
Security Reductions for White-Box Key-Storage in
Mobile Payments
Estuardo Alpirez Bock, Chris Brzuska, Marc Fischlin, Christian
Janson, Wil Michiels

White-box attack scenario

2

Adversary gets access to an implementation
code and its execution environment

WB Cryptography aims to provide security even under such attack threats

Encryption
m c

Outline

3

o White-box crypto for mobile payments

o Device-binding

o White-box key derivation function with device-binding

o White-box mobile payment application

4

White-box crypto for mobile
payment applications

White-box crypto for payment applications

5

In 2015, Android introduced Host Card Emulation (HCE), allowing the
application processor of mobile phones to use Near Field
Communication (NFC)

Enable vendors to distribute payment applications implemented in
software only

Traditionally white-box crypto was mainly used in the context of DRM
applications

[1] EMVCo: EMV Mobile payment: Software-based mobile payment security requirements (2019)

- increasing their deployability and gaining independence from the phone
manufacturers

White-box crypto was proposed as a software countermeasure
technique to protect mobile payment applications [1]

■ The application stores user specific keys in encrypted form
■ The keys are decrypted and used for generating a transaction request

message

White-box crypto for payment applications

6

Enc(LUK1) = c1

c2

c3

 …

 cn

WBDec LUK1

Payment App

Secure storage

WBEnc m req

■ An adversary can copy the app and run it at a phone and terminal of its
choice

White-box crypto for payment applications

7

Payment App Payment App

Enc(LUK1) = c1

c2

c3

 …

 cn

Enc(LUK1) = c1

c2

c3

 …

 cn

Our white-box program should provide protection against such code-lifting attacks

WBDec WBDec

8

Device binding for mitigating code-lifting attacks

■ Generate a white-box program such that it can only be executed on
one specific device. The execution is dependable on a unique
hardware identifier . δ

Device-binding

9

Encryption

m

c

⊥

Is present?δ Yes

No

Device-binding for white-box programs

10

For protecting white-box programs from code-lifting attacks, we propose to
focus on the property of device (or hardware) binding

We introduce security notions for a white-box KDF with hardware-binding and
for a white-box mobile payment application

Present corresponding constructions based on puncturable PRFs and
indistinguishability obfuscation

[2] E. Alpirez Bock, A. Amadori, C. Brzuska and W. Michiels: On the security goals of white-box
cryptography, CHES 2020

See [2] for more motivation on the use of hardware-binding

Our constructions help understand how such white-box programs can be
implemented in practice (substituting the PPRFs and iO by more
efficient primitives)

Secure hardware in the device

11

kHm

WB

HW

Assume our device has some hardware
component, which is not accessible to the
white-box adversary

The secure hardware stores some secret,
main key kHm

Based on this key, the hardware generates
responses to the white-box program

Why white-box with hw-binding?

12

kHm

WB

HW

Question: why use white-box crypto, if
my device has a secure hardware with some
key material anyway?

1) independence from the phone
manufacturer

3) avoid context switches to improve
performance

4) avoid exposure of intermediate
values during the calculations

2) not all HWs are implemented equally

Idea: make our white-box program dependable on a
simple operation performed by the hardware

13

Defining Hardware-binding

Defining a white-box primitive in combination of a
hardware module

■ Consider a key derivation function (KDF)

■ Build a functional equivalent (hardware-bound) WKDF

■ We define the syntax of the hardware module and the WKDF

White-box key derivation function (WKDF)

14

ke ⟵ KDF(k, e)

KDF(k, e) = WKDF(e, .)

White-box KDF

15

WKDF ⟵ $Comp(k, kHs)

WKDF(e, σ) = KDF(k, e)

kHm

kHs ⟵ SubKgen(kHm, label)

σ ⟵ Resp(kHm, label, e)

{kHs}

WKDF

e, label σ

HW

label

ke

WKDF(e, σ)

b ⟵ Check(kHs, e, σ)
if b = 0

return ⊥
else ke ⟵ KDF(k, e)
return ke

Security of WKDF

16

WKDF

KDF() o
e ⟵ ${0,1}n

Q := Q ∪ {e}
if b = 1

ke ⟵ KDF(k, e)

else ke ⟵ ${0,1}n

(e, ke)

HW(e) o
assert e ∉ Q
Q := Q ∪ {e}
σ ⟵ Resp(kHm, label, e)σ

e

Construction

17

SubKgen(kHm, label)

kHs ⟵ PRF(kHm, label)
return kHs

Resp(kHm, label, e)

σ ⟵ PPRF(PRF(kHm, label), e)
return σ

// Check(kHs, e, σ)

// ke ⟵ KDF(k, e)

Comp(k, kHs)

WKDF ⟵$iO(C[k, kHs])
return WKDF

C[kHs, k](e, σ)

if PRG(σ) = PRG(PPRF(kHs, e))

ke ⟵ PPRF(k, e)
return ke

else return 0n

Security

18

C[kHs, k](e, σ)

if PRG(σ) = PRG(PPRF(kHs, e))

ke ⟵ PPRF(k, e)
return ke

else return 0n

We prove security via the punctured programs approach from
Sahai and Waters [3]

[3] A. Sahai and B. Waters: How to use indistinguishability obfuscation: deniable encryption and
more, STOC 2014

C2[kz
Hs, k, z, τ](e, σ)

if e = z and PRG(σ) = PRG(τ)

ke ⟵ PPRF(k, e)
or if PRG(σ) = PRG(PPRF(kz

Hs, e))

return ke

else return 0n

≡

with τ = PPRF(kHs, z)

Security

19

C3[kz
Hs, k, z, y](e, σ)

if e = z and PRG(σ) = y

ke ⟵ PPRF(k, e)
or if PRG(σ) = PRG(PPRF(kz

Hs, e))

return ke

else return 0n

≡

with τ ⟵ ${0,1}n and y = PRG(τ)

C2[kz
Hs, k, z, τ](e, σ)

if e = z and PRG(σ) = PRG(τ)

ke ⟵ PPRF(k, e)
or if PRG(σ) = PRG(PPRF(kz

Hs, e))

return ke

else return 0n

with τ = PPRF(kHs, z)

Security

20

C3[kz
Hs, k, z, y](e, σ)

if e = z and PRG(σ) = y

ke ⟵ PPRF(k, e)
or if PRG(σ) = PRG(PPRF(kz

Hs, e))

return ke

else return 0n

≡

with τ ⟵ ${0,1}n and y = PRG(τ)

C4[kz
Hs, kz, z, y, k*e](e, σ)

if e = z and PRG(σ) = y

ke ⟵ PPRF(kz, e)

if PRG(σ) = PRG(PPRF(kz
Hs, e))

return k*e

else return 0n

return ke

with y ⟵ ${0,1}2n and k*e ← PPRF(k,z)

Security

21

C5[kz
Hs, kz, z, y](e, σ)

if e = z and PRG(σ) = y

ke ⟵ PPRF(kz, e)

return 0n

if PRG(σ) = PRG(PPRF(kz
Hs, e))

return ke

else return 0n

≡

with y ⟵ ${0,1}2n

C4[kz
Hs, kz, z, y, k*e](e, σ)

if e = z and PRG(σ) = y

ke ⟵ PPRF(kz, e)

if PRG(σ) = PRG(PPRF(kz
Hs, e))

return k*e

else return 0n

return ke

with y ⟵ ${0,1}2n

22

White-box mobile payment application

Using our WKDF

23

Now we can use our WKDF as a building block for further constructions in the
white-box attack scenario

Idea: derive keys from the WKDF for performing encryptions/decryptions

The security is derived from the WKDF, which is hardware-bound and white-
box secure

We construct a mobile payment application, which is dependent on the WKDF

White-box secure Payment Applications

24

Enc(LUK1) = c1

 …

 cn
WBDec LUK1

WPAY

Secure storage

WBEnc m req

WKDF

kHm HW

id

Thank you for your
attention!

Encryption

m

c

⊥

Is present?δ Yes

No

