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1 Introduction

In this essay we shall study the following problem:

Suppose
�

is a smooth � -manifold, � ����� �	� 

is a function, � is the

canonical projection ���
� � ��� �
, and ����� � � is an initial condition

such that ����������� . Find a function ��� ����

such that

���! #"$�%�&�(')�*� �,+-'.� � (1)

",�)/1032546� �87

Equation 1 is known the time-independent Hamilton-Jacobi equation. We shall
not study any applications. However, let point out that the above problem arises
in many areas of mathematics and physics such as mechanics [1, 2, 3], geomet-
ric optics [1, 4], the theory of Fourier integral operators [5], and control theory
[6]. The Hamilton-Jacobi equation is also used in the development of numerical
symplectic integrators [3].

We will show that under suitable conditions on � , the Hamilton-Jacobi equation
has a local solution, and this solution is in a natural way represented as a La-
grangian submanifold. By local we mean the following. Once an initial condition
� is fixed, we seek a function � defined in a neighborhood of �%������� � solving
the Hamilton-Jacobi equation in this set. Global questions are considerably more
involved, and a discussion on these can be found in [4].

In Section 2, we go trough the symplectic geometry of the cotangent bundle,
which will provide the underlying mathematical space for our analysis. In Section
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3 we prove a theorem known as the Hamilton-Jacobi theorem [2]. It shows that
a solution to the Hamilton-Jacobi equation simplifies the solution process for the
corresponding Hamilton equations; instead of seeking curves in phase-space, one
only needs to search for a curve in physical space. This result can also be seen as
a motivation for the Hamilton-Jacobi equation.

In Section 4, we define Lagrangian submanifolds and give some examples. In Sec-
tion 5, we show that solutions to the Hamilton-Jacobi equation can (essentially)
be identified with Lagrangian submanifolds. We also show that under suitable
restrictions on � we can always construct such a Lagrangian submanifold. Most
of the work in this approach will be in translating the Hamilton-Jacobi equation
into the Lagrangian formalism. Once this translation is done, the proof that such
a Lagrangian submanifold exists is, although not trivial, rather easy. The proof is
also completely constructive. Both of these facts motivates the use of Lagrangian
submanifolds in the study of the Hamilton-Jacobi equation.

The avoid misunderstanding, let us briefly mention that there exists also another
equation known as the Hamilton-Jacobi equation where the function � depends
on �1� parameters. In modern language, a solution to this “ �1� -Hamilton-Jacobi
equation” is a generating function [1] for a symplectomorphism that maps the
Hamiltonian vector field to the zero vector field [3]. Such solutions are important
since the zero vector field is trivial to integrate. Thus, from a solution to the
� � -Hamilton-Jacobi equation, one can directly solve the corresponding Hamilton
equations. Historically, this equation was discovered by Hamilton, and Jacobi
made the equation useful [7].

1.1 Notation and conventions

By a manifold we mean a a topological second countable Hausdorff space that lo-
cally is homeomorphic to


��
for some � ��� +��,+ 7 7 7 . In addition, we shall assume

that all transition functions are ��� -smooth. That is, we shall only consider ��� -
smooth manifolds. The space of differential 	 -forms, 	 � � +
� + 7 7 7 , on a manifold�

is denoted by ��
 � , vector fields on
�

by ��� � � , the tangent space of
�

by
� � , and the cotangent space of

�
by � � � . We also use the identification of

� � � and ��� � and treat � -forms as mappings
� � � � � . If ��� � � �

is a
mapping between manifolds

�
and

�
, we denote by ��� the push-forward map

��� � � � � � � , and by ��� the pull-back map � � ����� � � � � ��� � � � . All math-
ematical objects (manifolds, functions, 	 -forms, and vector fields) are assumed to
be ��� -smooth.

When we consider an object at a point ' in
�

, we use ' as a sub-index on the
object. For example, � �� � is the set of � -forms originating from ' .
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A general mathematical manifold will be denoted by
�

. However, when we wish
to indicate that a manifold could be interpreted as a physical space, we shall denote
the manifold by

�
. A general interval containing zero, will be denoted by � . The

tangent vector of a curve � ��� � �
at � ��� will be written as ���(��� � whence

���(�	� � � � �
�&� ��� +
� � where ��� +
� � is the tangent vector
�����
 � � � � � . The Einstein

summing convention is used throughout.

2 Symplectic geometry

Definition 2.1 Suppose � is a � -form on a manifold
�

. Then � is non-degenerate,
if for each ' � � , we have the implication: If � � � � � � � , and � � ��� +��5� � � for
all � �.� � � � � , then � � � .
Definition 2.2 (Symplectic manifold) Let

�
be an even dimensional manifold,

and let � be a closed non-degenerate � -form on
�

. Then � � +�� � is a symplectic
manifold, and � is a symplectic form for

�
.

In Section 2.1, we shall see that for any manifold, it’s cotangent bundle is always
a symplectic manifold. This will provide the basic setting, or underlying space,
where we shall analyse the Hamilton-Jacobi equation. Since the cotangent bun-
dle with this symplectic structure can be seen as a natural mathematical structure
generalizing phasespace in mechanics, this setting is well motivated. There are,
however, also other symplectic manifolds than cotangent bundles. The next ex-
ample shows, maybe, the most simple example.

Example 2.3 (Every orientable surface is a symplectic manifold) Let � be a � -
dimensional orientable manifold, and let � be a volume form on � . (Such a form
can always by constructed, for instance, by an auxiliary Riemannian metric.) Then
� makes � into a symplectic manifold; "�� vanishes as a � -form. In addition, � is
non-degenerate; if ' ��� and � � � � �����1��� , then there is a linearly independent
� �.� � � whence � ��� + � �"!��� . #
Definition 2.4 (Hamiltonian vector field) Suppose � � +$� � is a symplectic man-
ifold, and suppose � be a function � � � � 


. Then the Hamiltonian vector
field induced by � is the unique (see next paragraph) vector field %'&�� ��� � �
determined by the condition "$� ��(*)�+�,-� .

In the above, ) is the contraction mapping ).+�� �0/ � � � � �0/21 � � � � defined
by �3)	+4� �&�$53� �6� ��%.+75 � . To see that the above definition is well defined, let us
consider the mapping % 8� � �	% +753� ; by non-degeneracy, it is injective, and by
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the rank-nullity theorem, it is surjective. Thus the Hamiltonian vector field % & is
uniquely determined by � . In Example 2.12, we will see that the integral curves
of the Hamiltonian vector field correspond to solutions to Hamilton’s equations.
This motivates the minus sign in "$� ��(*)3+ , � .

An important property of the Hamiltonian field is that it’s flow is a symplectic
mapping.

Definition 2.5 (Symplectic mapping) Suppose � � +�� � and � � + � � are symplec-
tic manifolds of the same dimension, and � is a diffeomorphism ��� � � �

.
Then � is a symplectic mapping if � � � � � .

Proposition 2.6 Suppose � � +�� � is a symplectic manifold, and % & is a Hamil-
tonian vector field corresponding to a function � � � � 


. Further, let� � ����� � �
be a local flow of % & defined in some open � � �

and
open interval � containing � . Then for all ' ��� , � � � , we have

� � �� � � � � � � +
where

� � � � �	� +75 � .
Proof. As

�
	 � id � , we know that the relation holds, when ��� � . Therefore, let
us fix ' ��� , � +�� � � � � � � , and consider the function 
 �	� �#� � � �� � � � ��� +��5� with
� � � . Then,


 � �	� �-� "
"��
� 
 ����� � ����������� 	

� "
"��
�
� � �� � ��� ��� � +�� � � ��������� 	�  "! + , �$# � ��� � + � � �5+

where % � � � � ')� , � � � � � � � �&���$� , � � � � � � � �&���5� , and the last line is the definition
of the Lie derivative. Using Cartan’s formula, ! + ��)	+  #"&� "  )	+ , we have

! + ,�� � ) + , " �'� " ) + ,��
� ) + , �(� " "$�
� �,+

so 
 �(��� �%� � . Thus 
 �	� �%�)
 ��� ��� � � ��� +��5� and the claim follows. #
Proposition 2.7 (Convervation of Energy) Suppose � � +�� � is a symplectic man-
ifold, % & is the Hamiltonian vector field %'& � ��� � � corresponding to a func-
tion ��� � � 


, and � � � � �
is an integral curve of % & . Then

�  �#� constant 7
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Proof. Let �#��� . Since � is an integral curve, we have � � �&� ��� +
� � � �	%
&  � �&��� � ,
so for � � ��� + � � �.� � ��� � , we have

"����! �&� � ��� � � ��� � " � � � ��� �
� ��" � ��� 0 � 4  � � � �&��� � #
� ��" � ��� 0 � 4  ��% &  � �&�	� � #
� � +

since � is antisymmetric. The claim follows since "����! �&� is linear. #

2.1 Poincaré
�
-form on the cotangent bundle

The main result of this section is Proposition 2.10, which shows that the cotangent
bundle of any manifold is a symplectic manifold.

Proposition 2.8 Suppose
�

is an manifold, and � � � is it’s cotangent bundle with
standard coordinates �('�� + % � � . Then the � -form � � � �  � � � # ,

���)% � " ' � +
is well defined.

Proof. Suppose �
	' � +�	%�� � are other standard coordinates for � � � overlapping the
� ' � + % � � coordinates. Then we have the transformation rules ' � � ' � �
	')� and % � ���
���� ��� 	% / . Thus % � " ' � � ��
���� ��� 	% / � � ���
��� "�	'�� ��� /� 	% / "�	'�� ��	% � "�	' � 7 #
Definition 2.9 (Poincaré � -form) The � -form � in Proposition 2.8 is called the
Poincaré � -form.

Proposition 2.10 The cotangent bundle � � � of an manifold
�

is a symplectic
manifold with a symplectic form � given by

� � "��
� " % � � " ' � +

where � is the Poincaré � -form � � � �  � � � # .
Proof. Since " " ��� , "�� is closed, and we only need to check that � is non-
degenerate on � � � . Suppose � � � � � , and �(' � + % � � are local coordinates around
� . Then, for % �6� � �� � � � � � �� � � , and �*��� �

�� � � ��� �
�� � � , we have � �	% + � � �

� 5!� ( � 5�� , so if � �	% + � � � � for all � +"� , then with � �#� , we obtain � � � .
Finally, setting � � � yields � � � ��� . #
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Remark 2.11 In what follows, we shall frequently study cotangent bundles. We
shall then, without always mentioning it, assume that they are equipped with the
above symplectic form, which, as above, we systematically denote by � . In the
same way we shall reserve the symbol � for the canonical projection � � ��� � ��

. If �(' � + % � � are local coordinates for � � � , then � �(' � + 7 7 7 + ' � + % � + 7&7 7 + % � � ��(' � + 7 7&7 + ' � � .

Example 2.12 (Hamilton’s equations) Suppose
�

is a manifold, � is a function
� � � � 


, and % & is the corresponding Hamiltonian vector field. If �('���+ % � � are
standard coordinates for the cotangent bundle � � � , we obtain

% & �
� �� % �

�
� ' � (

� �� ' �
�
� % � 7

Suppose �#� �(' � + % � � � � � � � � is an integral curve to % & , then

�' � ��� �-�
� �� % �  � ��� �5+

�% � ��� �-� (
� �� ' �  � �	� �5+

that is, integral curves to % & are solutions Hamilton’s equations. #

For future reference, let us prove three technical lemmas for the Poincaré � -form.

Lemma 2.13 (Coordinate-free expression for � ) [2] Let
�

be a manifold, let �
be the the Poincaré � -form � � � � �(� � � � , and let � be the canonical projection
� � � � ��� �

. Then, for � �.� � � and � �.���  � � � # , we have

��� ���,��� �  � � � �&���,� # 7
Proof. Let � ' � + % � � be standard coordinates for � � � near � . Then we can write
� � � � " ' � 
 /10 � 4 and � ��� � �� ��� 
 � ��� � �� � � 
 � , Thus � � � �&���,���	� � �� ��� 
 / 0 � 4 , and ��� ��� �%�% � ��� � " ' � 
 � � �,�%� � � � � � �  � � � �&�
� � # . #

Lemma 2.14 [2] Suppose
�

is a manifold, and � � � � �(� � � � is the Poincaré
� -form. Then

� � �����
for all � -forms � � � � � � � .
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Proof. Suppose ' � � and � �.� � � . Then, by Lemma 2.13,

� � � � � � � �,��� � � 0 � 4  � � �
�&��� � #
� � �  � � � �8 � � �
�&��� � #
� � �  � � �  �
�&��� � #
� � � ��� �

since �  � � id � . #
Lemma 2.15 [2] Suppose

�
is a manifold, � is the canonical projection �*�

� � � � �
, � is the standard symplectic form on � � � , and � is a function

��� ����

. Then for any vectors � +�� �.����� 0 � 4 � � � � � with ' � � , we have

� � � ��"$�  � � ���$�5+ � �%� � ��� +�� ( � ��"$�  � � ���5� � 7

Proof. Suppose we can prove the identity

�  � ( � � "$�. � �&���$�5+��0( � ��"$�. � � ���5� # � � 7 (2)

Then the lemma follows using linearity and the relation � ",�%� � � � � (which, in
turn, follows from Lemma 2.14). Thus it suffices to prove identity 2. First, let us
note that since �  "$� � id � , the vectors �"( � � "$�  � � ���$� and � ( � ��"$�  %� �&��� �
map to zero under � � . For instance,

� � � �  � ( � ��"$�  � � ���$� # � � � � �&���$� ( � � � � � ��"$�  � � ���$�
� � � � �&���$� ( � � �  "$�  � � ���$�
� � 7

Therefore, if �(' � + % � � are standard coordinates near "$� � , then � ( � ��"$�  � � ���$�
and �0( � � ",�  � �&���5� are spanned by � �� � � 
 ��� 0 � 4 
	� � � + 7&7 7&+ � � . Thus equation 2
follows since the local coordinate expression for � is � ��
 �

� � � " % � � " ' � . #

3 Hamilton-Jacobi theorem

In this section we prove the Hamilton-Jacobi theorem, which establishes a link
between the non-linear Hamilton-Jacobi equation and first order ordinary differ-
ential equations. The underlying idea of the theorem (and it’s proof) is the method
of characteristics, which is a general method for solving non-linear partial differ-
ential equations.
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Theorem 3.1 (Hamilton-Jacobi theorem) [2] Suppose
�

is a connected man-
ifold, and � � � is the cotangent bundle equipped with the standard symplectic
form �!� ��� �(� � � � and the canonical projection � � � � � � �

. Further, sup-
pose � is function � � � � � � 


with corresponding Hamiltonian vector field
%
& � ��� � � � � .
If � is a function � � ��� 


, then the following conditions are equivalent:

1. � is a solution to the Hamilton-Jacobi equation �! "$� � constant.

2. If � � � � �
is an integral curve of the vector field � � � �� �% &  "$� # � � � � � ,

that is,

� � ��� �%� � � � �  %
&  #"$� #  � ��� � # + (3)

then "$�. � � � � � � � is an integral curve of % & .

Proof. Suppose 1. holds, � � � � �
is a curve satisfying equation 3, and 
 � � �

� � � is the curve 
 � ",�  �� . Our claim that if � � � , then 
��(�	� � � % &  
 �	� � .
Then, fixing � and expanding the left hand side yields


 � ��� �*� � � 
 �&��� + � �
� � � "$�%�&�(� � �&�	� +
� �
� � � "$�%�&��� � ��� � �
� � � "$�%�&� � � �&�	%
&. "$�%�&��� �	� � �
� � ��"$�  � � ��% &  
 �	� � �57

Therefore, if � �.� / 0 � 4  �� � � # , we have, by Lemma 2.15,

� � 
 � ��� � +��5�*� � ��% &  
 �	� �5+��5� ( � �	% &  
 ��� � +�� � ",�  � �&���5� �
� � ��% &  
 �	� �5+��5� + (4)

since

� ��% &  
 ��� �5+ � ��"$�  � � ���5� �*� ( ��" � � / 0 � 4  � � "$� � � �(� �&���5� #� (  ��"$�%� � � " � � # � 0 � 4  � � � �&���5� #
� (  "����! #",�%� # � 0 � 4  � �(� � ���5� #
� �,7

Since � was arbitrary, the claim follows from equation 4.

For the other direction, let us assume that 2. holds. To show that ")� �  "$�%� � � ,
let us fix '�� � , and let � � � � �

be the integral curve of � � � �&��% &  "$�%�
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such that � � � � � ' . Then, by our assumption, the curve 
 � "$�� � satisfies
 � � % &  
 . Hence, by the same calculations as above, we find that 
 � ��� � �
� ��"$�  � � ��% &  
 � ��� � and �  �% &  
 ��� � +�� � ",�  � �&���5� ##� � for any � � � / 0

	 4  � � � # .
Thus

"����! #"$�%� �  � � � �&���5� # �  � "$� � � " �'# �  � � � �&���5� #
� " � / 0

	 4  � ��"$�  � � ���5� #
� ( � / 0

	 4  ��% &  
 �&��� �5+�� � "$�  � � ���5� #
� �,7

Since any � � � � � can be written as � � � � ���5� for some � as above, we see that �
is a solution to the Hamilton-Jacobi equation. #

4 Lagrangian submanifolds

This section we define Lagrangian submanifolds and prove some results that will
be needed in Section 5, where these will play a crucial role in the analysis of the
Hamilton-Jacobi equation.

Definition 4.1 (Lagrangian submanifold) Suppose
�

is a submanifold of a sym-
plectic manifold � � +�� � . Then

�
is a Lagrangian submanifold if we have

1. ����� � � �
�
����� � ,

2. � vanishes for tangent vectors to
�

, that is, if '.��� , then � � 
 	�

� � � .
Example 4.2 Every curve on an orientable surface is a Lagrangian submanifold.

Let � � +�� � be as in Example 2.3, and let ��� � be a curve, that is, a � -dimensional
submanifold. If ' ��� , and � +�� ��� � ���
� , then � and � are proportional since
������� ��� , say � � � � for some real � . Thus

�3) � � � � ��� +��5�%� �"��� 0 � 4 � � �')��$� + � �')��$�$� � � +
where ) is the inclusion ) ����� � � . #

4.1 Conormal bundles as Lagrangian submanifolds

In this section, we show that if � is a submanifold of a manifold
�

, then the
conormal bundle of � in � � � is a Lagrangian submanifold. This demonstrates
that every cotangent bundle contains an abundance of Lagrangian submanifolds.
The material in this section is not needed in the subsequent sections.
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Definition 4.3 (Conormal bundle) Suppose � is a submanifold of a manifold
�

.
Then, if � � � , we define the conormal space of � at � as the vector space

� �� � � �%� � ���.� �� � 
 � ��� ��� � for all � �.� � � � ���
and the conormal bundle as

� � � � �%� �
����� � �� � � �57

Example 4.4 If �"
 +��)� are polar coordinates for


� , and � � � 
 � is the unit circle,

then
� � ��� � ��� � � ��" 
 � 0 �
	 � 4 
 � � 
 +��.��
 � + � � � � 7

This shows that the conormal bundle consists of � -forms that are completely “or-
thogonal” to the given submanifold in the vector — covector pairing. #

Suppose � is a � -dimensional submanifold of a � -dimensional manifold
�

, and
suppose � � � � ��� � , so � ��� �� � � � for ����� ��� � . We can then find submanifold
coordinates �(' � +&7 7 7&+ ' � � for

�
such that near � , � is parametrized by � ' � + 7 7&7&+ ' � �

when ' ��� � � 5 5 5 � ' � � � . Then we have � � ��� �.� span � �� ��� � �� � � whence
�%�� ��� � � span �1" ' � � �� � ��� � . Therefore, if �(' � + 7 7 7 + ' � + % � + 7&7 7&+ % � � are standard
coordinates for � � � , then �%� � � � is parametrized by �(' � +&7 7 7&+ ' � + % ��� � + 7&7 7 + % � �
when ' ��� � � 5 5 5 � ' � �!� and % � � 5 5 5)� % � � � . In conclusion,

� � ��� � is a
� -dimensional submanifold of � � � [8].

Proposition 4.5 Let
�

be an � -manifold, and let � be a � -dimensional subman-
ifold of

�
. Then � � � � � is a Lagrangian submanifold of � � � .

Proof. Suppose � � �%� � � � and suppose � ' � + % � � are local coordinates for � � �
adopted to � � � � � as above. In other words, �(' � + 7 7 7 + ' � + % ��� � + 7 7 7 + % � � parametrize
�%� � � � near � when ' ��� � � 5 5 5 � ' � ��� and % � � 5 5 5 � % � � � . We then
have � � 
 �

� � ��� � � � " ' � 
 / 0 � 4 . Furthermore, if � � � � ����� � � � � , it follows that � �
span � � �� ��� 
 � � �� � ��� � �� � � 
 � � �� � ��� ��� . Thus, for the Poincaré � -form � � � � �(� � � � ,
and the natural inclusion ) �$� � � � � � � � � � � � , we have

�.) � � � � ���,�-� � � 0 � 4  � �')��&���,� #
� ) ��� �  � � �  ") �&� �,� #
� �

since � � �  ")�� � �,� � span � �� � � 
 /10 � 4 � �� � � . #
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4.2 Graph of a
�
-form as a Lagrangian submanifold

Definition 4.6 (Graph of a 1-form) Suppose
�

is a manifold, and � is a func-
tion � � � � 


. Then we define

��� ���,��"�� � � �.� �� � 
 ' � � � � � � � 7
Recall that for a manifold

�
, we denote the canonical projection � � � � �

by � . More generally, suppose
�

is a submanifold of ��� � with the inclusion
mapping ) � � � � � � � . In this setting, we define the projection 	 � � � �

by
	 ���  ) . In the special case

� ��� � � , we recover � � 	 .

Proposition 4.7 Suppose
�

is a manifold, � is a function � � � � 

, and � � �

is endowed with the canonical symplectic structure. Then
���

is a Lagrangian
submanifold of � � � .

Proof. Let 	 be the projection 	 � ��� � �
, 	 � �. ) defined as above. Then

	 1 � � � � ���
is 	�1 � � ')� � ��"�� � � , whence

���
and

�
are diffeomorphic, so

����� ��� � �
�
������� � � . Next, suppose ��� ���

and ��� � 2 ��� . Then we have
) ����� � ��"�� � 
 0 2 4 , and by Lemma 2.14,

�3) � � � 2 ��� �*� � � 0 254  � �')��&���,� #
� ) �����  � � � �  ") �&� �,� #
� � "���� 
 03254  � ��	�� � �,� #� � 	 � "�� � 2 ��� � 7

Thus ) � ��� 	 � "�� and ) � "���� � "  #"$�&� �  	��%� � . #
Proposition 4.8 Suppose

�
is a connected manifold.

1. If 	�+
� are functions 	)+���� � � 

such that

�
� � ���
. Then 	 (�� is a

constant.

2. If 	 is a function 	 � � ��

, then

���
locally determines 	 up to an additive

constant.

Proof. For part 1., let ' � � . Then there is a unique � � ��� such that � ��� � � '
where � is the projection � �$� � � � �

. Also, by assumption, there is a unique� � ���
such that � � � . Hence � ��� � � � � � �#��' , so � � ��"�� � � and � �	� "�	 � � .

Thus ")��	 (�� � �!� , and 	 (�� is a constant. For part 2., suppose ' � � . Then
there is a unique � � � ���

such that �%��� � � � ' . Hence '�8� � � defines a � -form

11



on
�

, say � � � � � . Since � � � ��"�� � � , it follows that � is closed. Thus, if
we fix ' � � , we can find an open neighbourhood � � �

of ' and a function� � � � 

, such that ) � ��� " � , where ) is the inclusion ) ��� � � �

. It follows
that

� � � � ��� � � � � � so by part 1., �
( � 
�� is a constant. #
The next proposition gives a converse to Proposition 4.7; every Lagrangian mani-
folds

� � � � � for which the projection 	 � � � �
is locally a diffeomorphism

may locally be written as the gradient of a function
� ��


.

Proposition 4.9 Suppose
�

is a manifold, and
�

is a Lagrangian submanifold
of � � � . If � � �

and � has a contractible neighborhood � � �
where the

projection 		� � � �
is a diffeomorphism, then there exists a function � �

	 ��� � ��

such that ��� ��� ��� 7

Proof. On � , the projection 	 can be written as 	 ���  ") , where

) � � � � � � � 	 ��� � �5+
� � � � � 	 � � � � � 	 � � �57

Suppose � � � � �(� � � � is the Poincaré � -form on � � � , and suppose � is the
inclusion � � � � � � � � . Then, since

�
is a Lagrangian submanifold, we have

"��$� � � � . Since � is contractible, we can find a function � � � � 

such

that �$�"� � " � . For ' � 	 ��� � , let � �(')� ���3)  	 1 � � �(')� . Then � � � � � 	 � � � � .
Indeed, as a composition of smooth functions, � is smooth, and it also preserves
the basepoint; �  � � id
 0 � 4 . Let 
 � � � � 	 � � � � � � � � � be the natural inclusion.
Thus, if � 
 0 � 4 is the Poincaré � -form on � � � 	 � � � � , we have 
 � � � � 
 0 � 4 , and
# ) ��� . Putting all this together using Lemma 2.14 yields

� � � � � 
 0 � 4� �.)  	 1 � � � 
 � �
� � 	 1 � � � � 
# )�� � �
� "�� �  	 1 � � +

and � � � �
	 
���
 ���1")� �  	 1 � � � 
 ' � 	 ��� � � � � � � . #
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5 Lagrangian submanifolds as solutions to the
Hamilton-Jacobi equation

In this section, we take another approach to analysing the Hamilton-Jacobi equa-
tion. The key observation will be that finding a solution to the Hamilton-Jacobi
equation is equivalent to finding a certain Lagrangian submanifold in � � � con-
taining the initial condition. Let us establish this equivalence.

We assume that
�

is a manifold, and � � � � � � 

is a function that satisfies

" � !� � , that is, at each point ' � � , there is a � such that "$��� �,� !��� . Then the
Hamilton-Jacobi equation reads

���! #",�%� �(')�*� � + (5)

"$�)/ 0 2548� �8+
where � � � � � is a fixed initial condition such that � ����� � � , and � is the
projection � � � � �*� �

. Let us emphasize that our goal is only to solve this
equation locally. We try to find a function � defined in some open set � � �
such that � ",�%� /1032548� � and equation 5 holds.

A first observation is that a function � � � � 

is a local solution to 5, if and

only if
� � � � � � 1 � ��� � 7

If this is the case, then by Proposition 4.7,
� � is a Lagrangian submanifold. What

is more,
� � is diffeomorphic to � . On the other hand, suppose

�
is a Lagrangian

submanifold of � � � such that ��� � � � 1 � � � � and 	 � � � �
is a diffeomor-

phism near � . Then, near � , we can write
� � � � for some function � defined in

a neighborhood of � ���)� . The conclusion is that solving equation 5 is equivalent
to finding a Lagrangian submanifold

�
such that

�.� � ��� 1 � ��� � +
and 	 � � � �

is a diffeomorphism near � .

In the below, Propositions 5.4 and 5.5 show how to construct such a Lagrangian
submanifold. Roughly, the idea is that we first construct a �(� ( � � -submanifold of
� 1 � ��� � that contains the given initial condition. In addition, the submanifold will
be transverse to %
& and isotropic (see below). Then, by letting this submanifold
flow using the flow of % & , we obtain a � -submanifold of � � � , and this will be
the sought Lagrangian submanifold.

Example 5.1 (Non-physical Lagrangian submanifold) Let us try to interpret the
condition that the projection 	 � � � �

is locally a diffeomorphism. As an exam-
ple where this fails, we have the cotangent space � �� � in � � � . It is a Lagrangian
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submanifold (one can think of � �� � is the conormal bundle of � ' � ), but the pro-
jection is just the constant map 	��)� �� � � � ' � which is not a diffeomorphism.
Let us next describe why this Lagrangian submanifold is not very physical. First,
from the above description of the construction of

�
, we see that the flow of %'&

carries points in
�

to points in
�

. We also know that the flow of % & describes the
dynamical behaviour of a particle as time progresses. It is thus intuitively rather
clear that a curve in � �� � is non-physical; it describes a particle with constant
location, but with changing momentum. #
Definition 5.2 (Transverse vector field) Suppose � is a submanifold of a mani-
fold

�
. Then a vector field % � � � � � is transverse to � if % is nowhere tangent

to � , that is, if � � � then %�� � ����.� � ��� � .
Definition 5.3 (Isotropic submanifold) Suppose � is a submanifold of a sym-
plectic manifold � � +�� � . Then � is an isotropic submanifold if � vanishes on � ,
that is, if ) is the inclusion ) � � � � �

, then ) ��� ��� .
Proposition 5.4 (Existence of initial conditions) Suppose

�
is an � -manifold,

� �,� � �!� 

is a function that satisfies "$� !� � , and % & is the corresponding

Hamiltonian vector field % & � ��� � � � � .
Then, if �.� � 1 � � � � , there exists a � � ( � � -submanifold

� � of ��1 � � � � such that

� � � � � ��� 1 � ��� � ,
� � � is isotropic,

� % & is transverse to
� � .

Proof. If �(' � + % � � are standard coordinates near � , we can, by possibly permuting
the ' � coordinates, assume that either

� &� ��� ����� !� � , or
� &� � � ����� !� � . Let us only

consider the case
� &� � � ���)�*!� � since the other case is completely analogous. Also,

let us write ' � � � ' � + 7 7 75+ ' � 1 � � and % � �"% � +&7 7 7&+ % � � . Then, by the implicit
function theorem, we can solve ' � ��' � � ' � + % � such that

�(' � + % � 8� �(' � + ' � � ' � + % �5+ % �
parametrize ��1 � ��� � near � . Therefore, if we reparametrize � ' � + ' � + % � with coor-
dinates ��� � +�� � +"�,� defined as

� � � ' � + ' � + % ��� ' � +
� � � ' � + ' � + % ��� ' � (�' � �(' � + % �5+
�)� ' � + ' � + % ��� %
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then
��� � +"�,� 8� ��� � + � + � �

parametrize � 1 � ��� � near � , and � 1 � � � � is a � � � ( � � ( submanifold of � � � . For
� 1 � ��� � we introduce coordinates

	� � ��� � +"�,��� � � ( � � ���)� +
	����� � +"�,��� � ( �)�����57

In these coordinate, we define
� � as the set parametrized as

	� � 8� �
	� � + � �57
It follows that

� � is a �(� ( � � -submanifold of � 1 � ��� � . Also, in the standard
coordinates � ' � + % � � , � � is parametrized by

' � 8�  ' � + ' � � ' � + %������ � + %������ # 7
Thus, if � � � � , then

� �

� � � span �
�
� 	� � ��� � �

� 1 �
� � � � span �

�
� ' � ��� � �

� 1 �
� � � 7

To check that
� � is isotropic, let � +���� � �

� � . Then, from the local expression for
� , we have � � ��� +��5� � � . To see that %
& is transverse to

� � , let us first possibly
shrink

� � such that
� &� ��� !�*� on all

� � . Then, from Example 2.12, we see that
% & � � � has a

�� � � component for all � � � � , so %
& ��.� �

� � . #
Proposition 5.5 (Existence of Lagrangian submanifolds) Suppose

�
is an man-

ifold, and suppose:

� � � � � � 

is a function that satisfies "$� !� � , and % &�� ��� � � � � is

the corresponding Hamiltonian vector field.

Then, if �.� ��1 � � � � , there exists a Lagrangian submanifold
�

of � � � such that

�.� � ��� 1 � ��� � 7

Proof. Let
� � be the submanifold given by Proposition 5.4. Then we can find

a neighbourhood � � � � of � , and an interval � containing zero, such that the
flow of % & (from

� � ) is a smooth injection
� � ��� � � � � � . Let us show

that the set
� � � ��� ��� � satisfies the given properties. First, by Proposition

2.7, we see that
� � � 1 � � � � as sets. Let us show that this also holds in the

sense of submanifolds. By possibly shrinking � , we can introduce submanifold
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coordinates � ' � + 7&7 7&+ ' � � 1 � � for � 1 � � � � such that ' � � �(' � + 7 7&7&+ ' � 1 � � parametrize� when ' � � 5 5 5,� ' � � 1 � � � . Further, by possibly shrinking � , we can assume
that

� ��� + ' � � is always in these coordinates. Then, since

��� + ' � ��8� � ��� + ' � �
has rank � , it follows from the constant rank theorem that

�
is a � ( submanifold

of � 1 � ��� � , and
�

has coordinates ��� + ' � � such that ' � 8� � � + ' � � parametrizes� , and � 8� ��� + ' � � parametrizes the integral curve of %
& trough ' � � � � . To
prove that

�
is a Lagrangian submanifold, we need to check that � vanishes on�

. For this, let � � �
, that is, �	� � ��� +�� � � for some � � � and � � � � � .

Further, let ��� + ' � + 7&7 7&+ ' � 1 � � be coordinates for
�

adopted to
� � and the flow of

%
& as above. In these coordinates, let us define � � ��� + ')�.� ��� � � + ')� . Sup-
pose � +�� � ��� � . Then, since � � is a diffeomorphism between some suitable
neighbourhoods of � �)�	���,+ ')� and � � ��� + ')� , we have ���	� ��� � � ���$� and � �
� ��� � � ���5� for some � +�� � ���
	 � . If we write ��� 
 � 1 �� � � � � �� ��� �� 0 	 	 � 4 � �$� ���� �� 0 	 	 � 4 ,
then ��� 
 � 1 �� � � � � �� ��� �� �
� 0 � 4 � � � ���� �� ��� 0 � 4 , so for some � � + �����.���
	 � � and � + � � 
 ,

we have � � � � � � � ��� � � � � % & ��� � and � � � � � � �&����� �(� � % & ��� � . Now,
since � is constant on

� � ��1 � ��� � and since � � � � � ��� � ���-� 2 � , we have
���  � � � � �&��� � �5+2% & ��� � # ��" ���  � � � � � ��� � � # � � . Using this and Proposition 2.6,
we have

��� ��� +�� �-� � � � 0 �
	 4  � � � � � ��� � � � � % & ��� � + � � � � �&��� � � � � %
& ���8� #
� � � � 0 � 	 4  � � � � � ��� � � + � � � � �&��� � � #
�  � �� � # � 	  � � +�� � #
� ���
	  � � +�� � #
� � +

where the last step follows since
� � is isotropic. We have shown that

�
is a La-

grangian submanifold. #

5.1 Projection onto �
In this section, we show that under suitable conditions on � , the Lagrangian sub-
manifold constructed in Proposition 5.5 is locally diffeomorphic to

�
via the pro-

jection 	 � �  ) � � � �
[4]. This is an important result since it shows that

the Lagrangian submanifold constructed in Proposition 5.5 indeed corresponds to
a solution to the Hamilton-Jacobi equation as described on page 13.

Suppose
� + � + � are as in Proposition 5.5, � ' � + % � � are local coordinates for � � �

near � , and
� � has been constructed as above, that is, by solving ' � � ' � �(' � + % � .
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Then we have

� ��	�� �(� 2 � ��� span �
�
� ' � + 7 7 7 +

�
� ' � 1 � + � ��	�� ��% & � � 7

Thus
� ��	�� �(� 2 � ��� � / 0 254 � 7

if and only if � ��	�� ��% & � contains an
�� � � differential, that is,

� &� � � !��� . If this is the
case, then � ��	 � is surjective, and by the rank-nullity theorem, it is therefore also
injective. Then ��	 is a linear isomorphism, and by the inverse function theorem,
� 	 is a diffeomorphism near � .

From the discussion in the introduction on 13, we find:

Proposition 5.6 Suppose
�

is an � -manifold, � is a function � � � � �*� 

,

and �.� � � � . Further, suppose � ' � + % � � are local coordinates around � and there
exists a � � � + 7 7 7 + � such that

� ������� � +
� �� ' � ���)��!���,+

� �� % � �����"!� � 7

Then the Hamilton-Jacobi equation

�! #",� � � +
"$� /10 � 4 � � 7

has a local solution � around � ����� .
One can also show that

�
is uniquely determined by

� � [2, 4]. However, at least
in [2, 4], there seem to be no remarks considering the unique dependence on the
initial condition � .
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