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1 Introduction

The paper continues a series of our papers devoted to the pointwise theory
of Sobolev spaces (see also e.g. [5], [6], [7] and some earlier, quoted in [4]).
In [4] it was observed that the involved concepts in many respects are keen
to and show many analogies, on the one hand, with the ideas of H. Whitney,
exposed in his theory of smooth functions on arbitrary closed subsets of R

n

and the famous extension theorems [46], [47], and, on the other hand, with
the concepts elaborated by Marcinkiewicz–Zygmund in their deep works on
Peano and Riemann differentiability of arbitrary measurable functions on the
real line R [33], [34].

Intimately related to these papers is also the A. Denjoy paper [16] whose
profound ideas on differentiability, including the concept of approximate
derivative, go back to his fundamental works from the beginning of the
last century [15]. However, the theory initiated by Denjoy–Marcinkiewicz–
Zygmund in the above papers, referred in the sequel, for short, as DMZ
theory, in view of the employed tools—Lagrange interpolation formulas, pre-
cise pointwise Taylor remainders estimates, Vandermonde determinants, and
related estimates for solving algebraic equations (inequalities)—was rather
one-dimensional, i.e. restricted to the functions of one real variable.

In [4] a programme for unifying the DMZ theory as well as the Sobolev
theory of the function spaces Wm,p(G), p > 1, m ≥ 1 (G ⊂ R

n—open or
closed domain with regular boundary), with the Whitney’s ideas [46] was
proposed and some plan and basic concepts in this direction were suggested
and developed. Important supplementary tools used were various forms of
Markov inequalities for polynomials [1], [9], [13]; they appeared already in
connection with some earlier work on function spaces, e.g. in [21], [25], [31]
and [3].

The plan sketched in [4] was realized in a rather detailed manner in [5], [6],
for the case of Sobolev spaces Wm,p

loc (G), continuing (in a natural, conceptual
and technical sense) the paper [7] of the author and P. Haj lasz and [8].
Actually, after 1993, in numerous seminar lectures at several mathematical
institutes in Europe, I advocated related concepts in various forms. Also, as a
by-product of the development of the ideas of [7] along this way P. Haj lasz [22]
proposed his theory of W 1,p(X) spaces on general measure metric spaces
X = X(d, µ) occupying, during the last decade, an important role in the
development of Analysis on general measure metric spaces, [22], [23], [26].

Below we describe mainly

a) the extension of DMZ theory to arbitrary measurable subsets of R
n,

b) a detailed proof of our Theorem 5 extending Whitney’s Theorem 1
in [48], proved there for the 1-smooth Luzin approximation, to the
general case of k-smooth Luzin approximation, k > 1. See Definition 3
below.

An extension of the type b) was first announced in the papers by
F.-Ch. Liu [30] and Liu & Tai [31]. Our proof below should be considered as
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an alternative to [30], [31], directly and carefully elaborating on Whitney’s
original proof of Theorem 1 in [48] (for k = 1). It is apparently the first
self-contained proof of the theorem for the case k > 1 in R

n.
It is maybe worthwhile to say that our proof follows the idea of Whitney

in [48], but the crucial estimates which we use below—Lemmata 4 and 5—
were apparently not known to H. Whitney. Thus in his Theorem 4 in [48],
which is weaker than Theorem 5, he had to assume that the higher order com-
ponent fk−1 is totally differentiable on an open subset of R

n, instead of the
approximate total differentiability. It turns out that the problem of iterated
approximate total differentiability on arbitrary measurable subsets of R

n is
much more delicate than that of ordinary differentiability. See the example
of Movshovich quoted below [35] and the conjecture (3.17) in [19]. For some
other remarks in this respect see below (after the proof of Theorem 5).

Summing up, we can say that, together with our papers [5], [6], this
work realizes rather in detail the main goals of the programme sketched
in [4] for approximate differentiation of arbitrary functions. See also our
final comments in Section 6 below.

The text presented here is a slight modification of two earlier versions, of
March 19, 2008, and February 10, 2009, circulating as multiplied manuscripts.
The 2008 version was discussed in detail in a series of my lectures in March
and April 2008 at TKK in Helsinki at the seminar of Prof. Juha Kinnunen.
After my colloquium talk at TKK in March 2009 it was proposed that the
last version be published in the TKK report series1.

I thank Prof. J. Kinnunen for invitation and the fruitful creative atmo-
sphere during both my visits to TKK. I thank also Dr. M. Korobkov from the
Sobolev Institute in Novosibirsk for careful reading and insightful comments
to the earlier versions, improving the presentation.

We adopt the standard notation for multidimensional differential or poly-
nomial algebra and, in the context of k-jets, we follow Malgrange [32] or
Abraham and Robbin [1]. However, some comments are due: the letter k
can mean the multiindex k = (k1, . . . , kn), ki ≥ 0, then |k| =

∑
i ki, as

well as the natural number k as in the expression k-jet F = {f0, . . . , fk},
where each fk is a shorthand for the “vector” fk(y) = {fα(y)}, |α| = k, for all
n-multiindices α. As usual, Dl

x = Dl
x(f) is the notation for the partial deriva-

tive of order l, whereasDlF is the formal jet differentiation: F = {f0, . . . , fk},
DlF = {fl, fl+1, . . . , fk}, which makes sense for k-jets F with arbitrary com-
ponents fα; we always have Dk+1F ≡ 0. Though our formulas symbolically
look like formulas of one-dimensional Taylor polynomial algebra, as a matter
of fact, they are formulas of multidimensional Taylor algebra. Also, for a
multiindex k, k! = k1! · · · kn!.

A l-jet F ⊂ J l(G) is continuous, k-smooth, k ≥ 0, measurable, if all its
components (f0, . . . , fl) are continuous, . . . , etc. However, the expression:
the l-jet F ⊂ J l(G) is Whitney k-smooth on a closed subset Σ ⊂ G has a

1A systematic, more comprehensive presentation of this and related topics, taking into
account the most recent related publications, available in print or electronic form, is under
preparation.
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very special meaning (see the Basic Definition below).

In Section 2, after the Basic Definition is presented, we state the precise
formulation of the fundamental Whitney Extension Theorem (WhET); how-
ever we do not take any effort to prove it here. As a matter of fact we never
refer to the WhET in the course of the proofs of any one of our theorems
in DMZ theory or Whitney–Luzin structure theory. However the WhETs
play a fundamental role in the formulation of final statements and global
“corollaries”. As a primary example compare the structure theorem 5 and
Corollary 3.

Loosely speaking: the Whitney theory in the proper sense is alike to work
with “segmented” objects (“traces” of k-Whitney-continuous jets defined on
“disconnected”closed subsets of R

n) to produce new“segmented”objects, but
these constructions are “subordinated” to some rules and “requirements”—
Whitney conditions or “Whitney integrability conditions”, and this allows
us to “integrate” them and produce a “classical” object, e.g. a function f ∈
Ck(Rn), that is, an object well appealing to the standard understanding.

We can also say that the Whitney theory creates a fascinating world of
“segmented”, scattered pieces of graphs of well understood objects, examines
and describes their properties, and “organizes” them to the form that they
may be “integrated” or “glued together” to a function in Ck(Rn).

It is feasible that in some cases it is useful to apply a WhET in the
research process, and, apparently, this is the case in F.-Ch. Liu’s proof of
the Whitney–Luzin structure theorem in [30] or [31].

We will return to these questions in our final remarks.

2 Auxiliary formulas and pointwise estimates

Given a Whitney k-jet F = {f0(y), . . . , fk(y)}, f0 ≡ f , defined on a closed
subset Σ ⊂ R

n, the k-order Taylor polynomial of F , T k
y F (x) = T kF (y, x)

centred at the point y ∈ Σ and its Taylor remainder RkF (y, x) are defined
by the formulas

T kF (y, x) = f0(y) + f1(y)(x− y) + . . .+ fk(y)
(x− y)k

k!
(1)

f(x) ≡ RkF (y, x) + T kF (y, x) (2)

For y fixed in Σ, T kF (y, x) is a polynomial of order k in x, the Whitney-
Taylor polynomial or k-th order Whitney field on Σ with coefficients fi(y),
indexed by the multiindex i, |i| ≤ k. The Whitney fields can be differentiated
with respect to x and satisfy the conditions

Dl
xT

kF (y, ·)|x=y = fl(y), |l| ≤ k (3)

Dl
xT

kF (y, x) = fl(y) + fl+1(y)(x− y) + . . .+ fk(y)
(x− y)k−l

(k − l)!
(4)
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This can also be written in terms of the formal jet derivatives Dl : Jk →
Jk−|l|, DlF = {fl, fl+1, . . . , fk},

Dl
xT

kF (y, x) = T k−|l|(DlF )(y, x) (5)

and the Taylor remainders Rk−|l|(DlF )(y, x)
.
= Rk

l F (y, x)

Rk−|l|(DlF )(y, x) + T k−|l|(DlF )(y, x) ≡ fl(x) (6)

for the l-th component of the k-jet F , or the first (i.e. zero) component of
DlF .

We recall and describe in a form convenient for our purposes some poly-
nomial identities and derived inequalities which allow us to control various
estimates for the Taylor remainders RkF (x, y), Rk

l F (x, y). Crucial for the
discussion of function spaces is the control of the behaviour of the remain-
ders near the diagonal ∆ = {x = y} of R

n × R
n described in Lemmata 4

and 5 below. They are analogous and closely related to estimates which
in explicit or implicit form appeared and have been used by many authors
starting from A. Denjoy [16], Marcinkiewicz and Zygmund [33], [34], Whit-
ney [46], [47], [48], Glaeser [21], Malgrange [32], where the coefficients of the
polynomials (their derivatives—thus Markov inequalities!) are controlled by
the values of the polynomials at appropriate points of their domain or directly
by Markov inequalities (Jonsson–Wallin [25] or F. Ch. Liu [30]). The presen-
tation below allows us to give a rather unified approach to several questions
discussed in some of the papers above.

For a triple of points x, y, z, or a point of the Cartesian product Σ×Σ×Σ,
the difference

P kF (x, y, z) = RkF (x, z) −RkF (y, z) ≡ T kF (y, z) − T kF (x, z) (7)

is a polynomial in z of degree k

P kF (x, y, z) =
∑

|l|≤k

P k
l F (x, y)

(z − y)l

l!
(8)

with coefficients P k
l F (x, y) = Dl

zP
kF (x, y, z)|z=y equal to the lower degree

remainders centered at x for the formal derivatives DlF . Actually

P k
l F (x, y) = Rk

l F (x, y) = Rk−|l|DlF (x, y). (9)

In particular

P k
0 F (x, y) = RkF (x, y)

P k
1 F (x, y) = f1(y) − f1(x) − f2(x)(y − x) − . . .− fk(x)

(y − x)k−1

(k − 1)!

. . . . . . . . . . . .

P k
k F (x, y) = fk(y) − fk(x)

(10)
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These and analogous formulas appear in various forms in many texts on
classical analysis, difference calculus, approximation or interpolation theory.

It will be convenient for us to write (7), (8) in the form

RkF (x, z) −RkF (x, y) −RkF (y, z) =
∑

1≤|l|≤k

Rk
l F (x, y)

(z − y)l

l!
(11)

which allows us to control the Taylor remainder of degree k in the neighbour-
hood of the point x evaluated at y through Taylor remainders of degree k at x
and y evaluated at some intermediate point z and lower degree remainder
Rk

l F , |l| ≥ 1, estimates for derivatives DlF at x, or vice versa: the lower
degree estimates of errors for formal derivatives DlF allow us to control the
highest degree remainders.

This observation gives important services in many delicate situations.
In DMZ one-dimensional theory basic tool in this connection are Lagrange
interpolation formulas, Vandermonde determinants, finite differences, and
various representation formulas for polynomials. For the multivariate case
G. Glaeser [21] proposed a special, regular step multigrid interpolation, pro-
cedure. We refer to Markov inequalities.

Lemma 1. For any ball B(x0, r) in R
n and any polynomial p(y) of degree k,

y ∈ R
n, the inequality

|Dαp(x0)| ≤
C

r|α|
|p|C(B) (12)

holds with the constant C depending on n and k only.

Here |p|C(B) is the supremum norm in the space of continuous functions
on B = B(x0, r).

A slightly more refined is

Lemma 2. Let E be a measurable subset of the ball B(x0, r) and define
|E|
rn = σ > 0. Then there exists a constant C = c(n, k, σ) such that for all

polynomials p(y) of degree at most k, the inequality

|Dαp(x0)| ≤
C

rn+|α|

∫

E

|p(y)| dy (13)

holds.

This lemma is attributed by S. Campanato to de Giorgi [13].
Much more subtle is the following lemma due to Brudny̆ı–Ganzburg [9].

Lemma 3. In the conditions of Lemma 2 the following estimate holds for

1 ≤ q ≤ ∞

|Dαp(x0)| ≤
δ

r|α|
σ−kNq(p, E) (14)

where δ = δ(n, k, |α|, q) and Nq(p, E) =
(
−
∫

E
|p|q dy

)1/q
. Important is the case

q = ∞ where Nq(p, E) = maxE |p| and δ = δ(n, k, |α|) =
(√

n
2
k
)|α|

δ(n, k),

|Dαp(x0)| ≤
δ(n, k, |α|)

r|α|
σ−k max

z∈E
|p(z)|. (15)
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Lemma 3 is the deepest of the three in the sense that it specifies explicitly
the dependence on the parameters σ, k and n, and its proof is most sophis-
ticated [9]. In the sequel depending on the context it is convenient to refer
to all three, and especially to Lemma 3 in the form of the inequality (15).
However, roughly speaking, Lemmata 1 and 3 are consequences of Lemma 2.

If the k-jet F ⊂ Jk(U) is a k-jet of a function g(x) ∈ Ck(U), fα = ∂αg
∂xα ,

U—open set of R
n, e.g., an open neighbourhood of a closed compact set Σ,

then the k-jet G =
{

∂αg
∂xα

}
, |α| ≤ k, satisfies the Taylor remainder conditions

|Rk
l G(y, x)| = |Rk

l F (y, x)| = o(r)|x− y|k−|l|, (16)

for r = |x− y| → 0, x, y ∈ Σ, |l| ≤ k, (17)

uniformly on compact subsets of U , for all values of |l| ≤ k and all x, y ∈ Σ.
It is convenient to write (16) for a k-jet F defined on Σ in the form of the
inequalities2

Rk
l F (x, y) ≤ αF,Σ(|x− y|)|x− y|k−|l|, x, y ∈ Σ, |l| ≤ k, (18)

with αF (t)—a modulus of continuity of the k-jet F on the compact Σ. We
recall that αF (t) can be taken as a concave, i.e., nondecreasing, subadditive
continuous function for t ∈ R

+, α(0) = 0. These properties hold in view
of the general principle of minimum maximorum. A priori the continuity
modulus α depends on the indices l, but, in fact, the moduli, for various l,
may be taken equivalent in the sense: α1 ∼ α2 if 1

C
α1(t) ≤ α2(t) ≤ Cα1(t)

for some constant C depending on k and n only.
For smooth functions in the class Ck(U), U—open, all these facts follow

directly from classical formulas for the Taylor remainders. See also formula
(31) in Section 4 below. A deep idea of H. Whitney [46], [47] was to consider
(18) or (16) as conditions defining the class of smooth functions, or rather
smooth k-jets, denoted Ck(Σ), on the compact set Σ.

Definition 1 (Whitney). The subspace Ck(Σ) of all continuous k-jets Jk(Σ)
satisfying the uniform estimates (18) or (16) is termed the space of k-smooth

functions on Σ in the sense of H. Whitney, k-smooth Whitney jets, or Whit-

ney k-smooth functions for short.

This concept is justified by the fundamental Whitney Extension theorem
[46], [47].

Theorem. For any k-jet F ⊂ Ck(Σ) there exists a classical smooth function

g ∈ Ck(U) such that

G = Jkg|Σ = F

(G|Σ means the restriction of G ∈ Jk(U) to Σ). Here U is any open neigh-

bourhood of Σ in R
n, or just U ≡ R

n. Moreover, the extended k-jet G may

be defined as a bounded linear operator G = W k
Σ(F ) with the full control of

the continuity moduli αG ∼ αF .

2In the sequel we usually omit the sign of absolute value: Rk

l
= |Rk

l
|.
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The Banach space structure, norms etc. are carefully described in [32]
and [43].

More generally for a measurable subset P ⊂ R
n of positive Lebesgue

measure |P | > 0, we shall consider measurable k-jets on P , using the same
notation Jk(P ), or, if need will be to stress measurability, we write mes Jk(P ).
Thus mes Jk(P ) is just the vector space of (real valued) measurable vector
functions on P , while C0(P ) is the space of continuous real valued functions
on P .

Many operations on measurable functions, like restriction to measurable
subsets Q ⊂ P , pointwise convergence, convergence in measure, uniform
convergence on compact sets etc., are directly transferred to the general k-
jets F in Jk(P ).

Since the Whitney smoothness conditions (16), (18) have pointwise for-
mulations, it may very well happen that while the jet F ⊂ Jk(P ) does not
satisfy (16), (18) its restriction G = F |Q satisfies the Whitney k-condition or
Wk′-condition on a subset Q ⊂ P for some k′, 0 ≤ k′ < k.

Definition 2. A closed compact subset Σ of the domain P of the jet F ⊂
Jk(P ) such that F |Σ satisfies the Whitney conditions (16) or (18) will be
called a Whitney regularity set of the k-jet F , for short WR-set of F , denoted
by WR(F ). The associated continuity modulus αF , depending also on Σ,
α = α(F,Σ) will be called the modulus of the Whitney jet F |Σ on Σ. (Usually
we drop the lower indices.)

Definition 3. A measurable function f(x), or k-jet F , defined on the mea-
surable set P is k-quasismooth3 on P iff for each ε > 0 there exists a closed
(perfect) subset Qε ⊂ P such that |P \ Qε| < ε and the restriction F |Qε

is
Whitney k-smooth on Qε.

The Whitney k-smooth jet F |Qe
or its k-smooth extension over some open

neighbourhood of Qε is also called the k-smooth Luzin approximation of F .
Alternatively k-quasismooth functions (k-jets) on P will be also said to have
the Luzin property of order k on P .

After Luzin’s fundamental structure theorem for measurable real valued
functions and Egorov’s theorem on pointwise convergence of sequences we
shall be searching for closed subset Qε = Q ⊂ P , |P \ Q| < ε (ε—small,
given), such that F |Q is a k-Whitney jet.

Lemma 4. Assume that we are given a k-jet F ⊂ mes Jk(P ), and a closed

compact subset Σ satisfying the following condition (WRC-condition, Whit-

ney regularity condition):

For any pair x, y ∈ Σ the intersection set ωr = Sr(x, y) ∩ Σ where

Sr(x, y) is the spherical segment

Sr(x, y) = B(x, r) ∩B(y, r), r = |x− y|, (19)

3The term quasicontinuous functions—0-quasismooth functions—is being commonly
used in recent advanced monographs on Real Analysis, see [17].
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i.e. the set of all z ∈ Σ such that |z − x| ≤ |x − y|, |z − y| ≤ |x − y|,
satisfies the condition

σ =
|ωr|

|B(x, r)|
, σ = σ(r) ≥ σ0, (20)

with a positive constant σ0 independent of r, for sufficiently small r
(r < δ, δ—fixed positive).

Moreover, assume that the k-jet F satisfies

RkF (x, y) ≤ αk(|x− y|)|x− y|k, x, y ∈ Σ. (21)

Then the remainders Rk
l F (x, y) admit uniform estimates (x, y ∈ Σ)

Rk
l F (x, y) ≤ αk

l (|x− y|)|x− y|k−l, 0 < |l| ≤ k, (22)

and the continuity moduli αk
l ∼ αk

F,Σ.

Proof. By Lemma 3, formulas (8), (9) and (11) applied to the triples x, y, z,
z ∈ ωr(x, y), and our assumption (21) imply

|Rk
l F (x, y)| ≤

Cl

|x− y|l
(
|RkF (x, z)| + |RkF (y, z)|

)

≤
Cl

|x− y|l
(
α(|x−z|)|x−z|k +α(|y−z)|)|y−z|k

)
≤ 2Clα(|x−y|)|x−y|k−l

by concavity of the modulus αF,Σ.
Our lemma states that the general Whitney smoothness conditions (18),

a priori required to hold for all l, 0 ≤ |l| ≤ k, may be drastically reduced
to the highest order, i.e., estimates (21) of order k, or |l| = 0. This was
understood, probably for the first time, by G. Glaeser [21] in his result on
the Converse Taylor Theorem on open subsets (cubes) of R

n. Malgrange
notes ([32], Remark 3.4) that for arbitrary closed subsets Σ this may not hold
and in his presentation of the Whitney theory [32], he requires smoothness
conditions (18) for all l, 0 ≤ |l| ≤ k. Our lemma gives sufficient geometric
conditions (20) for the set Σ admitting the reduction. It will be crucial for
us that (20) holds at sufficiently close (|x− y| → 0) density 1 points of Σ.

The idea to apply Markov or Markov type inequalities in the proof of
the results analogous to our Lemma 4 and employ them in the study of sub-
tle properties of k-smooth functions, Ck(U) or Sobolev functions W k,p

loc (Rn)
occurred previously on several occasions. G. Glaeser in [21] invented for
this purpose some kind of Lagrange interpolation lemma which we recall for
completeness. We follow [1].

Interpolation Lemma. There exist points aj ∈ R
n and real valued polyno-

mials Qj(y, a) in y ∈ R
n, j = 1, . . . , (k + 1)n such that for every polynomial

P (y) of degree ≤ k the formula holds

DP (y) =
∑

j

1

t
P (y + taj)DQj(0) (23)

for all y ∈ R
n and t ∈ R, t 6= 0.
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Formula (23) follows from the universal reproducing formula

P (y) =
∑

j

P (aj)Qj(y) for all y (24)

and its consequence

DlP (y) =
∑

j

P (aj)D
lQj(y), l > 0. (25)

The discrete reproducing formula (24) requires that the universal polynomials
Qj satisfy the conditions Qj(ai) = δi

j, δ
i
j—Kronecker’s symbol, precisely in

the same way as in the classical one-dimensional Lagrange interpolation. The
interpolation lemma and the formulas (24)–(25) obviously can be considered
as some kind of Markov reproducing formula.

Let us remark also that the classical finite difference calculus formulas for
the Riemann derivatives of a function f(x) in Ck(R),

lim
k→0

∆k(x, h; f)

hk
= Dkf(x)

with

∆k(x, h; f) =
k∑

j=0

(−1)k−j

(
k

j

)
f
(
x+ (j − k

2
)h

)
,

can be also considered as a substitute for Markov pointwise inequalities.
Exactly in this role they have been used by Marcinkiewicz–Zygmund in their
one-dimensional theory [33], [34] of differentiation of measurable functions.

In fact the Riemann formula is an approximate discrete interpolation
formula for k-th order derivative.

Besides the discrete interpolation formulas also integral reproducing for-
mulas have been employed for analogous goals. Let us recall here the
Calderon–Zygmund reproducing formulas for polynomials of degree ≤ k, in-
troduced in [12], or the integral formulas discussed in [3] as a tool leading to
integral Markov inequalities of the type described in our Lemma 1 or 2.

As an obvious remark we should also say that Lemmas 1–3 above for
polynomials of degree ≤ k, k finite, are nothing more than somewhat more
precise formulations of the well understood general fact that all norms on a
finite dimensional Banach space are equivalent.

Lemma 4 and its more refined form Lemma 5, which we formulate for
sets P satisfying the very general topological and metric conditions

P is a perfect set (i.e., closed and without isolated points)

of positive measure |P | > 0,
(26)

have very far reaching consequences.
Actually we show below that most of Denjoy–Marcinkiewicz–Zygmund

approximate differentiability results, proved by Denjoy–Marcinkiewicz–Zyg-
mund for functions on subsets of R = R

1, hold for general measurable subsets
of R

n.
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Lemma 5. Assume that a measurable k-jet F defined on a compact perfect

set P ⊂ R
n satisfies for l = 0 inequality (16) or (21). Then for each ε > 0

there exist a closed subset Pε ⊂ P , |P \ Pε| < ε, and a positive number ρε

such that (18), (22) hold for x, y ∈ Pε and |x− y| ≤ ρε for all l, |l| ≤ k.

Proof. In the notation from Lemma 4 consider the functions measurable in
(x, y),

ω̂r(x, y;P ) =
|Sr(x, y) ∩ P |

|B(x, r)|
, r = |x− y|.

and the intermediate function

ω̃r(x) = inf
y∈P, ρ≤r

|Sρ(x, y) ∩ P |

|B(x, ρ)|
, ρ = |x− y|,

ω̂r(x, y;P ) ≥ ω̃r(x) for |y − x| = r.

At each density 1 point x0 of P we have

lim
r→0

r=|x0−x|
ω̃r(x) = σ > 0, (27)

where σ is a positive constant, playing the role of the constant σ0 from
Lemma 4, depending on n only. The family of measurable functions ω̃r(x)
satisfying (27) is monotone in r. Monotonicity condition makes it possible
to apply Egorov’s theorem to the family ω̃r(x), r → 0, and to the family
ω̂r(x, y;P ) and for each ε > 0 to construct the required subset Pε, |P \Pε| < ε
on which the convergence (27) is uniform for r → 0, and select the constant
ρε. We obtain thus a subset Pε such that the estimate (20) in Lemma 4 holds
with some positive σ0 > 0. Now, application of Lemma 4 finishes the proof
of Lemma 5.

3 Whitney jets on open subsets of R
n

Here we give some direct consequences of Lemmas 1, 3, 4 for Whitney k-jets
on open subsets of R

n.

Theorem 1. Let a measurable k-jet F ∈ Jk(U) satisfy the Whitney condition

(21) for x, y ∈ U . Then F is a classical k-smooth jet on U .

In other words, the component f0(x) = f(x) is a k-smooth function, f ∈
Ck(U), and for all |α| ≤ k,

Dαf(x) = fα(x). (28)

Proof. Since U is open, then for sufficiently small r, ωr = Sr(x, y) and thus
(20) holds with some fixed σ0. By Lemma 4 and formulas (10) we conclude
that fα(x), for |α| = k, are uniformly continuous on compact subsets of U .
Iterating this we conclude that all components fα of the k-jet F , for |α| < k,
have continuous classical derivatives and (28) holds for all |α| ≤ k.

In particular, we have the classical formulas

Dα−β
x fβ = fα for all β, β < α. (29)
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Corollary 1. If a measurable k-jet F ∈ Jk(U) satisfies the condition

RkF (x, y) ≡ 0 for all x, y ∈ U

then the initial term f of the k-jet F is a polynomial of degree ≤ k.

As already remarked by Marcinkiewicz–Zygmund [33], [34], if the measur-
ability assumption is dropped then the corollary and the whole DMZ theory
fails (Hamel basis on R!).

4 Denjoy–Marcinkiewicz–Zygmund theory

It is convenient and useful to represent the local Taylor fields T k
y F (x) and

Taylor remainders RkF (y, x) in terms of the variables (y, y + h), x = y + h,
h “small”. This is also in better agreement with the tradition [33], [34], [29],
and makes easier the references to most of the existing literature (mainly
for functions of one variable [18]). We recall the classical Taylor formula for
functions f(x) ∈ Ck(U), x ∈ U , U—open in R

n, f r(x) ≡ Drf(x), |r| ≤ k,
f 0(x) = f(x).

f(x+ h) =
k∑

r=0

f r(x)hr

r!
+ R̂kf(x, h)hk (30)

R̂kf(x, h) =

∫ 1

0

(1 − t)|k|−1

(k − 1)!

[
fk(x+ th) − fk(x)

]
dt. (31)

It is also useful to employ the normalized Taylor remainders ekf(x, h) =
ek(x, h), if the function f is fixed, defined by

ekf(x, h)|h|k
.
= R̂kf(x, h)hk. (32)

Since in the classical case of k-smooth functions on open subsets of R
n the

derivatives f r are (k − |r|)-smooth,

f ∈ Ck(U) ⇒ f r(x) = Drf(x) ∈ Ck−|r|(U),

it is obvious that formulae (30) are intimately connected with the formulae

f l(x+ h) =

k−|l|∑

j=0

f l+j(x)hj

j!
+ R̂k

l f(x, h)hk−l, |l| ≤ k,

ek
l f(x, h)|h|k−l .= R̂k

l f(x, h)hk−l.

(33)

The remainders R̂kf(x, h), R̂k
l f(x, h) satisfy the conditions

1. They are continuous in (x, h) for |h| ≤ δ, δ small

2. R̂k
l f(x, 0) = 0, R̂k

l f(x, h) = o(1), |h| → 0
(34)

13



This holds for the normalized remainders ek
l (x, h) if, by definition, we set

ek
l (x, 0) = 0. In (32) and (33) ek

l (x, h) is defined for |h| > 0 only.
On compact subsets Σ ⊂ U , more precise formulation can be given

|R̂k
l f(x, h)| ≤ αl

Σ(|h|), x ∈ Σ, |l| = 0, . . . , k, (35)

for some concave functions αl
Σ(t), t > 0, αl

Σ(0) = 0, depending on f in
general.

All these facts are direct consequences of the explicit formulae for the
Taylor remainders of type (31) or (33).

In the literature various generalized concepts of differentiation have been
proposed based on formula (30) and the Taylor remainder estimates (34)
and (35) for h → 0. If for a (measurable) function f(x) defined in a neigh-
bourhood Ux of x the “values” fr(x) in the multilinear matrix sense, |r| ≤ k,
can be assigned such that

f(x+ h) =
k∑

r=0

fr(x)hr

r!
+Rkf(x, h), f0(x) ≡ f(x), (36)

for x+ h ∈ U , i.e., |h| small, then the polynomial in h in (36) is the total k-
Peano derivative (also called de la Vallée–Poussin derivative) of the function
f at x (F. Ch. Liu [30], [31] uses the term k-order Taylor derivative, in the
sequel we alternatively use both terms). We also write fr(x) = apDrPf(x),
|r| ≤ k.

If in (36) the points h ∈ R
n, |h| → 0, are restricted to a subset H(x)

with density 1 at the point x, then we speak about approximate (approxi-
mative) derivatives (derivative along the set H(x), varying with x, denoted
ap.der., ap.lim. etc.), see e.g. [36]. The concepts of approximate derivatives
were introduced by A. Denjoy [15] and A. Khintchine [27] independently at
the beginning of the XX century (∼1915). A. Khintchine used the term
asymptotic derivative.

It is rather obvious that, if meaningful, the total k-Peano derivative, i.e.,
all terms fr(x), |r| ≤ k, are uniquely determined.

If, in analogy with (30) and (33) we would like to extend formula (36) to
the formulas

fl(x+ h) =

k−|l|∑

j=0

fl+j(x)hj

j!
+Rk

l f(x, h), (37)

|Rk
l f(x, h)| = o(|h|k−l), |h| → 0, (38)

ek
l f(x, h)|h|k−l ≡ |Rk

l f(x, h)|, |h| > 0,

ek
l f(x, h) ≤ αk

l,Σ(|h|), x ∈ Σ (39)

for some concave functions αk
l,Σ(t), α(0) = 0,

then we would be faced with the discussion of the existence problem of (k−
|l|)-Peano derivatives of the terms fl for various values of l, |l| < k, at

14



the point x etc. Though, up to my knowledge, there are practically no
publications available up to most recent times on these topics in the area of
real analysis in R

n, there is an immense, and permanently growing in volume
number of papers on differentiation of functions on the real line (n = 1).
It would be very difficult to review these papers—cf. the papers [10], [11],
[18], [20], [45] and the numerous references quoted therein! The amount
of conceptual variations and counterexamples to various possibilities here is
enormous.

It is our good luck that the concept of approximate Peano differentials
of higher order, as proposed in R

n by Federer and Whitney, and essentially
initiated by Marcinkiewicz–Zygmund in 1935 [33], [34], allows to control the
situation precisely as is the case with the notion of approximate continuity
a.e. in the Luzin–Egorov–Denjoy structure theorems for measurable func-
tions. The general answer is sketched in our Theorem 4 below, Section 4.2.

In terms of k-jets F , F ⊂ Jk(Σ), introduced above, defined on an ar-
bitrary subset Σ of R

n, Σ ⊂ R
n, F = (f0(x), f1(x), . . . , fk(x)), expressions

(36), (37) with the conditions (38) can be considered as Taylor formulas of
order k for the k-smooth real valued functions on Σ (or a smooth mapping
f : Σ → V of Σ into some finite dimensional vector space over the reals).
They should be considered as expressing the necessary conditions to be sat-
isfied by “k-smooth functions” (mappings) on Σ, whatever meaning the term
“k-smooth on Σ” could have. The simplest and most natural should be: f is
k-smooth on Σ if f is the restriction of a g ∈ Ck(U) for some open set U
containing Σ strictly in the interiour

f = g|Σ or Jk(g)|Σ = F, Σ ⋐ U , F ⊂ Jk(Σ). (40)

4.1 Marcinkiewicz-Zygmund converse Taylor theorems

The most general “existence” problem of DMZ theory is the description of
the “simplest conditions” which a k-jet F on Σ, F ⊂ Jk(Σ) should satisfy
so that it may be identified with some Jk(g), g ∈ C∞(Rn). The possible
answers are called converse Taylor theorems (or CTT for short). This term
was probably first used by Abraham–Robbin in [1] and repeated in [29].

In the rather trivial classical case Σ = U , U—open subset of R
n, F ∈

mes Jk(U), two simplest examples occur:

Theorem 2. Let F be a measurable k-jet on U satisfying all conditions (36),
(37) and (38),

ek
l F (x, h) → 0 for (x, h) → (x0, 0) and all |l| ≤ k. (41)

Then the component f0 ≡ f(x) ∈ Ck(U) and it generates the k-jet F , i.e.,

fα(x) = Dαf(x) for all |α| ≤ k. (42)

In particular,

fβ = Dβ−αfα in U for β ≥ α, |β| ≤ k. (43)
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Proof. Direct checking: (36), (37) imply for h → 0, continuity of all fl(x)
and the differentiability fl+1(x) = Dfl for all l, |l| ≤ k. Iterating we get (42)
and (43).

Theorem 3. Let F be a measurable k-jet in U satisfying (36) with the con-

dition

ekF (x, h) → 0 for (x, h) → (x0, 0). (44)

Then f ∈ Ck(U) and fl = Dlf for all |l| ≤ k.

Proof. By our Lemma 4 condition (44) implies (41) and the proof reduces
to the proof of Theorem 2. For the case of continuous k-jets Theorem 3 was
proved by Glaeser in [21]. See also [1]. Instead of the Markov inequality ar-
gument employed in our proof of Lemma 4 he uses some kind of multivariate
Lagrange interpolation lemma—recalled above—allowing to reproduce an ar-
bitrary polynomial P (y) in R

n, and consequently the derivatives DP (y) at
an arbitrary point y ∈ R

n from its values at a sequence of suitably chosen
points aj ∈ R

n, j = 1, . . . , (r + 1)n. Glaeser’s proof is presented in detail
in [1].

4.2 DMZ theory on arbitrary measurable sets

As a main result of DMZ theory in n variables we have the following The-
orem 4. It is the n-dimensional extension of the Denjoy–Marcinkiewicz–
Zygmund main results on approximate differentiability of measurable func-
tions on arbitrary measurable subsets of the real line [16], [33], [34].

Theorem 4. Let f(x) be a measurable function defined on a measurable set

P ⊂ Rn, |P | > 0 (P -perfect), approximately k-th Peano differentiable (in

the sense of formal definition (36)–(37)) with the k-th normalized remainder

ekf(x, h) such that

ap lim
h→0

ekf(x, h) = 0 for a.e. x ∈ P.

Then the (vector valued) l-th Peano derivatives fl(x) in (35) are approxi-

mately (k − |l|)-th Peano differentiable a.e. and the iterative formulas

apDjPfl(x) = fl+j(x), |j| ≤ k − |l| (45)

hold for almost a.e. point of P .

Proof. The auxiliary results and concepts described in Section 2 above give
us all tools sufficient to describe the complete proof of Theorem 4. Especially
helpful in this respect are our Lemmas 4 and 5. However here, instead of fol-
lowing that route, we consider worthwhile to expose the fact that apparently
the shortest way to Theorem 4 is to use the point III of our main Theorem 5
below. Here is the rather precise sketch of this proof: It is immediate that
almost each point x of P is a density point of some Qi0 , i0 = i0(x), in the
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decomposition {Qi} of Theorem 5 III. The k-jet F |Qi0
is then generated by

the k-jet of the Whitney k-smooth function g|Qi0
on Qi0 , g ∈ Ck(U), x ∈ U—

open set. In particular the approximate Peano derivatives of f at the point
x are equal to the classical derivatives of g at x, for which the iterative for-
mulas (45) hold. This is precisely the way how J. Marcinkiewicz proved in
1936, [33], his main Theorem 3 and its Corollary II. 10, though he did not
explicitly formulate the decomposition III, which for k = 1, was given as late
as in 1951 by H. Whitney [48].

5 Whitney–Luzin theory

Whitney–Luzin theory for measurable k-th Peano differentiable functions is
an alternate version of DMZ-theory.

It is the central topic of the present paper. It seems proper therefore to
recall the precise definition. Let f be a measurable (real-valued) function on
a measurable set P ⊂ R

n. Let k be an integer, k ≥ 1.

Definition 4. f is k-Peano differentiable—or Peano differentiable of or-

der k—at the point y ∈ P if there exists a k-jet F = (f0, . . . , fα), |α| ≤ k,
f0(y) = f(y), such that for all h ∈ R

n such that y + h ∈ P

f(y + h) =
k∑

|α|=0

fα(y)hα

α!
+RkF (y, y + h)

≡ T kF (y, h) +RkF (y, y + h)

|RkF (y, y + h)| = o(|h|k)

or RkF (y, y + h) = ekF (y, h)|h|k with |ekF (y, h)| = o(1), |h| → 0.

(46)

Equivalently,
lim
|h|→0

ekF (y, h) = 0 (y + h ∈ P ). (47)

If for a given y, y ∈ P , there exists a set H(y) of points of the form
y + h ∈ P such that H(y) has density 1 at y, and

lim
|h|→0,y+h∈H(y)

ekF (y, h) = 0, (48)

we say that the Taylor k-order polynomial defined by (46) or the k-jet F =
(f0, . . . , fα(y), . . . , fk) is the approximate total k-th Peano derivative of f
at y, and define

F = apPkDf(y).

It is uniquely determined at the (positive density) points of P .
The class of measurable functions on P , admitting approximate k-th

Peano derivatives at each point of the set P , will be denoted by apPkD(P ).
In the sequel we freely identify the function f in apPkD(P ) with the corre-
sponding k-jet F of its k-th Peano derivatives fα(y), y ∈ P .
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Theorem 5. Let F be a measurable k-jet, F ⊂ mes Jk(P ) on a perfect set P ,

|P | > 0. Then the following three conditions are equivalent :

I. F has an approximate total k-differential at a.e. point.

II. F is k-quasismooth on P .

III. There exists a sequence of disjoint closed subsets Q1, Q2, . . .
4 such that

P = Z ∪
⋃
Qi, |Z| = 0 and F |Qi

∈ Ck(Qi) for each i.

Proof. Together with the remainders R
k−|l|
l F (y, x) it is convenient to intro-

duce the normalized remainders ek
l F (y, x),

|x− y|k−|l|ek
l F (y, x) ≡ R

k−|l|
l F (y, x), ek

0F ≡ ekF.

We agree that ek
l F (x, x) ≡ 0. The remainders R

k−|l|
l F (y, x) and ek

l F (y, x) are
measurable functions in the pair of variables x, y from the cartesian product
P × P .

I ⇒ II. The assumption implies that for a.e. point x ∈ P and each ε > 0
the set

H(x, ε) = {t ∈ P : ekF (x, t) < ε} (49)

has density 1 at x. The same holds at the points y, and for sufficiently small δ
the intersection set5

ωr(x, y) =
[
H(y, ε) ∪H(x, ε)

]
∩ Sr(x, y), r < δ, (50)

is a portion of P ∩ Sr(x, y) such that for t ∈ ωr(x, y), ekF (x, t) ≤ ε and
ekF (y, t) ≤ ε,

|ωr| ≥ σ|P ∩ Sr(x, y)|

with σ independent of r, x, y. Hence for x, y ∈ P , |x− y| < δ, by Lemma 3

‖Rk−|l|
l F (y, x)‖ ≤ Clε|x− y|k−|l|, |l| ≥ 1, |x− y| < δ, (51)

where Cl depends on k, n, l, σ only.
To prove II we have to construct, for any given ε > 0, a closed subset

Q = Qε ⊂ P such that |P \Q| < ε and for each ε′ > 0 there is a δ > 0 such
that

|RkF (y, x)| ≤ ε′|x− y|k, x, y ∈ Q, (52)

and F |Q is continuous.
Let the positive number a > 0 be defined by

|Sr(x, y)| = 2a|Br(x)|. (53)

4Decomposition III depends on the function f of the k-jet F . It realizes what can be
called a Whitney smooth free interpolation of F by Whitney k-smooth functions.

5It was already Stepanoff [42] who, long before Whitney [48], employed the spherical
segments Sr(x, y) in his studies of approximate differentiability of approximately Lipschitz
functions.
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By similarity the number a does not depend on r. We take r = |x − y|.
Consider a sequence ri → 0, e.g. ri = 1

i
, i = 1, 2, . . . . For x ∈ P set

Vi = |Bri
| and

ψi(x, η) = |Bri
(x) \H(x, η)|. (54)

Then for each η
ψi(x, η)

Vi

→ 0 as i→ ∞. (55)

Define also a real valued function

φi(x) = g.l.b.
η

{ψi(x, η) < aVi}. (56)

ψi(x, η) is measurable in x for fixed η, and for fixed x it is decreasing in η,
continuous on the left. Thus

φi(x) ≤ η iff ψi(x, η) < aVi (57)

and φi(x) is measurable.
From (55) and (57) it follows that

lim
i→∞

φi(x) = 0 (58)

at each point of the set P1 of approximate total differentiability of F .
By Luzin’s and Egorov’s theorems there is a closed set Q ⊂ P1 satisfying

|P1 \Q| = |P \Q| < ε, and such that F |Q is continuous on Q and φi(x) → 0
uniformly in Q.

We have to prove that for each ε′ > 0 there is a δ > 0 such that

‖RkF (x, y)‖ ≤ ε′|x− y|k if x, y ∈ Q, |x− y| < δ. (59)

Setting ε1 = ε′

C
(C—an absolute constant to be fixed later) we may choose δ

so that

|Rk−|l|
l F (x, y)vl| ≤ ε1|v|

l|x− y|k−|l|

|Rk−|l|
l F (y, x)vl| ≤ ε1|v|

l|y − x|k−|l|

|Rk−|l|
l F (y, x)vl| ≤ ε1|v|

l if x, y ∈ Q, |x− y| < 2δ, (60)

and
φi(x) < ε1 for x ∈ Q, 1

i+1
< δ. (61)

Now take x, y ∈ Q with |x−y| < δ. Let j be the largest integer such that 1
j
≥

|y−x| and consider the spherical segment Sj = Srj
. Since 1

j+1
< |y−x| < δ,

(61) and (57) give
ψj(x, ε1), ψj(y, ε1) < aVj.

Therefore there is a point z in Sj ∩ P belonging neither to Bi(x) \H(x, ε1)
nor to Bi(y) \H(y, ε1). Thus for this z

|RkF (x, z)| < ε1|x− z|k and |RkF (y, z)| < ε1|y − z|k. (62)
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We are now in the position to finish the proof of (59) by the use of our
basic identity (11). Indeed, using (11), (51), (60) for v = z− y and (62) with
the found intermediate point z we obtain

|RkF (x, y)| ≤ |RkF (x, z)| + |RkF (y, z)| +
∑

1≤|l|≤k

∣∣∣∣
(z − y)l

l!
Rk

l F (x, y)

∣∣∣∣

≤ ε1|x− z|k + ε1|y − z|k +
∑

1≤|l|≤k

|z − y|l

l!
|Rk

l F (x, y)|

≤ 2ε1|x−y|
k +

∑

1≤|l|≤k

|x−y||l||x−y|k−|l| 2ε1Cl

l!
= 2ε1

(
1+

∑

1≤|l|≤k

Cl

l!

)
|x−y|k

which, with the choice C = 2
(
1 +

∑
|l|≥1

Cl

l!

)
gives (59).

Thus we have found the closed set Q such that F is Whitney k-smooth
on Q, |P \Q| < ε and II holds.

Proof II ⇒ III goes along a rather standard way. We successively con-
struct disjoint closed sets Q1, Q2, . . . so that F is Whitney k-smooth in each
of them and |Pi| ≤

|P |
2i where

Pi = P \
i⋃

k=1

Qk.

Set Q1 = Qε, ε = |P |
2

and having found Q1, . . . , Qi−1 choose a closed Q′
i

so that F is k-smooth in Q′
i and |P \ Q′

i| ≤ |P |/2i+1. Let Uδ(Q̂) be the

open δ-neighbourhood of Q̂. Then for δ small enough we can set Qi =
Q′

i \ Uδ

(⋃i−1
k=1Qk

)
. With this choice III obviously holds.

III ⇒ I. Suppose III holds. Let Q∗
i be the set of density points of Qi

and set Q∗ =
⋃∞

i=1Q
∗
i . Then |P \ Q∗| = 0 and it is immediate that F is

approximately totally k-differentiable at any point x ∈ Q∗, or x ∈ Q∗
i0

for
some i0, since being a density 1 point of Q∗ ⊂ P x is also a density 1 point
of P and I holds.

The proof presented above is deliberately organized in detailed analogy to
the original proof of Whitney to his Theorem 1 in [48]; we even use the same
notation for functions φi, ψ etc. It is worthwhile to stress that the proof above
operates for the fixed k directly. The proof of F. Ch. Liu [30] proceeds by
induction on k and, as already remarked in the introduction, this inductive
process should be performed very carefully. In somehow related proof of
his Theorem 4 in [48] H. Whitney additionally assumes that the considered
(k − 1)-jet F is defined on an open neighbourhood U of the set P and a.e.
totally differentiable in U . In the light of Movshovich’s counterexample in [35]
the inductive step should be performed with special care.

Also the discussed questions are somehow related with points 3.1.15,
3.1.16 and 3.1.17 in Chapter 3 of Federer’s famous book [19].

For completeness we formulate also
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Theorem 6. A k-jet F satisfying the assumptions of Theorem 5 has ap-

proximate partial k-th order derivatives a.e. iff F has an approximate total

k-differential a.e.

This follows from a general theorem of S. Saks [38] to the effect that in
the framework of approximate differentiability the mixed partial derivatives,
though they may differ at individual points, coincide a.e.

We also have

Corollary 2. A (k − 1)-jet F approximately Lipschitz at a.e. point of a

perfect set P of positive measure has an approximate total differential a.e.

in P .

This is Stepanoff’s theorem on approximate total differentiability [42].
See [31].

Actually in the course of the above proof of Theorem 5, II, we proved II
only in the sense of Whitney k-smoothness of F on a closed subset Qε ⊂ P
such that |P \Qε| < ε. If we apply the full strength of WhET from Section 2
we can formulate the corollary.

Corollary 3. In the conditions of Theorem 5 for each ε > 0 there exists a

smooth k-jet G (i.e. G is generated by a smooth function g ∈ Ck(Rn)) such

that F |Qε
≡ G|Qe

.

6 Conclusions and final remarks

Luzin’s structure theorem ([17, p. 133]) plays a crucial role in our proof of
Theorem 5 above. To see this theorem from a broader perspective we recall
the main points of Luzin’s theory.

Let P be a measurable subset of R
n and M(P ) the class of real valued,

finite a.e., measurable functions on P .

Theorem 7. 6 f ∈ M(P ) iff f is quasicontinuous on P (i.e. 0-quasismooth).

Closely related with Theorem 7 is Egorov’s theorem (∼1912).

Theorem 8. Let fn be a sequence of functions in M(P ) converging pointwise

a.e. on P , fn → f a.e. Then for every ε > 0 there exists a closed set Pε such

that

|P \ Pε| < ε

and, for a subsequence fnk
, the convergence of fnk

is uniform on Pε: fnk
→ gε

and gε ∈ C(Pε).

Notice that by the Tietze extension theorem Egorov’s Theorem 8 implies
Theorem 7.

Another deep fact of Luzin’s theory is

6N. N. Luzin, ∼1912.
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Theorem 9 (Luzin, Denjoy). f ∈ M(P ) iff f is approximately continuous

at almost every point of P .

Theorems 7 and 9 combined give

Theorem 10 (Luzin). A measurable function f ∈ M(P ) is quasicontinuous

on P iff f is approximately continuous at almost every point x ∈ P .

Theorem 10 can be interpreted as an infinitesimal (pointwise, local) de-
scription of 0-quasismoothness (quasicontinuity).

A geometric description of continuity behaviour of a quasicontinuous func-
tion on a measurable set P may be also described by the decomposition of P
into a countable family of disjoint closed subsets and a null-set.

Theorem 11. Let f : P → R be quasicontinuous, then P may be decomposed

P = Z ∪
∞∑

i=1

Pi (63)

into an at most countable family of closed disjoint sets and a set Z such that

|Pi| > 0 and |Z| = 0 and f |Pi
∈ C(Pi).

The function f is then approximately continuous at each density 1 point
of some Pi.

The decomposition (63) may be called the Luzin decomposition of P for
the given f ∈ M(P ).

Actually each of the assertions of Theorems 7–11 can be viewed as a
characterization of measurability.

The equivalence of statements 7–11 above may be then formulated in the
following Luzin–Denjoy theorem.

Theorem 12. For any measurable set P ⊂ R
n and any real-valued function

f : P → R the following are equivalent

a) f ∈ M(P ),

b) f is quasicontinuous on P ,

c) f induces a countable Luzin decomposition of P ,

d) f is approximately continuous at almost every point of P .

For the classical proofs of this fundamental theorem see e.g. Natanson [36]
or Federer [19] or hundreds of other papers. They all study the behaviour of
local oscillations of f measured by the 0-order remainder term Rf(x; y) =
f(x) − f(y). The proof, e.g. see [19], may be organized as a sequence of
implications a) =⇒ b) =⇒ c) =⇒ d) =⇒ a)7. In hundreds of
papers devoted to various aspects of Theorem 12 this fundamental fact of real
analysis was brought to its natural borders of generality when f : X → Z is a

7even though the precise formulation of c) is, or may be, missing in [19].
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mapping of measure metric space X into a separable metric space Z. In this
context it is presented in [19] with the remainder estimated as Rf(x; y) =
ρ(f(x), f(y)), where ρ is the notation for the metric in Z.

Now our Theorem 5 is the precise extension of the Luzin–Denjoy theorem
to the subclass of k-quasismooth functions of M(P ) characterizing it as the
class apPDk(P ) of approximately k-Peano differentiable functions at almost
every point of the perfect set P . Both theorems have the same simplicity
and, in some sense, very similar conceptual structure. Also in either case the
notion of approximate continuity or total differentiability cannot be avoided.

k-quasismooth functions on P , by definition, are restrictions to closed
subsets of Pε. In particular, obviously, for any k, k-quasismooth function on
the perfect set P can be extended to k-quasismooth function on the whole
enhancing space.

Apparently the notion of k-quasismoothness (k ≥ 0) gives more precise
geometric information about the behaviour of the function than the classi-
cal k-th or even k-Peano derivative. It is well known that the classical k-th
derivative and the k-th Peano derivative for k ≥ 2 are not comparable, i.e.,
the existence of the one at a point does not imply the existence of the other
at the same point or even a.e. It was also some surprise to real analysis spe-
cialists on differentiation [11], [18], [45]8 when Buczolich in 1988 published
[10] his example of 2-Peano differentiable function on a measurable closed
perfect subset H of the real line R which is not extendable to the 2-Peano
differentiable function on the whole R. This is in contrast with the V. Jarnik
result of 1923 (we refer also to [45]) that 1-Peano differentiable≡1-classical
differentiable functions on an arbitrary perfect set H ⊂ R are extendable
with the same first derivative to the whole R. Together with the Whitney
result ([48], Theorem 1) at that time not available for k > 1, all these results
were apparently confirming the view that the order of differentiation k = 2
creates a kind of threshold in the qualitative global understanding of the dif-
ferentiation problem in dimension n = 1 and n > 1 as well. Apparently the
longstanding query—conjecture of H. Federer in [19, 3.16–3.17], supported
also by the Movshovich [35] example of a C1[0, 1] function f(x) with the
second approximate derivative apf ′′(x) ≡ 0 on a perfect set A ⊂ [0, 1], with
meas([0, 1] \ A) arbitrarily small, contributed to considering this “analysis
folklore idea” as an established “fact”. As a consequence, the isolated publi-
cations and seminar lectures, [30], [31], [4], which expressed the contrary idea,
were unnoticed or accepted with doubt, perhaps due to their insufficiently
detailed presentations.

We stress here once more the opinion that the papers [30], [31], especially
when properly complemented, maybe also with the natural application of
Theorem 4 in Whitney’s fundamental paper [48] apparently give a complete
proof of our Theorem 5. The proof of Theorem 5 presented in detail here, and
schematically discussed and proposed in [4], realizes for k ≥ 2 the alternate
idea initiated by H. Whitney in [48], using the methods elaborated also by

8and the vast literature recursively quoted in those papers
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his followers, B. Malgrange [32] et al., including the work of F. Ch. Liu and
W. Tai [31].

In our discussion above we “tacitly” assumed that all involved functions
and maps are measurable: the main reason for that was to avoid undue tech-
nical complications at the initial stage of the study. As a matter of fact it is
feasible to start with “arbitrary” functions and formulate later additional as-
sumptions implying measurability, e.g., of the consecutive approximate Peano
derivatives fk(y). Thus in [48] Whitney assumes that the Taylor remainders
Rkf(y;x) are measurable functions on the cartesian product P × P and de-
duces, via Fubini type theorems, measurability of approximate derivatives
fk(y) = PDkf(y) (for k = 1). The measurability of higher order Peano
derivatives (k ≥ 2) on subsets of R

n is a more subtle problem, though it also
follows from measurability of the normalized remainders ekf(y;x), and their
vanishing, in the sense of Egorov theorem, at the diagonal ∆ ⊂ P × P ,

lim
y→x

ekf(y;x) = 0, (y, x) ∈ P × P. (64)

This means, by definition, that for each ε > 0, the convergence (64) holds
uniformly on some closed bounded subset Pε ⊂ P , for which |P \ Pε| < ε
(i.e., on Pε × Pε).

The methods proposed in this paper, apparently, allow to obtain the
following form of our main Theorem 5 for arbitrary functions, unifying the
Whitney theory and the classical Luzin theory.

Theorem 13. Let P be a measurable subset of R
n. For any (real valued)

function f(x) on P and any integer k ≥ 0 the following holds: f(x) is k-

quasismooth on P iff f is approximately k-Peano differentiable at almost each

point of P .

In particular for k = 0 a quasicontinuous (0-quasismooth) function is ap-
proximately continuous at a.e. point and, thus, measurable. This seems to be
the appropriate form of the classical Luzin theorem for a priori not necessarily
measurable functions. Also part III of Theorem 5 holds for quasicontinuous
functions.

Measurability of approximate k-th Peano derivatives for functions on the
real line follows from the results of Marcinkiewicz–Zygmund [33], [34], where
the Peano derivatives fk(y) are identified with the Riemann derivatives or lim-
its of ∆kf , expressed as finite difference quotients, which obviously preserve
measurability. For higher dimensional differentiation processes apparently
analogous formulas hold, though, probably, it would be difficult at this mo-
ment to give the precise reference, cf. [1]. The Glaeser interpolation formulas
quoted above [1] may be useful in the precise proof of this fact.

Approximate total differentiability is a much weaker property than clas-
sical (Fréchet) total differentiability though, when both exist, they coincide.
Therefore it is of interest to ask about additional conditions of global and
infinitesimal character which imply total differentiability a.e. The classical
general theorem is Rademacher–Stepanoff theorem on a.e. differentiability
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of locally Lipschitz functions (maps). Higher order Rademacher–Stepanoff
theorems have been also published in [31]. However, a simple geometrical
characterization of functions admitting a.e. a total Peano differential is ap-
parently missing.

An interesting insight into “smoothness” and pointwise differentiability
of functions (maps) is obtained when intersection sets of their graphs are
considered. Typically, given two function spaces F1 = M(Ω) and F2 = C(Ω)
with f ∈ F1 measurable and g ∈ F2 continuous, the intersection set Ef,g is
defined as Ef,g = {x ∈ Ω : f(x) = g(x)}.

With A = Ef,g given and F2 ⊂ F1 we say that g (a “good”, “smoother”
function) interpolates a “bad” function on the set A or that f restricted to A,
f |A, extends (extrapolates) to g. In the classical interpolation problem the
“irregular” function f ∈ F1 and the interpolation set A are given and, what
is looked for, is the interpolating “regular” function g ∈ F2. We speak about
“free” interpolation when the interpolating set A, possibly well “approximat-
ing” the domain of f , is also to be defined. In Luzin’s theory A is required
to be a closed compact subset of Ω and the answer is that for any ε > 0
the free interpolation is possible on some closed set Aε approximating Ω in
measure or such that |Ω \Aε| < ε. Obviously the free interpolation problem
admits a rich variety of natural (and interesting) modifications by varying
the smoothness classes of F1 and F2 and the measure of “massiveness” of the
coincidence set.

Besides Luzin’s theory also the Ulam–Zahorski question (1951) on the
free interpolation of a continuous function f ∈ C[0, 1] by a real analytic
function g on some nonempty perfect set A ⊂ [0, 1] was classical. Zahorski
showed that the answer is negative. However, as late as in 1984 Lachkovich
showed that any continuous function in C[0, 1] can be free interpolated by a
C∞(H)-function on some nonempty perfect set H. See [45] and the references
quoted there. On the other hand, Olevski and Weil in 1995 constructed an
everywhere differentiable real valued function on the interval I = [0, 1] which
cannot be free interpolated by any twice Peano differentiable function on any
nonempty perfect subset of I. Also the Movshovich paper [35], quoted above,
constructs a monotone function f ∈ C1,α(I) for some (any) 0 < α < 1, such
that Ef,g is an isolated subset of the open interval (0, 1) for any g ∈ C2(I), or
even g ∈ C1,1(I). However, f is not approximately twice Peano differentiable
a.e. on I!

It is important to notice that by varying the classes F1 and F2 interesting
and, in general, nontrivial problems of free interpolation type arise. Thus, if
instead of the class of k-smooth functions Ck we consider the less stringent
class of Lipschitz–Zygmund function spaces Λ(α,Rn), 0 ≤ k < α ≤ k+ 1, for
some integer k ≥ 0, we come to free interpolation of measurable (or contin-
uous) functions by Lipschitz–Zygmund spaces (k-quasi Lipschitz–Zygmund
classes etc.). In each case the natural problem arises of characterizing the
“quasi class” by some pointwise “infinitesimal differentiation” process—in the
case considered in this paper this is the approximate k-th Peano differentia-
tion at almost every point of the domain. Obviously many problems in the
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area are open. For α = 1 we obtain the classical Lipschitz spaces, which make
sense for arbitrary measure metric spaces, leading to the Lipschitz Analysis
of J. Heinonen [23], [24]. For arbitrary real α, or α = k, k > 1, we come
to Lipschitz Analysis of higher order in the spirit of [24] on arbitrary closed
subsets of R

n.
The general scheme to consider is the quadruple of function spaces

F1 ⊆ G1 ⊆ G2 ⊆ F2.

If for G2 we take e.g. the Sobolev spaces W l,p(Ω) on open subsets of R
n and

keep G1 = F1 ≡ Ck(Rn) fixed, k = [l], k < l, we obtain the free interpola-
tion problem for Sobolev functions by smooth functions. See [5], [7], [8] and,
growing in number, some other rather recent papers on free interpolation
in normed function spaces (F.-Ch. Liu, Lars I. Hedberg, Y. Netrusov and
many others). This problem is sometimes also called the Luzin Approxima-
tion problem (for Sobolev functions etc.). The “massiveness” (volume, etc.)
of the difference Ω \ Ωε, where Ωε is the coincidence set of functions in G2

with globally “smoother” functions of G1 is measured not only in terms of
Lebesgue measure but also by Hausdorff measures or capacities, Riesz capac-
ities, Bessel, etc. with various parameters. Free interpolation gε in normed
spaces naturally poses the problem of interdependence of the norm ‖f − gε‖
and the “massiveness” in capacity of the coincidence set Ef,gε

= Ωe. In the
case when the used capacities of any nonempty set are bounded from be-
low by “absolute” positive constants, sufficiently “good” Luzin approximation
implies that the coincidence set Ωε has to cover any compact subset of the
space Ω and thus the Luzin approximation reduces to the theorems of em-
bedding type as e.g. the embedding of Sobolev spaces W l,p(Rn) into spaces
of smooth functions Ck,α, 0 ≤ α ≤ 1, for appropriate values of parameters
(l, p, n).

The works of J. Marcinkiewicz and A. Zygmund on Whitney type theory
on R, [33], [34], were inspired by subtle problems of harmonic analysis, sin-
gular integrals, boundary behaviour of solutions of Laplace equations, etc.
Some examples illustrating these applications are described in [33] and [34].
It is clear that analogous examples arise in analysis in R

n. Moreover, the list
of applications in [33], [34] may be considerably extended.

The Real Analysis literature on differentiation of functions on the real line
is extremely rich and diversified (see [45] and the whole “backward chain” of
references started therein, spread over the whole XX century). In the liter-
ature of the subject there is a clearly observed gulf separating the case of
differentiation theory of functions on the real line and the pointwise differ-
entiation of functions of several variables (on subsets of R

n). Nevertheless,
it seems remarkable that the concepts of approximate Peano differentiability
and the Whitney–Luzin concept of k-quasismoothness match so well in the
differentiation theory of functions on arbitrary measurable subsets P of R

n,
for arbitary n. From this broader perspective the Whitney–Luzin structure
theorem appears as a paradigm in the mainstream of the differentiation the-
ory of arbitrary measurable functions.
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Let us remark also that arbitrary measurable subsets of R
n are the sim-

plest examples of general measure metric spaces. It may be expected that
understanding the differentiation theory of functions on these spaces may
play some role in understanding the differentiable structure of general mea-
sure metric spaces.

Finally let us notice that there are many cases in the literature when
the “massiveness” of the complement of the free interpolating set A is mea-
sured by, on the one hand, more crude set-theoretical concepts like (second)
category, or more subtle concepts like capacities (Riesz capacities or Bessel
capacities for Sobolev spaces, conformal capacities, see [5], [7], [8]), Hausdorff
measures. Though some of the latter results are related with powerful and
deep Sobolev embedding theorems, apparently none of these theories so far
can claim the coherence of the Whitney–Luzin quasismoothness theory.

A more detailed systematic and comprehensive exposition of these and
other related topics is under preparation. Since the related literature is rather
huge, the scope of this work is not easy to handle.

To finish, let us notice that a challenging problem is an extension of Whit-
ney’s theory of differentiability to the context of noncommutative Lie groups
and Lie algebras, typically Heisenberg groups, or subriemannian structures
on manifolds modelled on them. However, at this moment, we leave this
recently intensively growing area for a future discussion.
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59 (2007), 345–358; Ukrainian Math. J. 59 (2007), 379–395.

[7] B. Bojarski, P. Haj lasz, Pointwise inequalities for Sobolev functions and

some applications , Studia Math. 106 (1993), 77–92.

27



[8] B. Bojarski, P. Haj lasz, P. Strzelecki, Improved Ck,λ approximation of

higher order Sobolev functions in norm and capacity , Indiana Univ.
Math. J. 51 (2002), 507–540.

[9] Yu. A. Brudny̆ı, M. I. Ganzburg, A certain extremal problem for polyno-

mials in n variables, Izv. AN SSSR 37 (1973), 344–355; English transl.:
Math. USSR – Izv. 7 (1973), 345–356.

[10] Z. Buczolich, Second Peano derivatives are not extendable, Real Anal.
Exchange 14 (1988/89), 423–428.

[11] Z. Buczolich, C. E. Weil, Extending Peano differentiable functions , Atti
Sem. Mat. Fis. Univ. Modena 44 (1996), 323–330.

[12] A. P. Calderón, A. Zygmund, Local properties of solutions of elliptic

partial differential equations, Studia Math. 20 (1961), 171–225.
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