Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

Sisalto

0.1 Epdlineaarisista yhtaloista ja kiintopisteiteraatiosta oL L.

0.1.1 Bisektio, vilin puolitus, bindérihaku, sataosaa oL
0.1.2 Vilin puolitus, bisektio, dekasekstio, satasektio
0.1.3 Tteratiivisten algoritmien lopetusehdoista
0.1.4 Kiintopisteiteraatio L L e
0.1.5 Newton-Raphson, sekantti, Regula Falsii
0.1.6 Vektori-Newton e e e e e e
0.0.7 o e

1 Usean muuttujan funktiokiisite ja graafinen kuvaaminen

0.1.

Epalineaarisista yhtaloista ja kiintopisteiteraatiosta

10
12
13
13
13

15

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

0.1.1. Bisektio, vilin puolitus, bindirihaku, sataosaa

2.3.2000 Tanne on siirretty tiedostosta nummenet.tex kohdasta sectionEpélineaariset yht&lot
[1, ss. 39-94]
bisekt.m on kurssihakemistossa (toivottavasti), implementoi!

Projektitydssd on mainittu teht. 15 "sataosaa", yleisemmin n_osaa . (Ei ole synonyymi ilmaisulle "en

osaa'(edellisestd puuttuu aspiraatio).)
Formuloi ja todista "sataosaalause", "n_osaa-lause" (ilman aspiraatiota).

N&mi menetelmit rajaavat (sulkevat) 0-kohdan ("bracket a zero").

Johdattelua

Epélineaarisia yhtaloitd esiintyy kaikkialla ... [1, ss. 39-40] alkaa viestOkasvumalliin liittyvalla esimerkilla.

0.1.2. Vilin puolitus, bisektio, dekasekstio, satasektio

Ensimméinen reaalifunktion nollakohdanhakumenetelmé nykypéivind on kuvan piirto ja zoomaus. Jospa
haluaisimme etsié ratkaisua yhtalélle.

e’ —1.5—arctanz =0

MATLAB:ssa toimisimme tdhin tapaan, kokeillen ensin sopivaa x-vilii. (Huomaa, ettd versiosta 5.3 alkaen
voi pikkufunktioita méaéritelld suoraan istunnossa inline- tyylilla, toki voi aina kirjoittaa méarityksen m-
tiedostoon, kuten ennekin.) Kuvaikkunaa zoomaamalla ja nollakohtaa hiiren vasemmalla napsuttelemalla
padsemme nopeasti arvioon xg ~ 0.7676 . T4ta tarkempaan ei grafiikkaikkunan asteikkonumerointi ylla.

>> f=inline(’exp(x)-1.5-atan(x)’,’x?)

>> fplot(f,[-1.4,1.4]);grid;shg

>> fplot(f,[0.7676,0.7677]);grid;shg % T&mi ei anna lisitietoa, kun asteikossa ei
% ole enemp#i numeroita.

Samanlaiseen tarkkuuteen padstdin vastaavassa MAPLE-istunnossa tdhén tapaan (hieman hitaampaa tahtia,
mutta hyvin reaaliajassa).

f:=x->exp(x)-1.5-arctan(x);
plot(f,-1.4..1.4);plot(£,0.7..0.8);plot(£,0.767..0.768);

Epévarmuusvilin kutistaminen

Klassinen algoritmi on bisektio, joka perustuu jatkuvien funktioiden véliarvolauseeseen, joka myds Bolza-
non lauseen nimelld tunnetaan. Jos jatkuvalla funktiolla on valin pddtepisteessd erimerkkiset arvot, silld on
nollakohta ao. valilld.

Alkuperéinen vili olkoon [a, b] ja f vaihtakoon merkkii. Bisektioalgoritmi voidaan kuvata néin:

Bisektioalgoritmi

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

1. a:=a, 3:=b, Laske f, := f(a), fs:=f(B)
Cyi= %(a—{—ﬁ). Laske f, := f(v)

. Jos sign(f,,) =sign(f,) niin a := v, muuten 3 :=y

= W N

. Jos B — a > tol, palaa kohtaan 2.

Tassé tol tarkoittaa virhetoleranssia.

MaATLABilla voitaisiin edelld olevan funktion f nollakohdan haku toteuttaa vaikka nain:

clear
f=inline(’exp(x)-1.5-atan(x)’,’x’) J M&&ritell&&n (taas sama) funktio.

a(1)=-1.4;b(1)=5; % Alkuperdinen v&li

for i=1:5 % Tehd&8n viisi v&lin puolitusta.
fa=f(a(i));fb=f(b(i));
x0=(a(i)+b(i))/2;
£0=£ (x0) ;
if (sign(fa) == sign(£0))
a(i+1)=x0; b(i+1)=b(i); fa=£f0;
elseif (sign(fb) == sign(£0))
a(i+1)=a(i); b(i+1)=x0; fb=£f0;
end;
end;

Estimme kaikki tulostukset. Katsotaan nyt, mitd saatiin. Havainnollista on laittaa a-pisteiden sarake ja
b-pisteiden sarake vierekkdin 2-sarakkeiseksi matriisiksi: Vélien pituudet antavat maksimivirheen kullakin
iteraatiokierroksella.

** Seuraava kommentoitu vasta bisekt-funktion kiytén yhteyteen.

format long % Tulostustarkkuus maksimiarvoonsa
ab=[a’ b’] % Transponoidaan a-vektori ja b-vektori ja laitetaan vierekkdin.
% ndin n&hd&d&n havainnollisesti algoritmin eteneminen.
virheet=b-a % Muodostetaan vilien pituudet.
format short
[(1:6)? a’ b’] % Laitetaan iteraatiokierrosnumero 1. sarakkeeksi.
ab =
-1.40000000000000 5.00000000000000
-1.40000000000000 1.80000000000000
0.20000000000000 1.80000000000000
0.20000000000000 1.00000000000000
0.60000000000000 1.00000000000000
0.60000000000000 0.80000000000000

virheet =
Columns 1 through 4

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

6.40000000000000 3.20000000000000 1.60000000000000 0.80000000000000
Columns 5 through 6
0.40000000000000 0.20000000000000

ans =
1.0000 -1.4000 5.0000
2.0000 -1.4000 1.8000
3.0000 0.2000 1.8000
4.0000 0.2000 1.0000
5.0000 0.6000 1.0000
6.0000 0.6000 0.8000

Kokoamme sitten edellisen istuntotiedoston funktioksi tiedostoon bisekt.m

function valit=bisekt(fun,vali,tol,nmax)

% Funktio paluttaa 2-sarakkeisen matriisin, josta n#kyy epdvarmuusvdlin kehitys.
% Tarkoitus: Opetus ja havainnollistus.

% Kutsuesim:

% 1. % ab=bisekt(’sin’,[-1,1]) % oletustoleranssi ja nmax

% 2. % ab=bisekt(f,[-2,5]1,0.00001) % Oletus-nmax

% 3.) ab=bisekt(f,[-2,5],0.00001,100)

a(1)=vali(1);b(1)=vali(2);

if nargin < 4
nmax=1000;
end;

if nargin==
tol=eps;
end;
i=1;
fa=feval (fun,a(i)) ;fb=feval(fun,b(i));

if sign(fa) == sign(fb)
error (’Funktio ei saa erimerkkisii arvoja péditepisteissid’)
end;

while ((b(i)-a(i) > tol) & (i < nmax))
x0=(a(1)+b(1))/2;
f0=feval (fun,x0) ;

if (abs(f0)<eps) % Vdlin keskelld oleva O-kohtamahdollisuus

a(i)=x0;b(i)=x0; % otettava huomioon. (esim. 1 yl1l&)

valit=[a’ b’]; return; % Johtuu sign-testistd, O on aina erimerkkinen kuin ei-nolla
end; % Ehk&d vdhieleisemmin else-haaraksi alla

if (sign(fa) == sign(£f0))
a(i+1)=x0; b(i+1)=b(i) ;fa=f0;

4

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

elseif (sign(fb) == sign(f0))
a(i+1)=a(i); b(i+1)=x0;fb=£0;
end;
i=i+1;
end;
valit=[a’ b’]; Y% Transponoidaan a-vektori ja b-vektori ja laitetaan vierekkiin.
% ndin ndhdisn havainnollisesti algoritmin eteneminen.

Testiesimerkkind katsomme viimeistd kommenttiesimerkkid. Rajoitamme iteraatioiden lukumaéran kymme-
neen tilan sddstdmiseksi.

format long % Tulostustarkkuus maksimiarvoonsa
f=inline(’exp(x)-1.5-atan(x)’,’x’)
ab=bisekt(f,[-2,5],0.00001,10)

format short % Takaisin oletusarvoon
virheet=diff (ab’) % Muodostetaan vdlien pituudet.
[(1:10)° abl % Laitetaan iteraatiokierrosnumero 1. sarakkeeksi.
ab =

-2.00000000000000 5.00000000000000

-2.00000000000000 1.50000000000000

-0.25000000000000 1.50000000000000

0.62500000000000 1.50000000000000

0.62500000000000 1.06250000000000

0.62500000000000 0.84375000000000

0.73437500000000 0.84375000000000

0.73437500000000 0.78906250000000

0.76171875000000 0.78906250000000

0.76171875000000 0.77539062500000
virheet =

Columns 1 through 7
7.0000 3.5000 1.7500 0.8750 0.4375 0.2188 0.1094
Columns 8 through 10

0.0547 0.0273 0.0137
ans =
1.0000 -2.0000 5.0000
2.0000 -2.0000 1.5000
3.0000 -0.2500 1.5000
4.0000 0.6250 1.5000
5.0000 0.6250 1.0625
6.0000 0.6250 0.8438
7.0000 0.7344 0.8438
8.0000 0.7344 0.7891
9.0000 0.7617 0.7891
10.0000 0.7617 0.7754

Jako sataan osaan

MATLAB opettaa ajattelemaan vektoroidusti ja rinnakkaisesti. Algoritmin tehokkuuden kannalta toisistaan
riippumattomat operaatiot ovat eri asemassa kuin ne, joissa seuraava sySte riippuu edellisen laskennan
tuloksesta. Matlab emuloi vektoriarkkitehtuuria sillé, ettd vektorioperaatiot ovat verrattoman nopeita.

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

Siten sata toisistaan riippumatonta funktion arvon laskentaa ei vaadi 100-kertaista aikaa verrattuna yhteen.

>> f=inline(’exp(x)-1.5-atan(x)’,’x?)

>> x=1;tic; £(x); tl=toc;

>> x=linspace(-1,1,100);tic; f£(x); t100=toc;
>> x=linspace(-1,1,1000);tic; £(x); t1000=toc
>> vektoriajat=[t1,t100,t1000]

vektoriajat =

0.0009 0.0024 0.0024
>> skalaariajat=[t1,100*t1,1000*t1]

skalaariajat =
0.0009 0.0939 0.9390

>> skalaariajat./vektoriajat

Kannattaa vield katsoa yll&d olevia. Ajat vaihtelevat, satunnaisuutta esiintyy.
Tédssd on dramaattinen vertailu vektorilaskennan ja for-silmukan v&lilla.
ans =

1.0000 39.8050 396.5372

» x=linspace(-1,1,10000) ;tic; £(x); toc
elapsed_time =

0.05000000000000
» tic; for k=1:10000; f(x(k)); end; toc
elapsed_time =

5.50000000000000

Nihdéan, ettd tissa tapauksessa laskettaessa 100 kertaa funktion arvo skalaarisesti vaatii n. 40-kertaisen ajan
verrattuna 100:aan saman funktion arvon laskentaan vektoroidusti. Karkeasti ottaen siis 100:n funktion arvon
toisistaan riippumaton laskenta vie vain n. 2 — 3- kertaisen ajan verrattuna yhden funktion arvon laskentaan!

>> t100/t1
ans =
2.5122

* Tassd on jotain yliluonollista ainakin t1000:n kohdalla, pitii testailla tarkemmin *

Toki tdm& on jossain mairin kone- ja tapausriippuvaista. Tilanne on vieldkin dramaattisempi silloin, kun
MATLABia kiytetddn vektori- tai rinnakkaiskoneessa.

Moneen osaan jako samanaikaisesti

Katsotaan malliksi vaikka sin-funktion 0-kohdan hakua valill4 [-1,1]. Jaetaan aluksi 10:een osaan.

6

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

a=-5; b=b5;

x=linspace(a,b,10);

y=sin(x)

I=find(sign(y(1)) ~= sign(y)) ' Etsimme indeksej&d, joita vastaavilla y-arvoilla on eri
% merkki kuin y(1):114.

y =

Columns 1 through 7
0.9589 0.6797 -0.3558 -0.9954 -0.5274 0.5274 0.9954
Columns 8 through 10

0.3568 -0.6797 -0.9589

3 4 5 9 10

y(3) on ensimméinen, jolla merkki vaihtuu, joten nollakohta on vililld [y(2),y(3)]. Jos kiinnitdmme
huomiomme ensimmaéiseen (pienimpéaén) nollakohtaan, saamme sitd rajaavan vilin ottamalla Ta=I(1)-1,
Ib=I(1). Siis néin:

» Ta=I(1)-1; Ib=I(1); [Ia Ib]

» a=x(Ia) ;b=x(Ib);[a,b]
ans =

-3.8889 -2.7778

Nyt voidaan toteuttaa vuorovaikutteinen iteraatio toistamalla nuolindppédimen avulla jalkimmaista rivia.
Voidaan samantien jakaa 100:aan osaan, jolloin saadaan kaksi oikeaa desimaalia joka kierroksella.

a=0; b=b
x=linspace(a,b);y=sin(x) ; I=find(sign(y (1)) ~“=sign(y));Ib=I(1) ;a=x(Ib-1) ,b=x(Ib)

Kolmen ndpéayksen jalkeen saamme lyhyelld tarkkuudella samat, eli 3.1416. T&ssa vaiheessa on syyta komen-
taa format long. Viisi lisindpaystd antaa molemmille arvon 3.14159265358979. Sattumoisin samat numerot
saamme kirjoittamalla

pi

Houkutus olisi suuri ryhtyd kehittdm&aan algoritmia, joka etsii samanaikaisesti kaikkia merkinvaihtokohtia.

7

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

Monen nollakohdan etsinti samanaikaisesti

Emme pysty tuota houkutusta vastustamaan. Ideoidaanpa hiukan.

» bv=sign(y(1)) ~= sign(y)

Kohdissa, joissa on perdkkiin 0 1 tai 1 0, tapahtuu merkin vaihto. Tassa tapauksessa haluaisimme poimia
valit x([2 31), x([5 61), x([8 91) .

Entépé, jos muodostamme diff-funktiolla erotukset, siis vektorin (bv;y; — bv,-);‘:_f . Talloin saamme muu-
toskohdissa £1 ja muissa 0. Hieno idea, kokeillaanpa!

» diff (bv)

0 1 0 0 -1 0 0 1 0

Toden totta! Kun tésta jatkamme ideointia, pdddymme nopeasti havaintoon, ettd muutoskohdan vasemmat
pisteet ("a-indeksit) ja oikeat ("b-indeksit) saadaan lausekkeilla

vasen=find (abs (diff (sign(y(1)) ~= sign(y))))
oikea=vasentl

Nyt voimme kokeilla:

format compact

a=-5; b=b;

x=linspace(a,b,10);

y=sin(x);

vasen=find (abs (diff (sign(y(1)) "= sign(y))))
oikea=vasen+l1

a=x(vasen)

b=x(oikea)

valit=[a’ b’]

vasen =

2 5 8
oikea =

3 6 9
a =

-3.8889 -0.5556 2.7778

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

-2.7778 0.5556 3.8889
valit =
-3.8889 -2.7778
-0.5556 0.5556
2.7778 3.8889

Nyt sitten tositoimiin rohkeasti,

format compact
=-10; b=10;
x=linspace(a,b,1000);
y=sin(x);
vasen=find (abs(diff (sign(y (1)) ~= sign(y))));
oikea=vasen+1;
a=x(vasen) ;
b=x(oikea);
valit=[a’ b’]
valit =
-9.4394 -9.4194
-6.2963 -6.2763
-3.1532 -3.1331
-0.0100 0.0100
3.1331 3.1532
6.2763 6.2963
9.4194 9.4394
» x0=(sum(valit?’))/2
x0 =
-9.4294 -6.2863 -3.1431 0 3.1431 6.2863 9.4294

Vaikuttavaa! Yhdella askeleella (1000 riippumatonta funktion arvon laskentaa) saimme hyvit rajausvélit
kullekin nollakohdalle. Laskimme vield vélien keskipistevektorin (valit’ on matriisin transpoosi). Niistd
voitaisiin jatkaa vektori-Newtonilla tai vastaavalla suoraan ja niin teemmekin hieman tuonnempana.

Niin, tarvitaanko nyt end3 hienompia algoritmeja, kun t&ll3 yksinkertaisella tehostuksella piastadin vaikut-
taviin tuloksiin. Vastaus riippuu kiyttotarkoituksesta. Laajasti ottaen varmasti tarvitaan, usein kyseessi on
osatehtdva ... Téssd suppeneminen on joka tapauksessa vain lineaarista, vaikka oikeita numeroita saadaan
monta kerrallaan.

0.1.3. Iteratiivisten algoritmien lopetusehdoista

Ajatellaan, ettd jollain yht&lonratkaisualgoritmilla muodostetaan jono (xg, %1, %2, -.). Milloin lopetetaan?

Ehtoja:

|ty —2N-1] < €a (1)
lov—aval)
lzN|

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

|f(zn)| <&y (3)

Ehdot 1 ja 2 testaavat absoluuttista ja suhteellista virhetta vastaavasti ja 3 mittaa funktion arvon pienuutta.

Téarkein on yleensd 2, mutta ndmé on harkittava tilanteen mukaan. On huomattava, ettd 3-ehdon takaama
funktion arvon pienuus ei valttamattéd takaa sitd, ettd ollaan ldhelld oikeaa nollaktaa. Ajatellaanpa vaikka
funktiota f(x) = 219, jolla pistessa z = 0.5 on arvo 2719, Asiaa voidaan dramatisoida nostamalla potenssia.

0.1.4. Kiintopisteiteraatio

Tama soveltuu esim. Newtonin menetelmén analysointiin.
Funktion f kiintopiste on luku p, jonka funktio pitdd paikallaan, ts. f(p) = p. Kts. myos HAM.

Kiintopisteiteraatiot tulevat vastaan monissa yhteyksissd matematiikassa. Katsomme niité téssd yhtaloiden
ratkaisukeinoina. (Palataan my6hemmin ...)

Kiintopisteen etsiminen voidaan muuntaa funktion nollakohdan hakemiseksi ja kidint&en.

f(z) = 0<=g(x) = z, kun madritellddn g(x) = f(z) + 2. Huom: apufunktio g voidaan valita mitd moninai-
simmilla tavoilla, kuten vaikkapa g(z) = 10f(z) + =.

Kaantéen, jos tehtdvimme on etsid funktion f kiintopistettd, niin
f(p) = p=g(p) = 0, kun méirittelemme g(z) = f(z) — 2.
Kiintopistemuodossa on helpompi analysoida juurenhakuproblematiikkaa.

Huom! Juurenhaku voidaan muuntaa mitd moninaisimmilla tavoilla yhtalon ratkaisuksi. Toiset tavat voivat
olla taysin kelvottomia, toiset taas loistokkaita.

Esim: f(z) =0
a) g(z) == — f(x)
b) g(z) =z + 3f(x)

0 g(z) = ~ {3

Huom! Jos f on jatkuva ja jos iteraatiolla muodostettu jono z, = f(x,_1) suppenee, niin p = lim, z,
on f:n kiintopiste, silld toisaalta
lim z, =p
n—oo
ja toisaalta
lim z, = lim f(z, 1) = f(lim z, 1) = f(p)
n—o0

n— o0 n— o0

funktion f jatkuvuuden takia.

Lause 0.1.1. (Kiintopistelause) Olkoon g € Cl[a,b] ja g(z) € [a,b]Vx € [a,b], ts. g kuvaa vélin [a, b] sille
itselleen. T&ll6in g:114 on kiintopiste valilld [a,b]. Jos lisdksi oletetaan, ettd g on derivoituva ja

lg'(z)| < k Vz € [a,b],

missd k < 1, niin kiintopiste on yksikisitteinen ja iteraatiojono z, = g(zn—1),n = 0,1,... suppenee mieli-
valtaisella alkupisteen xo valinnalla, zo € [a,b].

Tod:

10

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

091

08

0.7r

Kuva 1:

(1) Olemassolo hoituu Bolzanon lauseella

Jos g(a) = a tai g(b) = b, on kiintopiste 16ytynyt. Oletetaan, ettd ndin ei ole, eli g(a) # a ja g(b) # b.
Oletuksemme mukaan tidytyy silloin olla g(a) > a ja g(b) < b (muutenhan jompikumpi paitepiste kuvautuisi
vélin ulkopuolelle).

Madaritellddn apufunktio h(z) = g(x) — z. No nythdn sitten g(a) > 0 ja g(b) < 0, joten Bolzano =3p € [a, b]
siten, ettd h(p) = 0, eli f(p) = p.

(2) Yksikésitteisyys seuraa suoraan véliarvolauseesta:
Jos olisi kaksi eri kiintopistettd p # q vélilld [a, b], niin
p—a=1f®) - fl@)=F©EF-9,

joten saataisiin ristiriitainen epdyhtald

lIp—ql <klp—q| <|p—agq|

(3) Suppeneminen seuraa epdyhtéloketjusta:

|20 — p| = |9(zn-1) — g@)| = Ig'(Ol|Tn-1 — p| < klzn—1 —p| < ... <k"|z0 — p|.
Koska 0 < k < 1, niin lim,, o ,, = P.

O

Esim.Luentoesimerkki. Yksikisitteinen kiinopiste voi toki olla ilmankin lauseen ehtoja, se lienee tuiki ilmeist4,
ilmankin esimerkkis, otetaan vaan jokin jyrk#sti nouseva funktio, kuten e®.

11

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

Lause 0.1.2. (Virhearvio) Jos g toteuttaa kiintopistelauseen ehdot, niin
|z — p| < k" max{zo —a,b - zo} (4)

n

k
_k\xo—x1| Vn > 1. (5)

Tod: Samanhenkisesti kuin edelld, kts. [1, s. 53]
O

Stabiilisuus, attraktiivisuus
Usein iteraatiojono ajatellaan dynaamiseksi systeemiksi ja z-muuttuja ajaksi.

Maiiritelma 0.1.3. Kiintopistettd p sanotaan attraktiiviseksi tai stabiiliksi, jos on olemassa sellainen p:n
ympéristo Ue(p), ettd xg € U.(p)=>x, — p.

Vastakohta on repulsiivinen eli epéstabiili. Valittiinpa tdll6in miten pieni ympdristé tahansa, niin aina I6ytyy
alkupisteitd, joista ldhdettidessd iteraatiojono ei suppene kohti p:ta.

O
Olkoon p funktion g kiintopiste. On helppo nidhda, ettd

e Jos ¢'(p) < 1, niin p on attraktiivinen.
e Jos g'(p) > 1, niin p on repulsiivinen.
Jos ¢'(p) = 1, niin kumpi tahansa on mahdollinen.

Kts. esim. [1, teht. 22, s. 56]

Tehtavia

1. BF s. 92 teht. 17: Vuonna 1224 Leonardo Pisalainen, paremmin tunnettu Fibonaccina vastasi ...
2% + 227 + 10z = 20

1

60

1
60

1
60

50 %)%42()3+ 33(=)* + 4()5+40(%)6

Kuinka tarkka oli hidnen approksimaationsa?

2. NMS-kirja s. 260: Cold snap.

1
1+22— +17(

3. BF s. 56 teht. 21 Putoava esine (kuten vaikkapa hampurilainen) toteuttaa:

0.1.5. Newton-Raphson, sekantti, Regula Falsii

Olemme jo luennolla nihneet: Newton suppenee kvadraattisesti kohti yksinkertaista 0-kohtaa, jos alkuarvo on
riittdvén hyva. (Todistus ei ollut ihan kunnollinen sikili, ettd se sanoi oikeastaan vain, ettd jos jono suppenee,
niin se suppenee kvadraattiseti.) Kiintopistelauseen avulla saadaan tyydyttadvimmin ja tarkemmin.

Palataan siithen hieman myshemmin.

12

Apiola, V2-luentoja 2000 0.1. Epélineaarisista yhtiloistd ja kiintopisteiteraatiosta

0.1.6. Vektori-Newton

function [f,df]=funder (x)
f=sin(x); df=cos(x); % T&md rivi vaihtuva, editoidaan ongelmakohtaiseti

Newton-askel

x0=...; x=x0;

[fx,dfx]=funder(x); x=x-fx./dfx J, Iteroidaan nuolin#ppdimells
% tai:

N=10;

for i=1:N

[fx,dfx]=funder(x); x=x-fx./dfx

end;

Kun kéytimme "pistejakoa"(./) , voimme antaa koko joukon alkupisteitd samantien. Siivotaan samaa kohti
(ilmeisesti) suppenevat pois. Iteroidaan joitakin kierroksia ja siivotaan:

function [f,df]=funder(x)
f=sin(x); df=cos(x); % T&md rivi vaihtuva ongelmakohtaiseti

N=5;kynnys=0.5;

for i=1:N

[fx,dfx]=funder(x); x=x-fx./dfx ; x=x(diff(x)>kynnys)
end;

Téassd muodossa ei ihan vield toimi. Jarjestys ei vilttidméittd sdily Newtonin iteraatiossa. On siten syytd
Jjarjestdd valilld. Tosin riittdnee tehdd se kerran, eikd sindnsé ole fataalia, jos ei tehdikdidn. Sensijaan fataalia
algoritmille on, se ettd diff(x) on yhtd lyhyempi kuin x. T&lloin viimeinen alkio jii varmasti poimimatta,
joten x-vektorista putoaa joka kierroksella (mahd. viérd) alkio pois. Siksi lisdédmme poimintabittivektorin
loppuun 1:n, joka on kaiken kukkuraksi konvertoitava logical-tyyppiseksi. Suoritetaan siten kaksivaiheinen
iterointi. (Montako kummassakin, tissd kumpaakin 3.) Lisdtddn tuo sort.

N=3;kynnys=0.5;x=-10:10;

for i=1:N

[fx,dfx]=funder(x); x=x-fx./dfx

end;

% Ehk&# olisi sopivaa tehdd yksi sort t&ssi vilissi:

% x=sort(x);

% Alla teemme sen suhteen tuhlaillen.

for i=1:N

[fx,dfx]=funder(x); x=x-fx./dfx;x=sort(x), x=x([diff (x)>kynnys,logical(1)])
end;

0.1.7.

0.1.8.

13

0.1. Epélineaarisista yhtéloistd ja kiintopisteiteraatiosta Apiola, V2-luentoja 2000

14

Apiola, V2-luentoja 2000 1. Usean muuttujan funktiokisite ja graafinen kuvaaminen

Luku 1

Usean muuttujan funktiokasite ja
graafinen kuvaaminen

Mita tarkoittaa funktio, noin niinkuin yleensa?
Mieti:
e Yhden muuttujan funktio

e Adrellisessi joukossa médritelty funktio (esim. permutaatio)

e Matriisin avulla mééritelty funktio (lineaarikuvaus)

Tietokoneohjelman médrittelemd funktoi (aliohjelma, proseduuri)

e Usean reaalimuuttujan funktio

Esim.Ympyripohjaisen lierién tilavuus voidaan laskea kaavalla V = mr2h, missi r on pohjan side ja h lierién
korkeus. Voimme hyvilld syylld sanoa, etté tilavuus on kahden muuttujan, r ja h funktio:

f(r,h) = wr’h

Olennaista funktiolle on niin tdssd kuin kaikissa muissakin yhteyksissd, ettd on annettu sdantd, jolla syot-
teeksi annetuista argumenteista voidaan laskea yksikisitteinen tulos. Toisin sanoen, funktioon menee jotain
syOtteitd sisddn ja se palauttaa niistd riippuvan tuloksen.

Syéte — | Laskenta-algoritmi ‘ — tulos

Voimme nyt muotoilla miiritelmén juuri tdtd usean reaalimuuttujan (eli R™:n vektorin) tapausta varten.

Maééaritelmi 1.0.4. Funktio f : R® — R on sdinto, joka liittdd jokaiseen mdédrittelyjoukon D(f) C R™
(pisteeseen (vektoriin)) (z1,...,T,) yksikédsitteisen luvun f(z1,...,z,) . Lukujoukkoa, joka koostuu kai-
kista kuvapisteistd f(x1,...,2Zn), kun (z1,...,z,) kiy lapi kaikki médrittelyjoukon D(f) pisteet, sanotaan
arvojoukoksi tai kuvajoukoksi.

15

1. Usean muuttujan funktiokésite ja graafinen kuvaaminen Apiola, V2-luentoja 2000

Englannink. nimitykset: Madrittelyjoukko: “domain”, arvojoukko: ‘range”.

Kiytdnto maiidrittelyjoukon suhteen Tavallisesti ymmaérretddn funktion méérittelyjoukko laajimmaksi
R™:n osajoukoksi, jossa médrittelylauseke voidaan laskea (siis suljetaan pois nimittdjin nollakohdat tms.)
Toisin on tietysti, jos midrittelyjoukko spesifioidaan erikseen.

16

Apiola, V2-luentoja 2000 Kirjallisuutta

Kirjallisuutta

[1] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-KENT, 1997. 5" edition.

17

