
On the Security Goals of White-box
Cryptography
Estuardo Alpírez Bock, Alessandro Amadori, Chris Brzuska,  
Wil Michiels

White-box attack scenario

2

Adversary gets access to an implementation  
code and its execution environment

WB Cryptography aims to provide security even under such attack threats

Encryption
m c

On the security goals of white-box cryptography

3

Discuss popular security notions for white-box crypto and their
usefulness on different application scenarios

Propose to focus on the goals of hardware- and application-binding for
achieving security for mobile payment applications. Provide a security
definition for white-box encryption with hardware-binding

Discuss the use cases of white-box cryptography (mobile payment and
DRM applications, use of symmetric schemes to implement public key
operations, etc.)

Present an impossibility result for general white-box compilers

4

Use cases in practice: 
 
DRM and mobile payment applications

White-box crypto for DRM

5

WBDecc1 m2c2

c

Video Streaming

m1

• White-box crypto for mitigating piracy 

• The owner of the application is considered to be the adversary

Broadcaster
c1

c2

c1

c2

■ Limited use keys (LUKs) used for encrypting a transaction request
message

White-box crypto for payment applications

6

Enc(LUK1) = c1  
c2  
c3  
 …  
 cn

WBDec LUK1

Payment App

Secure storage

WBEnc m req

What are the goals of white-box crypto?

7

■ Depending who we ask, the goal might be: 

■ Hiding the key of a cipher (special purpose obfuscation)
■ Given access to implementation code, key extraction is a big threat

■ Hiding the key of an AES implementation (special purpose obfuscation)
■ Opinion motivated by the popular goal of white-boxing AES (Popularity of  

AES, first white-box paper by Chow et al., WhibOx competitions, etc.) 

■ Mitigate redistribution attacks
■ Motivated by the use case of white-box crypto in DRM applications

WBDecc m

WBD

WBD

WBD

■ An adversary can copy the app and run it at a phone and terminal of its
choice

White-box crypto for payment applications

8

Payment App Payment App

Enc(LUK1) = c1  
c2  
c3  
 …  
 cn

Enc(LUK1) = c1  
c2  
c3  
 …  
 cn

We need protection against code-lifting attacks

9

Popular mitigation techniques against code-lifting
attacks on white-box implementations: 
 
Traceability and Incompressibility

■ The properties of traceability and incompressibility have gained
popularity in the white-box community 

■ Security notions and constructions have been proposed e.g. in:
■ Delerablée, Lepoint, Paillier, Rivain - White-box security notions for symmetric encryption

schemes, SAC 2013

■ Fouque, Karpman, Kirchner, Minaud - Efficient and provable white-box primitives, ASIACRYPT
2016

■ Bogdanov, Isobe, Tischhauser - Towards practical white box cryptography: optimizing
efficiency and space hardness, ASIACRYPT 2016

■ Alpirez Bock, Amadori, Bos, Brzuska, Michiels - Doubly half-injective PRGs for incompressible
white-box cryptography, CT-RSA 2019

■ Alex Biryukov - White-box and asymmetrically hard crypto design, WhibOx 2019 Workshop

Popular notions and mitigation techniques

10

These properties are considered due to the DRM use case. But how can they
help us for protecting mobile payment applications?

Traceability

11

■ A white-box program is watermarked with a tracing key. Each
program has its own tracing key.

WBEnc

WBEnc

WBEnc

The tracing key helps identify the origin of the copied program

Traceability

12

Enc(LUK1) = c1  
c2  
c3  
 …  
cn

WBDecc1 LUK1

Payment App

Secure storage

The owner of a payment application will not make copies of it and share it

This would enable people to access the user’s keys, i.e. the user’s money.

Incompressibility

13

■ Make a program very large in size. If the program is compressed or
fragments are removed, the program loses its functionality.

Comp(Enc(k,.)) WBEnc

Incompressibility

14

Enc(LUK1) = c1  
c2  
c3  
…  
cn

WBDec

Payment App

Secure storage

Large programs take too much space from a mobile application - contrast to IoT

Large programs are also difficult to distribute legally

15

Alternative methods for mitigating code-lifting
attacks: hardware- and application-binding

■ An encryption program should only be executable on one specific
device. The execution is dependable on a unique hardware
identifier . δ

Alternative: hardware-binding

16

Encryption

m

c

⊥

Is present?δ Yes

No

■ An encryption program should only be executable within one
specific application

Alternative: application-binding

17

Encryption
m c

App

password

Useful in the case that the application performs authentication operations

18

Defining hardware-binding

Defining Hardware-binding

19

For defining hardware-binding for white-box encryption, we follow the
approach presented in [1]

[1] E. Alpirez Bock, C. Brzuska, M. Fischlin, C. Janson, W. Michiels: Security reductions for white-box key storage in mobile
payments, to appear in Asiacrypt 2020

[1] defines hardware binding for white-box KDFs and mobile payment
applications in combination of a hardware module.  

The work presents feasibility results based on indistinguishability obfuscation
and puncturable PRFs

Hardware module

20

Query, EncHW ⟵ $Comp(k, kHs)

EncHW(m, nc, σ) = Enc(k, m, nc)

kHm

kHs ⟵ SubKgen(kHm, label)

σ ⟵ Resp(kHm, label, q)

{kHs}

EncHW

Query → q, label
σ

HW

label

c

q ← Query(m, nc)

21

EncHW

Query Dec(c) o
assert (c, nc) ∉ C

if b = 1 m ← ⊥
else return m

m ← Dec(k, c, nc)

Enc(m0,m1) o
assert |m0 | = |m1 |
nc ⟵ ${0,1}n

c ⟵ Enc(k, mb, nc)

with qi ← Query(mi, nc)
assert qi ∉ Q(c, nc)

m0, m1

m

(c, nc)

HW(q) o
assert q ∉ Q
Q := Q ∪ {q}
σ ⟵ Resp(kHm, label, q)

σ

q

with q ← Query(m, nc)
assert q ∉ Q

Security of White-box encryption

Q := Q ∪ {qi}

C := C ∪ {(c, nc)}

■ What exactly is an application?

Challenges defining application-binding

■ Alternative: focus on specific applications, e.g. applications performing
authentication operations:

■ A user authenticates himself via passwords or fingerprints.
However, such values can be intercepted by a white-box adversary

■ Alternative: weaken the attack model. However, this leads to
the following issues:

■ Presents an inconsistent attack scenario

■ In order to define security, we need to consider long
enough secret authentication values. In that case, we
could even consider a keyless white-box implementation

■ White-box cryptography needs to achieve more than only security
against key extraction  

■ Hardware binding seems to be a reasonable technique for achieving this
■ It seems necessary and effective for most use cases. We propose a security

definition for white-box encryption.
■ Known feasibility results are based on iO and puncturable PRFs 

■ Application binding seems also a reasonable goal for real life
applications of white-box crypto
■ It is however more difficult to define formally

Conclusions

23

Thank you for your attention!

