
Protecting the most significant bits on
scalar multiplication algorithms
Estuardo Alpirez Bock, Lukasz Chmielewski and
Konstantina Miteloudi from Radboud University

SCA

2

Encryption
m c

Outline

3

o (Simple) Side channel analysis

o Scalar multiplication on ECC

o Leakage in the beginning of the multiplication
o Previous results
o Our results (leakage on Curve25519 and Complete addition

formulas)

o Removing the leakage

o Conclusions

Side Channel Analysis Attacks

4

SCA attacks are passive physical attacks based on the observation of
a hardware device during the execution of cryptographic operations

Parameters observed:
Power consumption (power analysis)
Electromagnetic radiation (EM analysis)
Execution times (timing attacks)

Simple SCA

5

Usually one measurement is enough for extracting secrets from
implementations

Scalar multiplication

6

■ Used in ECC
■ But also in isogeny based cryptographic schemes, e.g. SIKE, for

calculating a secret kernel

■ The multiplication is performed using a secret scalar k, for adding a
point P on the curve

■ Security on ECC Given P and kP, it should be difficult to obtain k

kP = P + P + . . . + P

k times

Montgomery Ladder

7

Montgomery Ladder: robust against SPA

8

Leakage in implementations using Lopez-Dahab
projective coordinates

9

Previous works [1,2] showed that the second bit of the scalar could be easily
extracted via SPA on implementations using LD-projective coordinates

[1]: Alpirez Bock et al.: Increasing the robustness of the Montgomery kP-Aglorithm by modifying its
initialisation, SECITC 2016

[2]: Aranha et al.: LadderLeak, CCS 2020

Montgomery Ladder using Lopez-Dahab coordinates

10

LadderLeak Attack

11

■ In [2] the authors identified this leakage on recent versions of OpenSSL,
which implements ECDSA using the Lopez-Dahab projective coordinates
■ The leakage is identified in the form of cache attacks

■ The authors even show how this leakage could be exploited for solving
the Hidden numbers problem, leading to a full key recovery
■ HNP shows that the MSBs of a secret key are as hard to guess as the entire

key [3]
■ [3] presents an algorithm for recovering the key, given some bits of leakage

[2]: Aranha et al.: LadderLeak, CCS 2020

[3]: Boneh et al.: Hardness of computing the MSBs of secret keys in Diffie-Hellman and related
schemes, CRYPTO 96

Mitigation of the leakage

12

■ [1] proposes a re-design of the initialisation phase of the algorithm and show
how their re-design effectively mitigates this leakage, without implying any
additional efficiency or size costs

[1]: Alpirez Bock et al.: Increasing the robustness of the Montgomery kP-Aglorithm by modifying its
initialisation, SECITC 2016

Leakage at the beginning

13

We observe that many implementations of the Montgomery ladder
easily leak the MSBs of the secret scalar

■ Consider 2 case studies:
■ Software implementation of Curve25519 from [Ba+21]
■ Hardware implementation of the Complete Addition Formulas from

[Pi+18]
■ Show the presence of this leakage on each implementation, analyse it

and propose a re-design of part of the algorithm

■ (Some) of our re-designs barely imply efficiency penalties

[Ba+21]: Batina et al.: SCA-secure ECC in software – mission impossible?, to appear in CHES23

[Pi+18]: Pirotte et al.: Design of a Fully Balanced ASIC Coprocessor Implementing Complete
Addition Formulas on Weierstrass Elliptic Curves, DSD 2018

Leakage on Cruve25519

14

Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111

Leakage on Cruve25519 using Z-coordinate randomisation

15

Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111

Leakage on the complete addition formulas

16

Compare the implementation ran on two different keys:

k1 = 00000100
k2 = 01111111

Reason for the leakage

17

Different number of multiplications times 0 or times 1 will be performed
depending on the value of the MSB(s).

Reason for the leakage

18

Different number of multiplications times 0 or times 1 will be performed
depending on the value of the MSB(s).

Reason for the leakage

19

Different number of multiplications times 0 or times 1 will be performed
depending on the value of the MSB(s).

Proposed countermeasure

20

Initialise all variables with randomly generated, balanced, values

Iterate “dummy” loops for all MSBs=0

Execute special version of the loop for the first 1, with pre-calculated values,
avoiding operations with variable = 1 or 0

Proposed countermeasure

21

Execute special version of the loop for the first 1, with pre-calculated values,
avoiding operations with variables = 1 or 0

Proposed countermeasure

22

Alternative: place the content of the corresponding operands on different
memory locations and access them according to values depending on the secret
scalar

Swap the contents of two inputs if a value c=1; determine value c via
arithmetic operations during each loop cswap(X, Y, c)

Proposed countermeasure

23

Conclusions

24

We confirm that the MSBs of secret scalars can be easily extracted via SPA
on open source implementations

We leave the proposal of a re-design mitigating this leakage on the complete
addition formulas as future work

The MSBs can be extracted on implementations of Cruve25519 and the
Complete addition formulas

We propose a re-design of the algorithm implementing Curve25519 and show
its effectiveness via power measurements

We ensure that all loop iterations are performed using operands with long values

Our re-design does not imply a big penalty on efficiency and size

धन्यवाद

estuardo.alpirezbock@aalto.fi
Aalto University,

Department of Mathematics and Systems Analysis

Otakaari 1, Espoo

Room Y250c

Finland

mailto:estuardo.alpirezbock@aalto.fi

