Security Assessment of White-Box Design
Submissions of the CHES 2017 CTF Challenge

Estuardo Alpirez Bock and Alexander Treff

White-box attack scenario

R ———
|
| Encryption
m I
ﬁ
I

Adversary gets access to an implementation
code and its execution environment

= WB Cryptography aims to provide security even under such attack threats

Given the strong adversarial capabilities, white-box programs need to
implement countermeasures against key extraction attacks

Some design strategies for white-box implementations of AES have been
proposed but also broken

In recent years, powerful attacks such as differential computational and
differential fault analysis have been performed on white-box
implementations.

Designing a white-box AES implementation which remains secure against
key extraction attacks is clearly a very difficult task

Home EDITION 2019 EDITION 2017

We assess the security of all design candidates of the WhibOx Contest
by performing a line of attacks on them

We aim to understand how the candidates can be broken and specially
their robustness against automated attacks

Experiments performed by Alexander Treff while doing an internship at
Riscure

Our assessment methodology can lead to a more unified way of
analysing the security levels provided by a white-box design

The competition

Designers are invited to submit white-box implementations of AES-128

Implementation language must be C, without includes, libraries, etc

Size and runtime restrictions:

Source code < 50MB

Binary < 20MB
Runtime < 1s

Attackers are invited to break the implementations.

The longer an implementation remains unbroken, the more points it
gets

Submissions:

94 design candidates were submitted
13 remained unbroken for at least 24 hours and earned > 0 points

All broken

Winning challenge: adoring_poitras by Alex Biryukov and Aleksei
Udovenko from the University of Luxembourg

Remained unbroken for 28 days

Broken by the CryptoExperts team [1]

[1] Goubin, Paillier, Rivain, Wang: How to reveal the secrets of an obscure white-box
implementation, J. of Cryptographic Engineering

| I 8

Our assessment

Our assessment

How many challenges can be broken via automated attacks without
reverse engineering efforts? Which attacks are effective on which

challenges?

Attack classification:
Automated (DCA, DFA, Higher-order DCA)
Automated after small modifications
Automated Robust (remain unbroken in our assessment)

10

= Software counterpart of differential power analysis

0.75

0.5

trace values

0.25

| -

250 300 350 400 450 500 550

samples

0.5

0.25 [~

max. diff. of means

0 32 64 96 128 160 192 224 256

key guess

11

A total of 50 desigh candidates were vulnerable to a fully automated
DCA attack

37 designs were reference AES implementations (w/o white-box
countermeasures)

13 designs implemented code obfuscation techniques or were table
based designs (following the approach by [2])

All designs were broken within minutes during the competition

[2] Chow, Eisen, Johnson, van Oorschot: White-box cryptography and an AES implementation,
SAC 2002

12

DCA after modifications

Some designs implemented countermeasures against DCA such as:

Dummy operations —> misalignment and artificially enlargement of

the traces
Inconsistent implementation of round functions

switch (*x((int *) _obf_3_MOD_AES_encrypt_$pc[0])) {
case 47:
// ¢T() is computationally exzpensive
// but always computes the same wvalue
* ((unsigned long *)(_obf_3_MOD_AES_encrypt_$locals + 856)) = cT(Q);

break;
// several more cases, all similar to the one above

}

// we replace the computation with its result
u32 cT() { return 1262335309; }

pensive_shaw

5 more candidates can be broken after simple modifications

13

= |n case DCA did not succeed, we apply DFA

= Some designs resisted DCA by artificially blowing up the number of
samples recorded per trace

= |n DFA, we induce faults by flipping bits towards the end of the
computation, and analyse how the faults are reflected on the
outputs

= We use the DFA script from the Side-Channel Marvels repository [3]

= Could break 14 designs in a fully automated way

= For some designs, we needed about an hour to attack them

- [3] https://github.com/SideChannelMarvels

| | 14

Manual DFA

Some designs implemented countermeasures against DFA, e.g. redundant
computations

But they could be removed manually

For other designs, we needed to add lines of code for identifying the
correct spot for fault injection

void AES_128_encrypt (char* ciphertext, char* plaintext)
{
int COUNTER = atoi(ARGVI[1]); // injected code
for (int i = 0; i < 60000; i++) {
if (COUNTER == i) { // injected code
continue;
}
func(a,b,c,d); // original WB code
}
}

7 more candidates could be broken via manual DFA

15

Second-order DCA

= The challenge priceless_stallman was resistant to DFA and DCA

» Resisted DCA via masking based on the input message

= We could attack this challenge via second-order DCA, performed in a
similar style as second-order DPA [4]

= Running this analysis took about 16 hours

= The attack remained unbroken for only 1:18 hrs during the
competition time

[4] Bogdanov, Rivain, Vejre, Wang: Higher-order DCA against standard side-channel
~ countermeasures, Cosade 2019

| 16

rank name id | size |runtime|time unbroken
1 adoring poitras |777|27.252| 379.83 685:42
2 | competent agnesi |[815(17.359| 6.923 290:15
3 bright morse |753|22.649| 163.14 283:50
4 | vibrant goldberg [877|30.126| 5.15 254:59
5 hungry clarke [845]10.925| 230.76 196:44
6 jolly davinci 751(18.299| 47.77 190:09
7 |nervous montalcini|644|16.17 | 0.07 139:19
8 sad goldstine |786(10.401| 143.83 61:09
9 | mystifying galileo | 84 {19.236| 114.59 32:33
10 elastic bell 49 120.709| 261.05 27:11
11 | practical franklin |49 |15.527| 2.58 24:01
12 | agitated ritchie |44 |22.946| 20.33 24:00
13 clever hoover 32 |18.319| 0.97 20:14
14 |gallant ramanujan [153| 0.898 | 0.04 15:15
15 | peaceful williams |47 |11.950| 2.29 11:47
16 eager golick 572(38.146| 83.53 06:22

Earned points
during competition

No points earned

17

.107
4 \O
*
3
°
®
S
7 2_ °n
.
1
O\ |
0 0.1 0.2 0.3 0.4 0.5
Time

—o— 28
—m— 12
—o— 11
—%— 10
—— 8
-o-8

adoring_poitras
competent_agnesi
bright_morse
vibrant_goldberg
hungry_clarke
jolly_davinci

- @ -6 nervous_montalcini

18

For practical use-cases we’ll try to achieve fast, small sized and secure
white-box programs

In some cases we might be satisfied if a white-box program can remain
unbroken for several days

—> update the white-box before an attacker breaks it

—> update it such that the new version follows a different
design strategy as the old one

In this competition, the second ranked challenge competent_agnesi, by
Leandro Marin from the University of Murcia and Phillips provided the
most interesting numbers within this context

19

Going forward

20

2019 edition

CHES 2019
Capture the Flag Challenge

The WhibOx Contest - Edition 2

—> winning challenge remained unbroken for 51 days

—> 2 other challenges remained unbroken for 50 and 30 days

21

New attacks

Extensions of automated attacks have been presented, e.g. in

[5] Rivain and Wang: Analysis and improvement of differential computation attacks
against internally -encoded white-box implementations, CHES 2019

[6] Goubin, Rivain and Wang: Defeating state-of-the-art white-box countermeasures with advanced
gray-box attacks, CHES 2020

[7] Alpirez Bock, Bos, Brzuska, Hubain, Michiels, Mune, Sanfelix Gonzalez, Teuwen and
Treff: White-box cryptography: don’t forget about grey-box attacks, J. of Cryptology 2019

New ideas for countermeasures have also followed, e.g.

[8] Sekar, Eisenbarth,Liskiewicz: A white-box masking scheme resisting computational and
algebraic attacks, eprint 2020/443

22

Our assessment could provide a more broad overview of the
robustness of a design if we

—> Integrate the new attacks as part of our assessment

—> Test all attacks on all candidates

—> Try to standardise what it means to need only small
reverse engineering efforts

—> Standardise a grading system for the designs: provide
points according to the attacks they are resistant to, but
also according to their performance

Such assessments could be useful for people in the industry and
academia

23

Size

L
*
3
°
®
2
®
]
.
1
0
0 0.1 0.2 0.3 0.4 0.5
Time

—o— 28
—m— 12
—eo— 11
—%— 10
—— 8
-o-8

adoring_poitras
competent_agnesi
bright_morse
vibrant_goldberg
hungry_clarke
jolly_davinci

- -6 nervous_montalcini

Thank you for your attention!

24

