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o (Simple) Side channel analysis  

o Scalar multiplication on ECC 

o Leakage in the beginning of the multiplication 
o Previous results 
o Our results (leakage on Curve25519 and Complete addition 

formulas) 

o Removing the leakage 
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Side Channel Analysis Attacks
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SCA attacks are passive physical attacks based on the observation of 
a hardware device during the execution of cryptographic operations 

Parameters observed:  
Power consumption (power analysis) 
Electromagnetic radiation (EM analysis) 
Execution times (timing attacks) 



Simple SCA
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Usually one measurement is enough for extracting secrets from 
implementations 



Scalar multiplication
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■ Used in ECC  
■ But also in isogeny based cryptographic schemes, e.g. SIKE, for 

calculating a secret kernel 

■ The multiplication is performed using a secret scalar k, for adding a 
point P on the curve  

■ Security on ECC Given P and kP, it should be difficult to obtain k 

   

kP = P + P + . . . + P

k times 



Montgomery Ladder 
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Montgomery Ladder: robust against SPA
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Leakage in implementations using Lopez-Dahab 
projective coordinates
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Previous works [1,2] showed that the second bit of the scalar could be easily 
extracted via SPA on implementations using LD-projective coordinates 

   

[1]: Alpirez Bock et al.: Increasing the robustness of the Montgomery kP-Aglorithm by modifying its 
initialisation, SECITC 2016

[2]: Aranha et al.: LadderLeak, CCS 2020



Montgomery Ladder using Lopez-Dahab coordinates
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LadderLeak Attack
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■ In [2] the authors identified this leakage on recent versions of OpenSSL, 
which implements ECDSA using the Lopez-Dahab projective coordinates 
■ The leakage is identified in the form of cache attacks 

■ The authors even show how this leakage could be exploited for solving 
the Hidden numbers problem, leading to a full key recovery 
■ HNP shows that the MSBs of a secret key are as hard to guess as the entire 

key [3] 
■ [3] presents an algorithm for recovering the key, given some bits of leakage 

   
[2]: Aranha et al.: LadderLeak, CCS 2020

[3]: Boneh et al.: Hardness of computing the MSBs of secret keys in Diffie-Hellman and related 
schemes, CRYPTO 96



Mitigation of the leakage
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■ [1] proposes a re-design of the initialisation phase of the algorithm and show 
how their re-design effectively mitigates this leakage, without implying any 
additional efficiency or size costs 
 

   

[1]: Alpirez Bock et al.: Increasing the robustness of the Montgomery kP-Aglorithm by modifying its 
initialisation, SECITC 2016



Leakage at the beginning
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We observe that many implementations of the Montgomery ladder 
easily leak the MSBs of the secret scalar 

■ Consider 2 case studies: 
■ Software implementation of Curve25519 from [Ba+21] 
■ Hardware implementation of the Complete Addition Formulas from 

[Pi+18] 
■ Show the presence of this leakage on each implementation, analyse it 

and propose a re-design of part of the algorithm 

■ (Some) of our re-designs barely imply efficiency penalties 

   
[Ba+21]: Batina et al.: SCA-secure ECC in software – mission impossible?, to appear in CHES23

[Pi+18]: Pirotte et al.: Design of a Fully Balanced ASIC Coprocessor Implementing Complete 
Addition Formulas on Weierstrass Elliptic Curves, DSD 2018 



Leakage on Cruve25519
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Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111



Leakage on Cruve25519 using Z-coordinate randomisation
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Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111



Leakage on the complete addition formulas
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Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111



Reason for the leakage 
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Different number of multiplications times 0 or times 1 will be performed 
depending on the value of the MSB(s). 



Reason for the leakage 
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Different number of multiplications times 0 or times 1 will be performed 
depending on the value of the MSB(s). 



Reason for the leakage 
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Different number of multiplications times 0 or times 1 will be performed 
depending on the value of the MSB(s). 



Proposed countermeasure
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Initialise all variables with randomly generated, balanced, values

Iterate “dummy” loops for all MSBs=0

Execute special version of the loop for the first 1, with pre-calculated values, 
avoiding operations with variable = 1 or 0



Proposed countermeasure
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Execute special version of the loop for the first 1, with pre-calculated values, 
avoiding operations with variables = 1 or 0



Proposed countermeasure
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Alternative: place the content of the corresponding operands on different 
memory locations and access them according to values depending on the secret 
scalar

Swap the contents of two inputs if a value c=1; determine value c via  
arithmetic operations during each loop cswap(X, Y, c)



Proposed countermeasure
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Conclusions
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We confirm that the MSBs of secret scalars can be easily extracted via SPA 
on open source implementations

We leave the proposal of a re-design mitigating this leakage on the complete 
addition formulas as future work

The MSBs can be extracted on implementations of Cruve25519 and the  
Complete addition formulas 

We propose a re-design of the algorithm implementing Curve25519 and show 
its effectiveness via power measurements

We ensure that all loop iterations are performed using operands with long values

Our re-design does not imply a big penalty on efficiency and size
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