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Abstract

The Mazur-Ulam theorem states that a bijective isometry between
two normed spaces is an affine map. This note is based on the observa-
tion that symmetrization of norms preserve isometries. Using this ob-
servation, we show that the Mazur-Ulam theorem for non-symmetric
norms follow directly from the Mazur-Ulam theorem for symmetric
norms (Section 1). In addition, using this observation we present a
direct proof of the Mazur-Ulam theorem for smooth non-symmetric
Minkowski norms (Section 2). The notion of Minkowski norms in this
note bears no connection with non-definite inner products in relativ-

ity.

1 Normed spaces
Suppose V is a real vector space. By a norm on V we mean a function
F:V — R such that

1. F(v) >0 for all v € V and F(v) = 0 if and only if v = 0.

2. F(Av) =AF(v) for all v € V and A > 0.

3. Flu+v) < F(u)+ F(v) for all u,v € V.

If F(v) = F(—v) for all v € V, then F' is symmetric. If (V,F) and
(W, G) are two normed spaces and ¥: V' — W is a map, then V¥ is an
isometry if

G(U(a) —T(b)) = Fla—b), abeV. (1)

Also, a map ¥ between vector spaces is affine if ¥ — ¥(0) is linear.



Example 1.1. Suppose (V| F') is a normed space, and ¥: V — Wisa
bijective affine map. Then W is an bijective isometry between normed

spaces (V, F) and (W, F o (¥ — ¥(0))71).

The Mazur-Ulam theorem shows the converse of the above exam-
ple:

Theorem 1.2 (Mazur-Ulam, 1932). A bijective isometry between
two normed spaces is affine.

Let us point out that if an isometry is a surjection, it is a bijec-
tion. Therefore the Mazur-Ulam theorem is sometimes also formu-
lated for surjective isometries. Proofs for the Mazur-Ulam theorem
for symmetric norms can be found in [Lax02, Tho96, V03]. Our next
aim is to show that this symmetric Mazur-Ulam theorem implies the
non-symmetric Mazur-Ulam theorem, that is, Theorem 1.2. For this
purpose, let us define the symmetrization of a norm F: V — R as

F(v) + F(—v)

iy = FOEECY,

velV.
It is not difficult to check that F is always a symmetric norm. A
direct calculation also gives the following result:

Proposition 1.3. Suppose (V, F) and (W, G) are normed spaces, and
F and G are symmetrizations of F' and G, respectively. If ¥: (V, F) —
(W, G) is an isometry, then U: (V, F) — (W,G) is an isometry.

Proposition 1.3 now reduces the non-symmetric Mazur-Ulam theo-
rem to the symmetric Mazur-Ulam theorem; If U: (V, F) — (W, Q) is
a bijective isometry between normed spaces, then ¥: (V] F) — (W, é)
is a bijective isometry between symmetric normed spaces, and by the
symmetric Mazur-Ulam theorem, W is affine.

2 Minkowski spaces

Hereafter we only work with finite dimensional vector spaces. We
shall never explicitly write out the basis. However, if v is a vector,
we denote by v’ its components in some unspecified fixed basis. Also,
g 51 denotes partial differentiation with respect to these basis vectors.
The Einstein summing convention is used throughout.

Let V be a finite dimensional real vector space. Then a Minkowski

norm on V is a function F': V — [0, 00) such that [BCS00, She01].
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1. F is smooth on V '\ {0}.
2. F is positively 1-homogeneous; for v € V and A\ > 0,

F(A\v) = AF(v).
3. F is strongly convex; for each v € V' \ {0},

1 9%F?
95(") = 5 5507 )

is a positive definite matrix.

If (V,F) and (W,G) are Minkowski spaces, and ¥: V — W is
smooth map, then ¥ is an isometry provided that equation (1) holds.
We can now state the Mazur-Ulam theorem for Minkowski norms:

Theorem 2.1 (Mazur-Ulam, 1932). A bijective isometry between
two Minkowski spaces is affine.

One can prove that every Minkowski norm satisfies the triangle
inequality, and that every Minkowski norm is a norm in the above
sense [BCS00, She01]. Hence Theorem 2.1 is a corollary of Theorem
1.2. Our next aim is to give a direct proof of Theorem 2.1. For this,
we need some preliminaries.

Suppose 7 is an integer, and f: V' — R is smooth on V'\ {0}. Then
f is positively r-homogeneous if

fw) =X f(v), veV, A>0.
Similarly, f is absolutely r-homogeneous if
fw)=[N"f(v), veV, AeR\{0}.

An important property of Minkowski norms is that each y € V\{0}
induces an inner product g, (u,v) = g;;(y)u'v?. Symmetric Minkowski
norms are defined as for norms. However, we shall define the sym-
metrization of Minkowski norms slightly differently than for norms.
Instead of symmetrizing the norm, we symmetrize the inner product.

Proposition 2.2 (Symmetrization of Minkowski norms). Sup-
pose (V, F) is a Minkowksi space. Then

F(v) = \/FQ(U) +2F2(_U), veV

is a symmetric Minkowski norm for V. (Here, \/- is the positive square
root.)



Proof. This follows as the sum of two positive matrices is again posi-
tive definite. O

For Minkowski norms, the analogue of Proposition 1.3 is:

Proposition 2.3. Suppose (V, F) and (W,G) are Minkowski spaces,
and F and G are symmetrizations of F and G, respectively. If U:
(V,F) — (W,QG) is an isometry, then V: (V, F) — (W, Q) is an isom-
etry.

If F is a symmetric Minkowski norm, then F? is absolutely 2-
homogeneous, and the following relations hold for all v € V'\ {0} and

A#£0,
OF? OF?

B (Av) = A B (v), (2)
O?*F? O?*F?
Ovt OvJ (W) = vt OvJ (v), (3)
O?F? , OF?
goraw WV = ) @

Equations (2)-(3) follow by differentiating F?(\v) = A2F?(v) with
respect to v'. Equation (4) is known as Euler’s theorem and it follows
by differentiating equation (2) with respect to .

Proof of Theorem 2.1. Let V: (V,F) — (W,G) be the isometry, let
a,b € V' \ {0}, a # b be arbitrary, and let Ay, = ¥(u) — ¥(v) for
u,v € V. By Proposition 2.3, we may assume that F' and G are
symmetric. Let v* and w® be coordinates for V and W, respectively.
Differentiating the square of equation (1) with respect to a’ gives

O*F?
oo @ V)

0°G? ol ogum 062 92wl
~ 0wl duwm (Rab) o (a) G (a) + W(Aab)m(a)'

Let us fix a,c € V' \ {0}, and let b = b(t) € V be the solution to
Ay = te for t € R\ {0}. Then a # b(t), so the right hand side of
the above equation is always an invertible matrix. Let A be the first
term. It is positive definite, and by equation (3), A is independent of
t. Similarly, by equation (2), the second term depends linearly on t.
Hence it equals tB for a symmetric matrix B, and A+ tB is invertible
for t # 0. By Lemma 2.4, B = 0. Thus, by equation (4), the Hessians
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of W' must vanish for all / and @ € V \ {0}. As ¥ is smooth, the
Hessians must also vanish for ¢ = 0. The result follows from Lemma
2.5. O

Lemma 2.4. Suppose A, B are real symmetric matrices, and A is
positive definite. If A + tB is invertible for all t € R\ {0}, then
B =0.

Proof. Let us first show that o(A~1B), the spectrum of A~! B, is real.
To see this, let S be the positive definite square root of A. Then

0(A7'B) =0(SAT'BS ) = ¢(S7IBST), (5)

and the claim follows since S~! is symmetric. Next, by the assumption
on A+ tB, A7'B — tI is invertible for all t # 0. Thus o(A~!B) C
{0} UC\ R. Thus o(A"!B) = 0, and by equation (5), B = 0 as
S~1BS~! is diagonalizable. O

Lemma 2.5. A smooth function f: R™ — R is affine if and only if
its Hessian is identically zero.

Proof. If the gradient of a function f: R™ — R vanishes identically,
then f is constant. Thus, if x € R", and ~ is a smooth curve from 0 to
x, then 0 = fﬁ{ df = f(z)— f(0). See [Con96], p. 168. By assumption,

aii <%> (z) =0

forall i,j =1,...,n and x € R™, so

of
oxJ

(z) =Cj

for some constants C1,...,C,. Thus

% (f(a:) — ZCM) =0
1=1

and the result follows. O
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