M) × R and B ∈ Ω2(M) × R. If N is the 4-manifold

N = R×M , let F ∈ Ω2(N), G ∈ Ω̃2(N) be forms

F = B + E ∧ dt, (3)

G = D −H ∧ dt. (4)

It follows that E,D,B,H solve the usual sourceless Maxwell’s equations if and only if

dF = 0, (5)

dG = 0, (6)
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where d is the exterior derivative on N . More generally, if N is a 4-manifold, and
F ∈ Ω2(N), G ∈ Ω̃2(N) then we say that F,G solve the sourceless Maxwell’s equations
when equations (5)–(6) hold. Since we are only interested in wave propagation away
from possible sources, we will work with the sourceless Maxwell’s equations. By an
electromagnetic medium on N we mean a map

κ: Ω2(N)→ Ω̃2(N).

We then say that 2-forms F ∈ Ω2(N) and G ∈ Ω̃2(N) solve Maxwell’s equations
in medium κ if F and G satisfy equations (5)–(6) and

G = κ(F ). (7)

Equation (7) is known as the constitutive equation. If κ is invertible, it follows that
one can eliminate half of the free variables in Maxwell’s equations (5)–(6). We assume
that κ is linear and local so that we can represent κ by an antisymmetric

(
2
2

)
-tensor

κ ∈ Ω̃2
2(N). If in coordinates {xi}3i=0 for N we have

κ =
1

8
κijlmdx

l ∧ dxm ⊗ ∂

∂xi
∧ ∂

∂xj
(8)

and F = 1
2Fijdx

i ∧ dxj and G = 1
2Gijdx

i ∧ dxj , then constitutive equation (7) reads

Gij =
1

2
κrsij Frs. (9)

Suppose κ ∈ Ω̃2
2(N) and κijlm and κ̃ijlm represent κ in overlapping coordinates xi

and x̃i, respectively. Then we have the transformation rule

κ̃ijlm = sgn det

(
∂x̃p

∂xq

)
κrsab

∂xa

∂x̃l
∂xb

∂x̃m
∂x̃i

∂xr
∂x̃j

∂xs
, (10)

where sgn is the sign function, sgnx = x/|x| for x 6= 0 and sgnx = 0 for x = 0.
Equations (5)—(7) form the basis of the premetric formulation for electromag-

netics on a 4-manifold without source terms. Let us emphasise that these equations
do not depend on any metric. For a systematic presentation, see [1, 2].

2.2. Operations on medium tensors

An element in Ω2
2(N) defines a linear map Ω2

p(N) → Ω2
p(N) for each p ∈ N .

Hence we can define the determinant and trace of κ and these are smooth functions
detκ, traceκ ∈ C∞(N). Moreover, if κ is invertible we can define the inverse
κ−1 ∈ Ω2

2(N). Next, we describe how these operations generalise to elements in

Ω̃2
2(N).

Suppose κ ∈ Ω̃2
2(N) on a 4-manifold N . It is clear that in each chart (U, xi) on

N we can restrict κ to an element κ|U ∈ Ω2
2(U), and for each p ∈ U we can treat

κ|U as a linear map κ|U : Ω2
p(N) → Ω2

p(N). In each chart on N we can then apply
the above argument. Locally, we can define the determinant and trace and these are
smooth functions detκ|U , trace |U ∈ C∞(U). Moreover, if κ|U is invertible, we can
define (κ|U )−1 ∈ Ω2

2(U). The next proposition shows how these local definitions give
rise to global objects on N .

Proposition 2.1. If κ ∈ Ω̃2
2(N), and detκ and traceκ are defined as above, then

detκ ∈ C∞(N), traceκ ∈ C̃∞(N).

Moreover, if κ is invertible (that is, κ|U is invertible in each chart U) and κ−1 is

defined as above, then κ−1 ∈ Ω̃2
2(N).
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Proof. LetO be the ordered set of index pairs {01, 02, 03, 23, 31, 12} [1, Section A.1.10],
[10]. If I ∈ O, let I1 and I2 denote the individual indices. Say, if I = 31 then I2 = 1.
Suppose (U, xi) are local coordinates for N . For J ∈ O we define dxJ = dxJ1 ∧ dxJ2 .
Locally, a basis for Ω2(N) is then given by {dxJ : J ∈ O}, that is, by

{dx0 ∧ dx1, dx0 ∧ dx2, dx0 ∧ dx3, dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2}.(11)

If κ ∈ Ω̃2
2(N) is written as in equation (8) and J ∈ O, it follows that

κ(dxJ) =
∑
I∈O

κJI dx
I , J ∈ O, (12)

where κJI = κJ1J2I1I2
. Thus, κ is locally determined by components {κJI : I, J ∈ O},

and we identify these components with the 6 × 6 matrix A = (κJI )IJ . That is, if b is

the natural bijection b:O → {1, . . . , 6}, then A = (κ
b−1(j)
b−1(i) )ij . The motivation for this

identification is that for each p ∈ U , matrix A|p is the matrix representation of the
linear map κ|U : Ω2

p(U)→ Ω2
p(U) with respect to the basis (11). Thus

det(κ|U ) = detA, trace (κ|U ) = traceA, ((κ|−1
U )JI )IJ = A−1. (13)

Next, suppose {xi}3i=0 and {x̃i}3i=0 are overlapping coordinates, and A = (κJI )IJ and

Ã = (κ̃JI )IJ are matrices that represent tensor κ in these coordinates. For I, J ∈ O let

∂xJ

∂x̃I
=
∂xJ1

∂x̃I1
∂xJ2

∂x̃I2
− ∂xJ2

∂x̃I1
∂xJ1

∂x̃I2
,

and similarly, define ∂x̃J

∂xI by exchanging x and x̃. Then equation (10) reads

κ̃JI = sgn det

(
∂x̃i

∂xj

) ∑
K,L∈O

∂xK

∂x̃I
κLK

∂x̃J

∂xL
, I, J ∈ O.

For matrices T = (∂x
J

∂x̃I )IJ and S = (∂x̃
J

∂xI )IJ , we have T = S−1. In matrix form,
equation (10) then reads

Ã = sgn det

(
∂x̃i

∂xj

)
TAT−1. (14)

The claim follows by equations (13) and (14).

Let us make two comments regarding Proposition 2.1. First, if κ ∈ Ω̃2
2(N) and κ

is locally given by equation (8), then from equation (13) in the proof we see that

traceκ =
1

2
κijij .

Second, it turns out that the global behaviour of elements in C̃∞(N) is coupled to
the orientability of the underlying manifold N . This phenomenon will be described in
Proposition 3.7 below.
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2.3. Decomposition of electromagnetic medium

At each point of a 4-manifold N , an element of Ω̃2
2(N) depends on 36 parameters.

Pointwise, such
(

2
2

)
-tensors canonically decompose into three linear subspaces. The

motivation for this decomposition is that different components in the decomposition
enter in different parts of electromagnetics. See [1, Section D.1.3]. The below
formulation is based on [21].

If Id is the identity map Id ∈ Ω2
2(N), then writing Id as in equation (8) gives

Id ijrs = δirδ
j
s − δisδjr , where δij is the Kronecker delta symbol.

Proposition 2.2. Let N be a 4-manifold, and let

Z = {κ ∈ Ω̃2
2(N) : u ∧ κ(v) = κ(u) ∧ v for all u, v ∈ Ω2(N),

traceκ = 0},
W = {κ ∈ Ω̃2

2(N) : u ∧ κ(v) = −κ(u) ∧ v for all u, v ∈ Ω2(N)}
= {κ ∈ Ω̃2

2(N) : u ∧ κ(v) = −κ(u) ∧ v for all u, v ∈ Ω2(N),

traceκ = 0},
U = {fId ∈ Ω̃2

2(N) : f ∈ C̃∞(N)}

= {κ ∈ Ω̃2
2(N) : u ∧ κ(v) =

1

6
trace (κ)u ∧ v for all u, v ∈ Ω2(N)}.

Then

Ω̃2
2(N) = Z ⊕ W ⊕ U, (15)

and pointwise, dimZ = 20, dimW = 15 and dimU = 1.

If we write a κ ∈ Ω̃2
2(N) as

κ = (1)κ + (2)κ + (3)κ (16)

with (1)κ ∈ Z, (2)κ ∈ W , (3)κ ∈ U , then we say that (1)κ is the principal part, (2)κ is
the skewon part, (3)κ is the axion part of κ [1].

Proof. Let us start with two observations. First, if κ ∈ Ω̃2
2(N), then κ ∈ W (with W

defined on the first line) if and only if

κijlmε
lmpq = − κpqlmε

lmij (17)

when κ is written as in equation (8). Since εlmpqεlmij = 4δp[iδ
q
j], it follows that the two

expressions for W coincide. Here we use the bracket notation to indicate that indices
i, j are antisymmetrised (with scaling 1/2!). The equality of the two expressions for
U follows similarly. Second, let W ′ be defined as

W ′ = {η ∈ Ω̃1
1(N) : trace η = 0},

where trace η is locally defined as trace η = ηii . Moreover, let σ be the linear map

σ:W ′ → Ω̃2
2(N) such that if η ∈W ′ and locally η = ηijdx

j ⊗ ∂
∂xi then

σ(η)ijlm = 2η
[i
[lδ

j]
m]. (18)

Lastly, if κ ∈ Ω̃2
2(N), let 6 κ ∈ W ′ be the tensor locally defined as 6 κ =6 κijdxj ⊗ ∂

∂xi ,

where 6 κij = κimjm − 1
2 trace (κ)δij [1, Section D.1.2]. The remaining arguments in this

paragraph rely on computer algebra. Equations (17)–(18) show that σ(W ′) ⊂W and,
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moreover, κ = σ(6κ) for all κ ∈ W . Since σ(η) = 0 for η ∈ W ′ implies that η = 0, it
follows that σ is a linear isomorphism σ:W ′ →W .

If κ ∈ Ω̃2
2(N), then

(1)κ = κ−(2)κ−(3)κ, (2)κ = σ(6κ), (3)κ =
1

6
trace (κ)Id

satisfy (1)κ ∈ Z, (2)κ ∈ W and (3)κ ∈ U . This can be seen by computer algebra.
Thus Ω̃2

2(N) = Z + W + U . To see that the sum is direct, that is, to see that the
decomposition in equation (16) is unique, suppose we have two decompositions

κ = (1)κ + (2)κ + (3)κ

= (1)κ′ + (2)κ′ + (3)κ′.

Taking trace shows that (3)κ =(3) κ′, and uniqueness follows since (1)κ −(1) κ′ =
(2)κ′ −(2)κ ∈ Z ∩W = {0}. The pointwise dimensions for Z,W,U follow since W ′ has
dimension 15 and U has dimension 1.

2.4. The Hodge star operator

By a pseudo-Riemann metric on a manifold N we mean a symmetric real
(

0
2

)
-tensor

g that is non-degenerate. If N is not connected we also assume that g has constant
signature. If g is positive definite, we say that g is a Riemann metric. A pseudo-
Riemann metric g is a Lorentz metric if N is 4-dimensional and g has signature
(+−−−) or (−+ ++).

By ] and [ we denote the isomorphisms ]:T ∗N → TN and [:TN → T ∗N . By
R-linearity we extend g, ] and [ to complex arguments. Moreover, we extend g also
to covectors by setting g(ξ, η) = g(ξ], η]) when ξ, η ∈ Λ1

p(N,C). For a Lorentz metric,
we define the null cone at p as the set {ξ ∈ Λ1

p(N) : g(ξ, ξ) = 0}.
If g is a pseudo-Riemann metric on a 4-manifold N , then the Hodge star operator

for g is the twisted
(

2
2

)
-tensor κ = ∗g ∈ Ω̃2

2(N) defined as follows. If κ = ∗g is written
as in equation (8) for local coordinates xi and g = gijdx

i ⊗ dxj , then

κijrs =
√
|det g| giagjbεabrs. (19)

Here det g = det gij and gij is the ijth entry of (gij)
−1. That ∗g in equation (19)

defines a twisted tensor ∗g ∈ Ω̃2
2(N) follows by equation (1).

2.5. Decomposition of κ into four 3× 3 matrices

Next we show that if N is a 4-manifold, then any tensor κ ∈ Ω̃2
2(N) is locally

determined by four smoothly varying 3 × 3-matrices. If xi are coordinates around
a p ∈ N , then we can locally decompose N into a product manifold, by treating x0

is the coordinate for R and (x1, x2, x3) as coordinates for some 3-manifold M . By
writing F,G as in equations (3)–(4), we denote local components for F and G as

Fi0 = Ei, Fij = Bij , Gi0 = −Hi, Gij = Dij ,

where i, j ∈ {1, 2, 3}. Equation (9) then reads

Hi = − κr0i0Er −
1

2
κrsi0Brs, (20)

Dij = κr0ij Er +
1

2
κrsijBrs, (21)
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where i, j ∈ {1, 2, 3} and r, s are summed over 1, 2, 3.

Let {Bi}3i=1 be defined as Bi = 1
2

∑3
j,k=1 ε

ijkBjk. Then Brs =
∑3
i=1 εirsB

i, and

similarly, we also define {Di}3i=1. Then equations (20)–(21) can be rewritten as

Hi = C r
i(−Er) + BriB

r, (22)

Di = A ri(−Er) + Dr
iBr, (23)

where i ∈ {1, 2, 3}, r is summed over 1, 2, 3, and

C r
i = κr0i0 , Bri = −1

2
εrabκ

ab
i0 , A ri = −1

2
εiabκr0ab, Dr

i =
1

4
εrmnε

iabκmnab . (24)

Inverting the relations gives

κ0r
0i = C r

i, κij0r = εkijBkr, κ0i
rs = εkrsA

ik, κijrs = εkrsε
lijDl

k, (25)

where i, j, r, s ∈ {1, 2, 3} and k, l are summed over 1, 2, 3.
We have shown that in coordinates xi, tensor κ is represented by the smoothly

varying 3× 3 matrices A ,B,C ,D defined as

A =
(
A ri

)
ri
, B = (Bri)ri , C = (C r

i)ri , D =
(
Dr

i
)
ri
.

These matrices coincide with the corresponding matrices in [1, Section D.1.6] and [2].
Since each matrix is only part of tensor κ, it does not transform in a simple way
under a general coordinate transformation in N (see equations D.5.28–D.5.30 in [1]).
However, suppose {xi}3i=0 and {x̃i}3i=0 are overlapping coordinates such that

x̃0 = x0,

x̃i = x̃i(x1, x2, x3), i ∈ {1, 2, 3}.
Then equations (10), (24), (25) and identity εijkA

i
aA

j
bA

k
c = detA εabc for any 3 × 3

matrix A = (Aij)ij , yield the following transformation rules

C̃ r
i = sgn det

(
∂x̃m

∂xn

)
C a

b
∂xb

∂x̃i
∂x̃r

∂xa
, (26)

B̃ri =

∣∣∣∣det

(
∂x̃m

∂xn

)∣∣∣∣ Bab
∂xa

∂x̃r
∂xb

∂x̃i
, (27)

Ã ri =

∣∣∣∣det

(
∂xm

∂x̃n

)∣∣∣∣ A ab ∂x̃
r

∂xa
∂x̃i

∂xb
, (28)

D̃r
i = sgn det

(
∂x̃m

∂xn

)
Da

b ∂x̃
i

∂xb
∂xa

∂x̃r
, (29)

where i, r ∈ {1, 2, 3} and a, b are summed over 1, 2, 3.
If (2)κ = 0 then Proposition 2.2 implies that κ is pointwise determined by 21

coefficients. The next proposition shows that these coefficients can pointwise be
reduced to 18 when the coordinates are chosen suitably.

Proposition 2.3. Suppose N is a 4-manifold and κ ∈ Ω̃2
2(N). Then

(i) κ has no skewon component if and only if locally

A = A T , B = BT , C = DT ,

where T is the matrix transpose, and A ,B,C ,D are defined as above.

(ii) Let p ∈ N . If κ has no skewon component, then there are local coordinates around
p such that A is diagonal at p.

Proof. Part (i) follows by [1, Equation D.1.100]. Since any symmetric matrix can be
diagonalised by an orthogonal matrix part (ii) follows by part (i) and equation (28).
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3. Geometric optics solutions

Suppose κ ∈ Ω̃2
2(N) on a 4-manifold N . To study wave propagation in the medium κ

we will use the technique of geometric optics. We then assume that field quantities F
and G in Maxwell’s equations can be written as asymptotic sums [22]

F = Re

{
eiPΦ

∞∑
k=0

Ak
(iP )k

}
, G = Re

{
eiPΦ

∞∑
k=0

Bk
(iP )k

}
, (30)

where P > 0 is the asymptotic parameter, Φ ∈ C∞(N), Ak ∈ Ω2(N,C) and

Bk ∈ Ω̃2(N,C). In this setting, function Φ is called the phase function, and forms
Ak, Bk are called amplitudes. Let us emphasise that we will treat the above sums as
formal sums and will not consider convergence questions. For an analysis, see [23, 24].
Let us also note that there are other approaches for studying propagation in premetric
electromagnetics [1, 13, 25].

Substituting F and G into the sourceless Maxwell equations and differentiating
termwise shows that F and G form an asymptotic solution provided that

dΦ ∧A0 = 0, (31)

dΦ ∧B0 = 0, (32)

Bk = κAk, (33)

dΦ ∧Ak+1 + dAk = 0, (34)

dΦ ∧Bk+1 + dBk = 0, k = 0, 1, . . . . (35)

In equation (33) we treat κ as a linear map κ: Ω2(N,C)→ Ω̃2(N,C).
Let us assume that dΦ is never zero. Then we can find an X ∈ X(N) such

that dΦ(X) = 1 and contracting equation (31) yields a 1-form a0 ∈ Ω1(N,C) with
A0 = dΦ ∧ a0, whence

dΦ ∧ κ(dΦ ∧ a0) = 0. (36)

Since equation (36) is a linear in a0, we may study the dimension of the the
solution space for a0. To do this, let ξ ∈ Λ1

p(N) for some p ∈ N and for ξ let Lξ be

the linear map Lξ: Λ1
p(N)→ Λ̃3

p(N),

Lξ(α) = ξ ∧ κ(ξ ∧ α), α ∈ Λ1
p(N). (37)

We always have ξ ∈ kerLξ. For all ξ ∈ Λ1
pN\{0} we can then find a (non-unique)

vector subspace Vξ ⊂ Λ1
pN such that

kerLξ = Vξ ⊕ span ξ. (38)

Let ξ = dΦ|p be non-zero. Then Vξ\{0} parameterises possible a0 that solve

equation (36) and for which A0 = dΦ ∧ a0 is non-zero. For a general κ ∈ Ω̃2
2(N)

and ξ ∈ Λ1(N)\{0} we can have dimVξ ∈ {0, 1, 2, 3}: Proposition 3.5 will show that
dimVξ can be 0 or 2. In Example 3.6 we will see that dimVξ = 1 is possible, say, in a
biaxial crystal. The next proposition characterises those κ|p such that dimVξ = 3 for
all ξ ∈ Λ1

p(N)\{0}.

Proposition 3.1. Let κ ∈ Ω̃2
2(N) on a 4-manifold N and let p ∈ N . Then the

following are equivalent:

(i) κ|p is of axion type.

(ii) dimVξ = 3 for all ξ ∈ Λ1
p(N)\{0}.



Determination of electromagnetic medium from the Fresnel surface 11

Proof. Implication (i) ⇒ (ii) is clear. For the converse direction suppose that (ii)
holds and {xi}3i=0 are local coordinates around p. It follows that

ζ ∧ ξ ∧ κ(ξ ∧ α) = 0, α, ξ, ζ ∈ Λ1
p(N).

If locally ξ = ξidx
i|p then ξiξjκ

ir
abε

jsab = 0. Differentiating with respect to ξc and ξd
gives κcrabε

dsab + κdrabε
csab = 0. Contracting both sides by εdsij using identities

εsrabεsrij = 2δa[iδ
b
j], εsabcεsijk = 3!δa[iδ

b
jδ
c
k] (39)

gives

3κcrij = κsrsjδ
c
i − κsrsi δcj . (40)

Setting i = r and summing r over 0, 1, 2, 3 gives κsisj = 1
2 traceκ δij whence equation

(40) yields κ = 1
6 traceκ Id and (i) follows.

3.1. The Fresnel surface

Let κ ∈ Ω̃2
2(N) on a 4-manifold N . If κ is locally given by equation (8) in coordinates

{xi}, let

G ijkl
0 =

1

48
κa1a2b1b2

κa3ib3b4
κa4jb5b6

εb1b2b5kεb3b4b6lεa1a2a3a4 . (41)

If {x̃i} are overlapping coordinates, then equations (10), (1) and (2) imply that

components G ijkl
0 satisfy transformation rules

G̃ ijkl
0 =

∣∣∣∣det

(
∂xr

∂x̃s

)∣∣∣∣ G abcd
0

∂x̃i

∂xa
∂x̃j

∂xb
∂x̃k

∂xc
∂x̃l

∂xd
. (42)

Equation (42) states that components G ijkl
0 define a twisted

(
4
0

)
-tensor density G0 on

N of weight 1. The Tamm-Rubilar tensor density [1, 2] is the symmetric part of G0

and we denote this twisted tensor density by G . In coordinates, G ijkl = G
(ijkl)
0 , where

parenthesis indicate that indices ijkl are symmetrised with scaling 1/4!. For ξ = ξidx
i

in local coordinates let us also write G (ξ, ξ, ξ, ξ) = G ijklξiξjξkξl = G ijkl
0 ξiξjξkξl. Using

G , the Fresnel surface at a point p ∈ N is defined as

Fp = {ξ ∈ Λ1
p(N) : G (ξ, ξ, ξ, ξ) = 0}. (43)

By equation (42), the definition of Fp does not depend on local coordinates. Let F
be the disjoint union of all Fresnel surfaces, F =

∐
p∈N Fp. To indicate that Fp and

F depend on κ we also write Fp(κ) and F (κ).
If ξ ∈ Fp then λξ ∈ Fp for all λ ∈ R. In particular 0 ∈ Fp for each p ∈ N . When

G |p is non-zero, equation (43) shows that Fp is a fourth order surface in Λ1
p(N), so Fp

may contain non-smooth self intersections.
If Φ is a phase function as in equation (30) and ξ = dΦ|p, then Vξ in equation

(38) is a vector space that parameterises possible polarisations for the chosen phase
function. For example, if dimVξ = 0, then are no propagating waves. The importance
of the next theorem is that it characterises when dimVξ ≥ 1 using the Fresnel surface.
Thus, the Fresnel surface can be seen as a premetric (and tensorial) analogue to
the classical dispersion equation. This characterisation is due to Obukhov, Fukui and
Rubilar [8]. For further results regarding the applicability and derivation of the Fresnel
surface, see [1, 2, 9, 12, 13, 14, 24].
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Theorem 3.2. Suppose N is a 4-manifold and κ ∈ Ω̃2
2(N). If ξ ∈ Λ1

p(N) is non-zero,
then the following are equivalent:

(i) dimVξ ≥ 1 where Vξ are defined as in equation (38).

(ii) ξ belongs to the Fresnel surface Fp ⊂ Λ1
p(N).

Proof. Let {xi}3i=0 be coordinates around p such that dx0|p = ξ. By the the second
identity in equation (39), we obtain

Lξ(α) =
1

2
αrκ

0r
jkdx

0 ∧ dxj ∧ dxk

=
1

12
αrκ

0r
jkε

s0jkεsuvwdx
u ∧ dxv ∧ dxw,

where α = αrdx
r|p and κijab are defined as in equation (8). Thus the matrix

representing Lξ between bases {dxi|p}3i=0 and { 1
3!εsuvwdx

u ∧ dxv ∧ dxw|p}3s=0 is the
4× 4 matrix P = (P rs)3

r,s=0,

P rs =
1

2
κ0r
jkε

s0jk. (44)

It is clear that P has the form P = diag (0, Q) for the 3×3 matrix Q = (P ij)3
i,j=1. By

equation (38), dimVξ ≥ 1 is then equivalent with dim kerP ≥ 2, which is equivalent
with detQ = 0. We know that

detQ =
1

3!
ε0abcε0ijkP

aiP bjP ck, (45)

where all variables are summed over 0, . . . , 3. However, due to the Levi-Civita
permutation symbols, only terms where all variables are in 1, 2, 3 can be non-zero.
Using antisymmetry and the second identity in equation (39), it follows that

3∑
k=1

ε0ijkP
ck =

{
−κ0c

ij , when i, j ∈ {1, 2, 3},
0, when i = 0 or j = 0,

(46)

3∑
a=1

ε0abcP
ai =

{
1
4εefbcκ

ef
uvε

i0uv, when b, c ∈ {1, 2, 3},
0, when b = 0 or c = 0.

(47)

Then equations (41) and (44)–(47) imply that detQ = −G 0000, whence detQ = 0 and
ξ ∈ Fp are equivalent. The result follows.

A key property of symmetric
(
p
0

)
-tensors is that they are completely determined

by their values on the diagonal [3]. For symmetric
(

4
0

)
-tensors on a 4-manifold, the

precise statement is contained in the following polarisation identity.

Proposition 3.3. Suppose L is a symmetric
(

4
0

)
-tensor on a 4-manifold N . If

η(1), . . . , η(4) ∈ Λ1
p(N) then

L(η(1), . . . , η(4)) =
1

4!24

∑
θ1,...,θ4∈{±1}

θ1θ2θ3θ4 L(

4∑
i=1

θiη
(i), . . . ,

4∑
i=1

θiη
(i)).

For an analytic proof of the general case, see [26, Theorem 5.6]. However, since
the rank and dimension is here fixed, the proposition can also be verified by computer
algebra.
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3.2. Electromagnetic medium induced by a Hodge star operator

The next proposition collects known results for the Hodge star operator associated
to a pseudo-Riemann g. In particular, the proposition shows that if the Hodge star
operator is induced by a metric g with signatures (+ + ++) or (− − −−), then the
medium with κ = ∗g has no asymptotic solutions. That is, if dΦ|p is non-zero, then
equation (36) implies that A0|p = 0. The proposition also shows that if κ = ∗g for an
indefinite metric g, then A0 can be non-zero only when dΦ|p is a null covector, that
is, when g(dΦ|p, dΦ|p) = 0. For generalisations, see [27, 28, 29].

Proposition 3.4. Suppose g is a pseudo-Riemann metrics on N on a 4-manifold N ,
and ∗g ∈ Ω̃2

2(N) is the associated Hodge star operator. Then ∗g has only a principal
part, and

G∗g(ξ, ξ, ξ, ξ) = sgn (det g)
√
|det g| (g(ξ, ξ))

2
, ξ ∈ Λ1(N),

and the Fresnel surface induced by ∗g is given by

F (∗g) = {ξ ∈ Λ1(N) : g(ξ, ξ) = 0}.

Proof. To see that ∗g has only a principal part we will use Theorem 2.2. Since
u ∧ ∗g(v) = ∗g(u) ∧ v for all u, v ∈ Ω2(N) [20, Proposition 6.2.13], we only need
to prove that traceκ = 0. Let us fix p ∈ N and let xi be coordinates such that g|p
is diagonal. At p, we then need to show that giagjbεabij = 0. However, this follows
since gij is diagonal and εabij is non-zero only when abij are distinct. For the second
claim, a rather lengthy computation using equations (19), (41) and the first identity
in equation (39) (or, alternatively, computer algebra) shows that

G abcd
0 ξaξbξcξd = sgn (det g)

√
|det g| (g(ξ, ξ))

2
,

where ξ = ξadx
a in arbitrary coordinates xi. The result follows.

A particular example of a Hodge star operator is given by κ =
√

ε
µ∗g where g is

the Lorentz metric g = diag (− 1
εµ , 1, 1, 1) on R4. For this κ the constitutive equation

(7) models standard isotropic medium on R4 with permittivity ε > 0 and µ > 0.
We know that a general plane wave in homogeneous isotropic medium in R3 can

be written as a sum of two circularly polarised plane waves with opposite handedness.
The Bohren decomposition generalise this classical result to electromagnetic fields
in homogeneous isotropic chiral medium [18]. The Moses decomposition, or helicity
decomposition, further generalise this decomposition to arbitrary vector fields on R3,
and for Maxwell’s equations, see [30, 31]. Part (i) in the next proposition proves an
analogous result for asymptotic solutions as defined above when the medium is given
by the Hodge star operator of an indefinite metric.

Proposition 3.5. Let N be a 4-dimensional manifold, and let κ ∈ Ω̃2
2(N) be defined

as κ = ∗g for a pseudo-Riemann metric g on N .

(i) If ξ ∈ Λ1(N) is non-zero, and Vξ is as in equation (38), then

dimVξ =

{
2, when ξ ∈ F (κ),
0, when ξ /∈ F (κ).

(ii) If ξ ∈ F (κ) is non-zero, and Lξ is as in equation (37) then

kerLξ = ξ⊥,

where ξ⊥ = {α ∈ Λ1(N) : g(α, ξ) = 0}. Thus, for any choice of Vξ in equation
(38) we have Vξ ⊂ ξ⊥.
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Proof. Let p be the basepoint of ξ and let {xi}3i=0 be local coordinates for N around
p such that g = gijdx

i ⊗ dxj and gij |p is diagonal with entries ±1. We know that
κ2 = ∗2g = (−1)σId , where σ is the index of g [20, Proposition 6.2.13]. If α ∈ Λ1

p(N),
equations (37) and (19) imply that

Lξ(α) =
1

2
ξrξsαig

ragibεabcddx
s ∧ dxc ∧ dxd

= det g (−1)σαiH
irgrs ∗ dxs,

where ξ = ξidx
i|p and α = αidx

i|p and

Hir = g(ξ, ξ)gir − ξagaiξbgbr. (48)

For part (i), equations (48) and (38) imply that dimVξ = dim kerH−1 where H is the
4 × 4 matrix with entries Hij . Let σ(H) denote the spectrum of H with eigenvalues
repeated according to their algebraic multiplicity. With computer algebra we find that

σ(H) =

(
0, C1g(ξ, ξ), C2g(ξ, ξ), C3

3∑
i=0

ξ2
i

)
,

where Ci ∈ {±1} are constants that depend only the signature of g. Now part
(i) follows by Proposition 3.4 and since algebraic and geometric multiplicity of an
eigenvalue coincide for symmetric matrices [32, p. 260]. For part (ii), equality
kerLξ = ξ⊥ follows from the local representation of Lξ in equation (48).

The next example shows that in a biaxial crystal [33, Section 15.3.3] we can have
dimVξ = 1 in equation (38).

Example 3.6. On N = R× R3, let κ ∈ Ω2
2(N) be defined by

A = −diag (1, 2, 3), B = Id , C = D = 0. (49)

Let S be the projection of the Fresnel surface into R3 when ξ0 = 1. Then S is mirror
symmetric about the ξ1ξ2, ξ1ξ3 and ξ2ξ3 coordinate planes. Figure 1 below illustrates
S in the quadrant ξ1 ≥ 0, ξ2 ≥ 0, ξ3 ≥ 0, and in this quadrant we see that S has one
singular point ξsing ∈ S.

Figure 1. One quadrant in R3 of a Fresnel surface with a singular point illustrated
by a dot.
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Surface S is defined implicitly by f(ξ1, ξ2, ξ3) = 0 and singular points are characterised
by ∇f = 0. (Or, for an alternative way to solve this point, see [31, Lemma 4.2 (iii)].)
Using computer algebra and the arguments used to prove Theorem 3.2 we find that
dimVξ when ξ0 = 1 and S intersects one of the coordinate planes {ξi = 0}3i=1. In these
intersections we obtain dimVξ = 1 except at the singular point, where dimVξ = 2. �

For a medium κ ∈ Ω̃2
2(N), the constraint (3)κ = 0 introduced in [34] is known

as the Post constraint. For many media, this constraint is satisfied. One can also
show that the axion component (3)κ does not contribute to electromagnetic energy
nor does it influence propagation in the geometric optics limit [1]. Nevertheless, there
are electromagnetic media, that have an axion component. One example is chromium
sesquioxide (Cr2O3) in a magnetic field [35, 36]. The next proposition shows that
an identically non-zero axion field imposes a topological constraint on the underlying
manifold. Let us emphasise that this result does not involve Maxwell’s equations, but
is a mathematical consequence from the definition of twisted antisymmetric

(
2
2

)
-tensors

[35].

Proposition 3.7. If N is a 4-manifold, then the following are equivalent:

(i) N is orientable.

(ii) There exists a κ ∈ Ω̃2
2(N) with an identically non-zero axion component (3)κ.

Proof. If part (i) holds, then Ω̃2
2(N) = Ω2

2(N) and part (ii) follows by taking κ = Id .

Conversely, if (ii) holds, then Proposition 2.1 implies that φ = traceκ ∈ C̃∞(N) is
identically non-zero. Let ρ be any twisted

(
0
0

)
-tensor density on N of weight 1 that is

nowhere zero. Thus, if xi and x̃i are overlapping coordinates, we have transformation
rules

φ̃ = sgn

(
det

∂xi

∂x̃j

)
φ, ρ̃ =

∣∣∣∣(det
∂xi

∂x̃j

)∣∣∣∣ ρ. (50)

(To see that such a ρ exists one can for example take ρ = (det g)1/2 for any positive
definite Riemann metric g on N .) In each chart (U, xi) let ω = φρ dx0 ∧ · · · ∧ dx3. By
equations (50), this assignment defines a global ω ∈ Ω4(N), and since ω is never zero,
N is orientable.

4. Determining the medium from the Fresnel surface

As described in the introduction, implication (iii) ⇒ (i) in Theorem 4.3 below is a
main result of this paper. Regarding the other implications let us make a few remarks.
Implication (ii) ⇒ (i) is well known. In electromagnetics, the converse implication (i)
⇒ (ii) seems to first to have been derived by Schönberg [2, 37]. For further derivations
and discussions, see [1, 2, 8, 6, 38]. Below we give yet another proof using computer
algebra. The proof follows [1] and we use a Schönberg-Urbantke-like formula (equation
(59)) to define a metric g from κ. However, the below argument that g transforms
as a tensor density in Lemma 4.5 seems to be new. For a different argument, see [1,
Section D.5.4].

When a general κ ∈ Ω̃2
2(N) on a 4-manifold N satisfies κ2 = −fId as in condition

(i) one says that κ satisfies the closure condition. For physical motivation, see [1,
Section D.3.1]. For a study of more general closure relations, and in particular, for κ
with a possible skewon component, see [29, 39]. Let us emphasise that Theorem 4.3
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is a global result. The result gives criteria for the existence of a Lorentz metric on a
4-manifold. In general, we know that a connected manifold N has a Lorentz metric
if and only if N is non-compact, or if N is compact and the Euler number χ(N) is
zero [40, Theorem 2.4]. Therefore, the closure condition does impose a constraint on
the global topology of N . Let us also note that if J is an almost complex structure on
a manifold M , that is, J is a

(
1
1

)
-tensor on M with J2 = −Id and dimM ≥ 2, then

M is orientable [41, p. 77]. The next example shows that the closure condition for
twisted

(
2
2

)
-tensors does not imply orientability.

Example 4.1. Let N = M1 × M2 be the smooth 4-manifold with the Lorentz
metric g = g1 × g2, where M1 is a 2-dimensional non-orientable manifold with
a positive definite Riemann metric g1, and M2 = R2 with the pseudo-Riemann
metric g2 = diag (+1,−1). Then N is not orientable [42, Remark 16.21.9.3], but

κ = ∗g ∈ Ω̃2
2(N) satisfies κ2 = −Id . �

The next example illustrates the possible difference between the full Tamm-
Rubilar tensor density G ijkl and the Fresnel surface Fp(κ) which only contains the
real roots to the equation G ijklξiξjξkξl = 0. When equivalence holds in Theorem 4.3,
the implication is that both objects contain the same information (up to scaling). In
Example 5.4 we will see that in general this need not be the case.

Example 4.2. Suppose κ and κ̃ are invertible and skewon-free medium tensors on
R4 with constant coefficients and with Tamm-Rubilar tensor densities

G ijklξiξjξkξl = (ξ2
0 − ξ2

1 − ξ2
2 − ξ2

3)2, (51)

G̃ ijklξiξjξkξl = (ξ2
0 + ξ2

1 + ξ2
2 + ξ2

3)(ξ2
0 − ξ2

1 − ξ2
2 − ξ2

3), (52)

respectively. By equation (43), the Fresnel surfaces of κ and κ̃ coincide. Thus the two
media can not be distinguished from their wavespeed behaviours for propagating plane
waves. However, if one can also observe evanescent waves, then one can distinguish
the two medium tensors. Namely, tensor κ̃ has evanescent waves (that is, solutions
that correspond to complex solutions to ξ2

0 + ξ2
1 + ξ2

2 + ξ2
3 = 0) that are not present

in κ. However, Proposition 3.4 and implication (iii) ⇒ (ii) in Theorem 4.3 show that
this is not necessary; there is no invertible and skewon-free medium tensor κ̃ for which
the Tamm-Rubilar tensor density factors as in equation (52). �

Theorem 4.3. Suppose N is a 4-manifold. If κ ∈ Ω̃2
2(N) satisfies (2)κ = 0, then the

following conditions are equivalent:

(i) κ2 = −fId for some function f ∈ C∞(N) with f > 0.

(ii) there exists a Lorentz metric g and a nonvanishing function f ∈ C∞(N) such
that

κ = f ∗g . (53)

(iii) (3)κ = 0, detκ 6= 0 and there exists a Lorentz metric g such that

F (κ) = F (∗g),
where F (κ) is the Fresnel surface for κ and F (∗g) is the Fresnel surface for the

Hodge star operator ∗g ∈ Ω̃2
2(N) associated to g.

Moreover, when equivalence holds, then metrics g in conditions (ii) and (iii) are
conformally related.
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Proof. For implication (i) ⇒ (ii), suppose (i) holds. By scaling, we may assume that
f = 1. Let T be an atlas as in Lemma 4.4, whence in each chart (U, xi) ∈ T there
is a Lorentz metric h. Moreover, let ρ be a strictly positive odd

(
0
0

)
-tensor density on

N of weight 1/2. That is, in each chart U , there is a function ρ:U → (0,∞) and if ρ

and ρ̃ are functions in overlapping charts (U, xi) and (Ũ , x̃i) we have

ρ̃ =

∣∣∣∣det

(
∂xi

∂x̃j

)∣∣∣∣1/2 ρ on U ∩ Ũ . (54)

(To see that such a density exists one can for example take ρ = (det k)1/4 for a positive
definite Riemann metric k on N .) In each chart (U, xi) ∈ T , let g be Lorentz metric
g = ρh. Then equations (54) and (60) imply that g is a global Lorentz metric on

N , and Lemma 4.5 (i) implies that −sgn det A ∗g ∈ Ω̃2
2(N). Lastly, since the Hodge

operator is conformally invariant, implication (i) ⇒ (ii) follows. Implication (ii) ⇒
(iii) follows by Proposition 3.4 and equation (43). For implication (iii) ⇒ (i), Lemma
4.6 shows that there exists a (possibly non-continuous) function φ:N → (0,∞) such
that κ2 = −φId To see that φ is a smooth function on N it suffices to note that
φ = − 1

6 traceκ2. This completes the proof of implication (iii) ⇒ (i).
We know that two Lorentz metrics are conformally related if their null cones

coincide [4, Theorem 3]. Thus, Proposition 3.4 implies that the Lorentz metrics in
conditions (ii) and (iii) are conformally related when equivalence holds.

The next two lemmas was used to prove implication (i) ⇒ (ii) in Theorem 4.3.
The lemmas collect results from [1, Sections D.3–D.5].

Lemma 4.4. Suppose N is a 4-manifold and κ ∈ Ω̃2
2(N). If κ has no skewon

component and κ2 = −Id , then N has an atlas T with the following property: Each
p ∈ N can be covered with a connected chart (U, xi) ∈ T such that if A ,B,C ,D
represent κ in U , then

(i) A is invertible in U .

(ii) In U there exists a smoothly varying antisymmetric 3× 3 matrix K such that

B = −A −1
(

Id +
(
K A −1

)2)
, C = K A −1, D = −A −1K .

(iii) In U there is a Lorentz metric h = hijdx
i ⊗ dxj with signature (+ − −−) such

that

.deth = − 1, κ|U = −sgn det A ∗h . (55)

Proof. Let us first make an observations: Suppose {xi}3i=0 are arbitrary coordinates
for N and A , B, C ,D are 3× 3 matrices that represent κ in these coordinates. Then
Proposition 2.3 (i) implies that κ2 = −Id is equivalent with

C 2 + A B = − Id , (56)

BC + C TB = 0, (57)

C A + A C T = 0. (58)

Let T0 is a maximal atlas for N . The proof is divided into two subclaims, Claim
1 and Claim 2.

Claim 1. For each p ∈ N there exists a connected chart (U, xi) ∈ T0 that satisfies
condition (i).
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By Proposition 2.3 (ii) we can find a connected chart (U, xi) that contains p and
where matrix A for κ is diagonal at p. The rest of Claim 1 is divided into four cases
depending on the eigenvalues of A |p.

Case A. Suppose A |p has three non-zero eigenvalues. Since eigenvalues depend
continuously on the matrix entries [43], we can shrink U and Claim 1 follows.

Case B. Suppose A |p has two non-zero eigenvalues. By permutating the
coordinates (see equation (28)) we may assume that A |p = diag (a1, a2, 0) for some
a1, a2 6= 0. Writing out equations (56)–(58) with computer algebra gives

C 1
1 = C 2

2 = C 3
1 = C 3

2 = 0, (C 3
3)2 = −1

at p. The last equation contradicts that C is real. Case B is therefore not possible.
Case C. Suppose A |p has one non-zero eigenvalue. As in Case B, we can find a

chart (U, xi) for which A |p = diag (a1, 0, 0) for some a1 6= 0. Writing out equations
(56)–(58) as in Case B gives

C 1
1 = C 2

1 = C 3
1 = 0, B11 6= 0, C 2

3 6= 0, C 3
2 6= 0

at p. Let {x̃i}3i=0 be coordinates around p defined as

x̃0 = x0 + x3,

x̃i = xi, i ∈ {1, 2, 3}.

In these coordinates, we have Ã |p = −B11(C 3
2)2 6= 0 and Claim 1 follows.

Case D. Suppose all eigenvalues of A |p are zero. Then A |p = 0 and equation
(56) implies that (det C |p)2 = −1. This contradicts that C |p is a real matrix. Case D
is therefore not possible.

Claim 2. Let T be the collection of all charts (U, xi) as in Step 1 when p ranges
over all points in N . Then T is an atlas for N that satisfies properties (i), (ii) and
(iii).

Each chart in T satisfies property (i), and property (ii) follows by defining
K = C A . Indeed, K is antisymmetric by equation (58), and the expression for
B follows by equation (56). For property (iii), let G = (Gab)ab is the 4× 4 matrix in
U with entries

G =
1√
|det A |

(
det A ki

kj −A ij + (det A )−1kikj

)
, (59)

where ki = A ib 1
2εbcdK

cd for i ∈ {1, 2, 3}. Using a Shur complement [44, Theorem
3.1.1] we find that detG = −1. Hence detG < 0, so matrix G is invertible and has
constant signature (− + ++) or (+ − −−) at each point in U . Let Gij be the ijth
entry of the inverse of G. In U we define

h = σUGijdx
i ⊗ dxj ,

where constant σU ∈ {−1, 1} is chosen such that h has signature (+ − −−). Then h
is a smooth symmetric

(
0
2

)
-tensor in U with signature (+−−−) and deth = −1. Let

Gij0 =
√
|det A | Gij . Then hij = σU√

| det A |
Gij0 and expanding ∗h using equation (19)

gives

−sgn det A (∗h)ijrs =
−1

det A
Gia0 G

jb
0 εabrs

= κijrs,
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where the last equality follows by computer algebra. Thus κ|U = −sgn det A ∗h and
part (iii) follows.

The next lemma describe the transformation rules for the objects in Lemma 4.4.

Part (i) shows that the local functions sgn det Ã in Lemma 4.4 determine a smooth
function on N . Moreover, part (ii) shows that the local Lorentz metrics h in Lemma
4.4 determine an odd tensor density of weight −1/2. Here we follow the even/odd
convention in [45, p. 134]. Namely, a tensor density is odd when the scaling is a power
of |det ∂x

a

∂x̃b | as in equation (60), and even when the scaling is a power of det ∂x
a

∂x̃b . For
a direct proof of equation (60) based on equation (59), see [1, Section D.5.4].

Lemma 4.5. Suppose N is a 4-manifold and κ ∈ Ω̃2
2(N) is as in Lemma 4.4.

(i) If A and Ã are smoothly varying matrices determined by Lemma 4.4 in

overlapping charts (U, xi) and (Ũ , x̃i), then sgn det A = sgn det Ã .

(ii) If h = hijdx
i ⊗ dxj and h̃ = h̃ijdx̃

i ⊗ dx̃j are Lorentz metrics determined by

Lemma 4.4 in overlapping charts (U, xi) and (Ũ , x̃i), then

h̃ij =

∣∣∣∣det
∂xa

∂x̃b

∣∣∣∣−1/2

hrs
∂xr

∂x̃i
∂xs

∂x̃j
. (60)

Proof. Let A , Ã , h, h̃ be as in parts (i) and (ii). Then Proposition 3.4 implies that

G ijkl
κ ξiξjξkξl = sgn det A (habξaξb)

2,

G̃ ijkl
κ ξ̃iξ̃j ξ̃k ξ̃l = sgn det Ã (h̃abξ̃aξ̃b)

2

for all ξ = ξidx
i = ξ̃idx̃

i ∈ Λ1(U ∩ Ũ). Contracting equation (42) by ξ̃iξ̃j ξ̃k ξ̃l yields

sgn det A (hijξiξj)
2 = sgn det Ã

(∣∣∣∣det
∂x̃a

∂xb

∣∣∣∣1/2 h̃rs ∂xi∂x̃r
∂xj

∂x̃s
ξiξj

)2

(61)

for all ξ = ξidx
i ∈ Λ1(U ∩ Ũ). In each Λ1

p(U ∩ Ũ) we can find a ξ such that hijξiξj 6= 0.

Thus sgn det A = sgn det Ã in U∩Ũ and part (i) follows. Since metrics with the same
null cone are conformally related [4, Theorem 3], there exists a smooth nonvanishing

function λ:U ∩ Ũ → R such that

hij = λ

∣∣∣∣det
∂x̃a

∂xb

∣∣∣∣1/2 h̃rs ∂xi∂x̃r
∂xj

∂x̃s
.

Equation (61) implies that function λ can only take values {−1,+1}. Since (hij)ij and

(h̃ij)ij have signatures (+−−−), we have λ = 1 on U ∩ Ũ and part (ii) follows.

Next we prove Lemma 4.6 which is the key results leading to implication (iii) ⇒
(i) in Theorem 4.3. Let us emphasise that the proof of this proposition closely follows
the proof of the main result in [15], which characterises skewon-free media with two
Lorentz null cones. Below we will therefore only indicate how the argument in [15]
changes to the present setting. In the proof we will need the normal form theorem of
Schuller, Witte and Wohlfarth [13] which pointwise divides skewon-free media into 23
metaclasses and gives simple coordinate expressions for each metaclass. For example,
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if κ|p is in Metaclass I, then there are coordinates around p such that the 6×6 matrix
(see proof of Proposition 2.1) that represents κ|p can be written as

α1 0 0 −β1 0 0
0 α2 0 0 −β2 0
0 0 α3 0 0 −β3

β1 0 0 α1 0 0
0 β2 0 0 α2 0
0 0 β3 0 0 α3

 (62)

for constants α1, α2, α3 ∈ R and β1, β2, β3 ∈ R\{0} and all βi are of the same sign.
This normal form result is essentially based on the Jordan normal form. Since κ|p can
be represented by 6× 6 matrix, it can be transformed into a Jordan normal form by a
6× 6 matrix. A main result of [13] is that such a 6× 6 transformation matrix (which
a priori has 36 degrees of freedom) can for skewon-free media essentially be realised
using a coordinate transformation on N (which has only 16 degrees of freedom). See
equation (14) and for a further discussion see [13, 46]. Let us also note that Lemma
4.6 and [15, Theorem 2.1] are pointwise results, but Theorem 4.3 is a global result on
a possibly non-orientable manifold.

Lemma 4.6. Suppose N is a 4-manifold, κ ∈ Ω̃2
2(N), (2)κ = 0 and condition (iii)

holds in Theorem 4.3. If p ∈ N , then there exists a λ > 0 such that

κ2 = − λId at p. (63)

Proof. Let xi be coordinates around p, and let G ijkl be components of the Tamm-
Rubilar tensor density at p. Let γ:R4 → R be the polynomial γ(ξ) = G ijklξiξjξkξl.
By Claim (∗) in the proof of Proposition 1.3 in [15], condition (iii) in Theorem 4.3
implies that γ has gijξiξj as a factor when gij are components of g in condition (iii).
Hence there exists a symmetric

(
2
0

)
-tensor A = Aij ∂

∂xi ⊗ ∂
∂xj at p with real coefficients

such that

G ijklξiξjξkξl = (gijξiξj)(A
klξkξl), {ξi}3i=0 ∈ R4. (64)

Since Fp(κ) 6= T ∗pN we can conclude that A 6= 0. Let us also note that if

(Bij)3
i,j∈0 ∈ C4×4 then Bijξiξj is irreducible over C if and only if adjB is nonzero

where adjB is the adjugate matrix of (Bij)3
i,j=0. Also, if B is real and Bijξiξj is

irreducible over C then Bijξiξj is irreducible over R. See for example [15, Proposition
A.1]. By Proposition 3.3, equation (64) holds for all ξ ∈ C4.

Since Fp(κ) is one Lorentz null cone, [47, Proposition 2] implies that Fp(κ) does
not contain a 2-dimensional subspace. Hence detκ 6= 0 and [13, Lemma 5.1] implies
that κ|p is in Metaclasses I, . . ., VII in the classification of Schuller et al. [13]. That
the conjugation operator in [13] is not necessary in this case follows by [46, Theorem
6]. For a repeat of this argument in the present setting, see [15, Theorem 1.5].

If κ|p is in Metaclass I, then the factorisation in equation (64) holds also in
the coordinates where the normal form for κ|p is valid. In the notation of [15,
Theorem 2.1], polynomial γ can be written using constants D0, D1, D2, D3 ∈ R. If
D1 = D2 = D3 = 2 then the expressions for D1, D2, D3 in [15] show that κ|p is
proportional to the Hodge star operator of a Lorentz metric, and equation (63) follows.
On the other hand, if D1 = D2 = D3 = 2 does not hold, then the argument in [15,
Theorem 2.1] implies that

G ijklξiξjξkξl = (gij+ξiξj)(g
kl
− ξkξl), {ξi}3i=0 ∈ R4 (65)
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for non-proportional Lorentz metrics g±. Thus

Np(g) = Np(g+) ∪Np(g−). (66)

We know that if Np(u) ⊂ Np(v) for Lorentz metrics u, v then u = λv for some λ 6= 0.
See for example [48, Section II.4]. Then equation (66) implies the contradiction that
g± are proportional. We have shown that if κ|p is in Metaclass I then necessarily
D1 = D2 = D3 = 2.

If κ|p is in Metaclass II or IV, then the argument in [15, Theorem 2.1] implies
that equation (65) holds for non-proportional Lorentz metrics g±. Then equation
(66) holds and the argument in Metaclass I shows that Metaclasses II and IV are not
possible.

If κ|p is in Metaclass III or V, then the argument in [15, Theorem 2.1] shows that
γ can not factor as in equation (64). Hence Metaclasses III and V are not possible.

If κ|p is in Metaclass VI then the argument in [15, Theorem 2.1] shows that γ

can be written as in equation (65) for some quadratic forms g± = gij±
∂
∂xi ⊗ ∂

∂xj with

real coefficients and det g± > 0. Hence gij±ξiξj are irreducible over R, and equations
(64) and (65) imply that gµ = Cg for some C ∈ R\{0} and µ ∈ {±}. However, then
0 < det gµ = C4 det g < 0, so κ|p can not be in Metaclass VI.

If κ|p is in Metaclass VII, then the argument in [15, Theorem 2.1] shows that

there are quadratic forms g± = gij±
∂
∂xi ⊗ ∂

∂xj with possibly complex coefficients such
that equation (65) holds for all ξ ∈ C4. We will not need the explicit expressions for all
possible g±. However, we will need the following two properties: (i) if gµ for µ ∈ {±}
is real then det gµ ≥ 0, and (ii) g+ and g− both have at least one nonzero real entry.
Since gijξiξj is irreducible over C, the right hand side of equation (65) should have
at least one irreducible factor of degree 2 by unique factorisation [16, Theorem 5 in
Section 3.5]. Hence gµ = Cg for some C ∈ C\{0} and µ ∈ {±}. By (ii), it follows
that C ∈ R\{0}. Hence gµ is real and repeating the last argument for Metaclass VI
shows that Metaclass VII is not possible.

5. Non-injectivity results

Implication (iii) ⇒ (ii) in Theorem 4.3 shows that for a special class of medium, the
Fresnel surface determines the medium up to a conformal factor. In the below we will
see that there are various non-uniquenesses that prevents this for a general κ. We will
separately study the non-injectivity of the two maps in the below diagram:

κ → G (κ) → F (κ), κ ∈ Ω̃2
2(N), (67)

where G (κ) is the Tamm-Rubilar tensor density for κ and F (κ) is the Fresnel surface
for κ.

5.1. Non-injectivity of leftmost map

Let us first study the non-injectivity of the leftmost map in diagram (67), that is, the
map

κ → G (κ), κ ∈ Ω̃2
2(N). (68)

Parts (ii)–(iv) in the next theorem describes three invariances that make map (68)
non-injective. Parts (i)–(iii) are well known [1, Section 2.2]. However, let us make four
remarks regarding part (iv), which describes the Tamm-Rubilar tensor densities for κ
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and κ−1. First, let us note that if κ ∈ Ω̃2
2(N) is invertible, then Proposition 2.1 implies

that κ−1 ∈ Ω̃2
2(N). Thus, κ and κ−1 both define linear maps Ω2(N) → Ω̃2(N) and

both κ and κ−1 can be treated as electromagnetic media. Second, if N is orientable,
part (iv) has the following interpretation: If F,G ∈ Ω2(N) solve the sourceless Maxwell
equations in medium κ, then G,F ∈ Ω2(N) solve the sourceless Maxwell equations in
medium κ−1. In this setting, part (iv) states that both media have the same Fresnel
surfaces. Third, suppose ∗g is the twisted

(
2
2

)
-tensor induced by a pseudo-Riemann

metric g. Then ∗2g = ±Id , so ∗−1
g = ±∗g, whence G (∗g) and G (∗−1

g ) are conformally
related. Part (iv) states that this is not only a result for the Hodge star operator,

but a general result for all κ ∈ Ω̃2
2(N). Fourth, the proof of part (iv) is based on

computer algebra. Of all the proofs in this paper, this computation is algebraically
most involved. For example, if we write out equation (69) as a text string, it requires
almost 13 megabytes of memory.

Theorem 5.1. Suppose κ ∈ Ω̃2
2(N) where N is a 4-manifold. Then

(i) G (fκ) = f3G (κ) for all f ∈ C∞(N),

(ii) G ((2)κ) = 0, where (2)κ is as in Section 2.3,

(iii) G (κ) = G (κ+ fId ) for all f ∈ C̃∞(N),

(iv) G (κ−1) = G (−(detκ)−1/3κ) when κ is invertible.

Proof. Part (i) follows by the definition, and parts (ii)–(iii) are proven in [1, Section
2.2]. Therefore we only need to prove part (iv). Let adjκ = detκκ−1 be the adjugate
of κ. By part (i) and Proposition 2.1, it suffices to show that

(detκ)2G ijkl
κ + G ijkl

adjκ = 0, 0 ≤ i ≤ j ≤ k ≤ l ≤ 3, (69)

where G ijkl
κ and G ijkl

adjκ are components of the Tamm-Rubilar tensor densities of κ
and adjκ, respectively. The motivation for rewriting the claim as in equation (69)
is that now both terms are polynomials. Mathematica was not able to verify these
polynomials in reasonable time. However, to prove that a multivariable polynomial is
the zero polynomial it suffices to make a Taylor expansion with respect to one variable
and prove that all Taylor coefficients are zero. By recursively eliminating variables
in this way, we can decompose the verification process into smaller polynomials that
Mathematica can simplify. In this way, we see that equations (69) hold and part (iv)
follows.

Theorem 5.1 (ii) shows that if we restrict the map in equation (68) to purely
skewon tensors, we do not obtain an injection. The next example shows that the same
map is neither an injection when restricted to tensors of purely principal type.

Example 5.2. On N = R × R3 with coordinates {xi}3i=0, let κ be the
(

2
2

)
-tensor

defined by 3× 3-matrices

A = 03×3, B =

 0 0 λ1

0 0 λ2

λ1 λ2 λ3

 , C =

 −2−1/3 0 λ4

0 −2−1/3 λ5

0 0 22/3

 , D = C T ,

where parameters λ1, . . . , λ5 ∈ R are arbitrary. Then κ has only a principal part,
detκ = 1, and Gκ = 0. �
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When proving implication (iii) ⇒ (i) in Theorem 4.3 we need to assume that κ
has real coefficients. In fact, for

(
2
2

)
-tensors with complex coefficients a decomposition

into principal-, skewon-, and axion components does not seem to have been developed.
The next example shows that there are non-trivial complex tensors whose Fresnel
surface everywhere coincides with the Fresnel surface for the standard Minkowski
metric g0 = diag (1,−1,−1,−1). (For κ ∈ Ω̃2

2(N,C) we define the Fresnel surface
using the same formulas as for real κ.)

Example 5.3. On N = R×R3 with coordinates {xi}3i=0, let κ be the
(

2
2

)
-tensor with

complex coefficients defined by 3× 3-matrices

A = −

 1
2z2 0 0
0 2z 0
0 0 z

 , B = −A ,

C = i

 1
3z2 − z 0 0

0 − 1
6z2 + z 0

0 0 − 1
6z2

 , D = C ,

where z is an arbitrary function z:N → C\{0} and i is the complex unit. At each
p ∈ N the Fresnel surface is then determined by

ξ2
0 − ξ2

1 − ξ2
2 − ξ2

3 = 0,

where ξidx
i ∈ Λ1

p(N), and

traceκ = 0, detκ =

(
1 + 6z3

)3 (
5− 126z3 + 684z6 − 648z9

)
46656 z12

.

From the latter equation we see that for specific values of z, tensor κ can be non-
invertible as a linear map �

5.2. Non-injectivity of rightmost map

The next example shows that there are κ1, κ2 ∈ Ω2
2(R × R3) with no skewon

components that have the same Fresnel surfaces, but their Tamm-Rubilar tensors
are not proportional to each other. This shows that the rightmost map in equation
(67) is not injective. Let us point out that this contradicts the first proposition in [3]
whose proof does not analyse multiplicities of roots to the Fresnel equation.

Example 5.4. On N = R × R3 with coordinates {xi}3i=0, let κ1 be the
(

2
2

)
-tensor

defined by 3× 3-matrices

A1 =

 0 −1 1
−1 −2 1
1 1 −1

 , B1 =

 0 1
2 0

1
2 0 0
0 0 0

 , C1 =

 0 0 0
0 2 1
1
2 − 1

2 1

 , D1 = C T
1 .

Then

Gκ1(ξ, ξ, ξ, ξ) = (ξ0 − ξ1)(ξ0 − ξ2)3, ξ ∈ Λ1(N).

To exchange the role of ξ1 and ξ2, we perform a coordinate change x0 7→ x0, x1 7→ x2,
x2 7→ x1, x3 7→ x3. With this as motivation we define κ2 as the

(
2
2

)
-tensor defined by

3× 3-matrices

A2 =

 2 1 −1
1 0 −1
−1 −1 1

 , B2 =

 0 − 1
2 0

− 1
2 0 0

0 0 0

 , C2 =

 2 0 1
0 0 0
− 1

2
1
2 1

 , D2 = C T
2 .
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Then

Gκ2(ξ, ξ, ξ, ξ) = − (ξ0 − ξ1)3(ξ0 − ξ2), ξ ∈ Λ1(N).

Here κ1 and κ2 are not proportional, their Tamm-Rubilar tensor densities are not
proportional, but their Fresnel surfaces coincide.

Both κ1 and κ2 have 1 has an eigenvalue of algebraic multiplicity 6. Hence

detκ1 = detκ2 = 1, traceκ1 = traceκ2 = 6,

and for the trace-free components κ̃i = κi − Id we have det κ̃i = 0. �
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de L’Academie Polonaise des sciences — Séries des sciences physiques et astron., 27(2):91–
94, 1979.

[39] I. Lindell, L. Bergamin, and A. Favaro. Decomposable medium conditions in four-dimensional
representation. IEEE Transactions on Antennas and Propagation, 60(1), 2012.

[40] E. Minguzzi and M. Sánchez. The causal hierarchy of spacetimes. In D.V. Alekseevsky
and H. Baum, editors, Recent Developments in Pseudo-Riemannian Geometry. European
Mathematical Society, 2008.

[41] C. C. Hsiung. Almost complex and complex structures. World Scientific, 1995.
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[44] V.V. Prasolov. Problems and Theorems in Linear Algebra. Amererican Mathematical Society,

1994.
[45] M. Spivak. A comprehensive introduction to differential geometry, Vol. 1. Publish or Perish,

Inc., 1979.
[46] M. Dahl, A restatement of the algebraic classification of area metrics on 4-manifolds, Int. J.

Geom. Methods Mod. Phys. 9, Issue 5 (2012) 1250046.
[47] J. Montaldi. A note on the geometry of linear Hamiltonian systems of signature 0 in R4,

Differential Geometry and its Applications 25(3): 344–350, 2007.
[48] R.A. Toupin. Elasticity and electromagnetics, Non-Linear Continuum Theories, C.I.M.E.

Conference, Bressanone, Italy, pp. 203–342, 1965.


