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White-box attack scenario 
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Adversary gets access to an implementation  
code and its execution environment

WB Cryptography aims to provide security even under such attack threats

Encryption
m c



On the security goals of white-box cryptography
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Discuss popular security notions for white-box crypto and their 
usefulness on different application scenarios

Propose to focus on the goals of hardware- and application-binding for 
achieving security for mobile payment applications. Provide a security 
definition for white-box encryption with hardware-binding

Discuss the use cases of white-box cryptography (mobile payment and 
DRM applications, use of symmetric schemes to implement public key 
operations, etc.) 

Present an impossibility result for general white-box compilers 
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Use cases in practice: 
 
DRM and mobile payment applications



White-box crypto for DRM
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WBDecc1 m2c2

c

Video Streaming

m1

• White-box crypto for mitigating piracy 

• The owner of the application is considered to be the adversary

Broadcaster
c1

c2

c1
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■ Limited use keys (LUKs) used for encrypting a transaction request 
message

White-box crypto for payment applications
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Enc(LUK1) = c1  
c2  
c3  
 …  
 cn 

WBDec LUK1

Payment App

Secure storage

WBEnc m  req



What are the goals of white-box crypto?
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■ Depending who we ask, the goal might be: 

■ Hiding the key of a cipher (special purpose obfuscation) 
■ Given access to implementation code, key extraction is a big threat

■ Hiding the key of an AES implementation (special purpose obfuscation) 
■ Opinion motivated by the popular goal of white-boxing AES (Popularity of  

AES, first white-box paper by Chow et al., WhibOx competitions, etc.) 
  

■ Mitigate redistribution attacks 
■ Motivated by the use case of white-box crypto in DRM applications

WBDecc m

WBD

WBD

WBD



■ An adversary can copy the app and run it at a phone and terminal of its 
choice

White-box crypto for payment applications
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Payment App Payment App

Enc(LUK1) = c1  
c2  
c3  
 …  
 cn 

Enc(LUK1) = c1  
c2  
c3  
 …  
 cn 

We need protection against code-lifting attacks
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Popular mitigation techniques against code-lifting 
attacks on white-box implementations: 
 
Traceability and Incompressibility



■ The properties of traceability and incompressibility have gained 
popularity in the white-box community 

■ Security notions and constructions have been proposed e.g. in: 
■ Delerablée, Lepoint, Paillier, Rivain - White-box security notions for symmetric encryption 

schemes, SAC 2013 

■ Fouque, Karpman, Kirchner, Minaud - Efficient and provable white-box primitives, ASIACRYPT 
2016 

■ Bogdanov, Isobe, Tischhauser - Towards practical white box cryptography: optimizing 
efficiency and space hardness, ASIACRYPT 2016 

■ Alpirez Bock, Amadori, Bos, Brzuska, Michiels - Doubly half-injective PRGs for incompressible 
white-box cryptography, CT-RSA 2019 

■ Alex Biryukov - White-box and asymmetrically hard crypto design, WhibOx 2019 Workshop 

Popular notions and mitigation techniques
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These properties are considered due to the DRM use case. But how can they 
help us for protecting mobile payment applications? 



Traceability
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■ A white-box program is watermarked with a tracing key. Each 
program has its own tracing key. 

WBEnc

WBEnc

WBEnc

The tracing key helps identify the origin of the copied program



Traceability
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Enc(LUK1) = c1  
c2  
c3  
 …  
cn 

WBDecc1 LUK1

Payment App

Secure storage

The owner of a payment application will not make copies of it and share it

This would enable people to access the user’s keys, i.e. the user’s money. 



Incompressibility
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■ Make a program very large in size. If the program is compressed or 
fragments are removed, the program loses its functionality. 

Comp(Enc(k,.)) WBEnc



Incompressibility
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Enc(LUK1) = c1  
c2  
c3  
…  
cn 

WBDec

Payment App

Secure storage

Large programs take too much space from a mobile application - contrast to IoT

Large programs are also difficult to distribute legally



15

Alternative methods for mitigating code-lifting 
attacks: hardware- and application-binding



■ An encryption program should only be executable on one specific 
device. The execution is dependable on a unique hardware 
identifier . δ

Alternative: hardware-binding
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Encryption
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■ An encryption program should only be executable within one 
specific application 

Alternative: application-binding
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Encryption
m c

App

password

Useful in the case that the application performs authentication operations



18

Defining hardware-binding



Defining Hardware-binding 
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For defining hardware-binding for white-box encryption, we follow the 
approach presented in [1]

[1] E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels: Security reductions for white-box key storage in mobile 
payments, to appear in Asiacrypt 2020

[1] defines hardware binding for white-box KDFs and mobile payment 
applications in combination of a hardware module.  

The work presents feasibility results based on indistinguishability obfuscation 
and puncturable PRFs



Hardware module
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Query, EncHW ⟵ $Comp(k, kHs)

EncHW(m, nc, σ) = Enc(k, m, nc)

kHm

kHs ⟵ SubKgen(kHm, label)

σ ⟵ Resp(kHm, label, q)

{kHs}

EncHW

Query → q, label
σ

HW

label

c

q ← Query(m, nc)
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EncHW

Query Dec(c)             o
assert (c, nc) ∉ C

if b = 1 m ← ⊥
else return m

m ← Dec(k, c, nc)

Enc(m0,m1)             o
assert |m0 | = |m1 |
nc ⟵ ${0,1}n

c ⟵ Enc(k, mb, nc)

with qi ← Query(mi, nc)
assert qi ∉ Q(c, nc)

m0, m1

m

(c, nc)

HW(q)                      o
assert q ∉ Q
Q := Q ∪ {q}
σ ⟵ Resp(kHm, label, q)

σ

q

with  q ← Query(m, nc)
assert q ∉ Q

Security of White-box encryption

Q := Q ∪ {qi}

C := C ∪ {(c, nc)}



■ What exactly is an application?

Challenges defining application-binding

■ Alternative: focus on specific applications, e.g. applications performing 
authentication operations:

■ A user authenticates himself via passwords or fingerprints. 
However, such values can be intercepted by a white-box adversary 

■ Alternative: weaken the attack model. However, this leads to 
the following issues:

■ Presents an inconsistent attack scenario

■ In order to define security, we need to consider long 
enough secret authentication values. In that case, we 
could even consider a keyless white-box implementation



■ White-box cryptography needs to achieve more than only security 
against key extraction  

■ Hardware binding seems to be a reasonable technique for achieving this 
■ It seems necessary and effective for most use cases. We propose a security 

definition for white-box encryption. 
■ Known feasibility results are based on iO and puncturable PRFs 

■ Application binding seems also a reasonable goal for real life 
applications of white-box crypto 
■ It is however more difficult to define formally

Conclusions
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Thank you for your attention!


