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ence between the exact and approximate values of a linear target functional is

expressed in terms of integrals that depend on the solutions to the primal and

dual problems. Gradient averaging techniques are employed to separate the el-

ement residual and diffusive flux errors without introducing jump terms. The

dual solution is computed numerically and interpolated using higher-order ba-

sis functions. A node-based approach to localization of global errors in the

quantities of interest is pursued. A possible violation of Galerkin orthogonal-

ity is taken into account. Numerical experiments are performed for centered

and upwind-biased approximations of a 1D boundary value problem.
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1 Introduction

Numerical simulation of transport phenomena (convection and/or diffusion)
plays an increasingly important role in science and engineering. The ac-
curacy and reliability of computational methods depends on the choice of
discretization techniques and, to a large extent, on the quality of the under-
lying mesh. Nowadays, adaptive mesh refinement techniques are widely used
to reduce discretization errors in a computationally efficient way. Some-
times the location of critical zones, such as boundary and interior layers,
is known. However, in most cases, mesh adaptation is an iterative process
which involves estimation of numerical errors by means of certain a posteriori
feedback mechanisms.

The derivation of a posteriori error estimates is aimed at obtaining com-
putable lower and/or upper bounds for certain quantities of interest. In the
case of convection-dominated transport problems, the global energy norm
ceases to be a good measure of the numerical error. One of the most promis-
ing current trends in Computational Fluid Dynamics is goal-oriented adap-
tivity, whereby the duality argument is employed to derive an estimate for
the magnitude of a given target/output functional [1, 6, 7, 16, 17, 19]. The
most prominent representative of such error estimators is the Dual-Weighted-
Residual (DWR) method of Becker and Rannacher [3, 4]. Remarkably, it is
applicable not only to self-adjoint elliptic PDEs but also to hyperbolic con-
servation laws [9, 10].

In most cases, Galerkin orthogonality is involved in the derivation of
goal-oriented a posteriori estimates by the DWR method. For the numerical
solution to possess this property, the discretization must be performed by
the Galerkin finite element method, and the resulting algebraic equations
must be solved exactly. These requirements are rarely satisfied in practice
due to numerical integration, round-off errors, and slack tolerances for iter-
ative solvers. Last but not least, various stabilization terms or flux/slope
limiters may be responsible for a (local) loss of Galerkin orthogonality. As
a result, an extra term needs to be included in the error estimate for the
DWR method. This part is computable but its localization, i.e., distribution
among individual elements/nodes is a nontrivial task. Existing localization
procedures [2] exploit the nature of the underlying discretization and are not
universally applicable.

In the present paper, we address goal-oriented error estimation for sta-
tionary transport equations. The methodology to be presented is completely
independent of the numerical scheme used to compute the approximate solu-
tion. The underlying localization procedure differs from that for the classical
DWR method in a number of respects. First, integration by parts is ap-
plied to an averaged gradient so as to avoid the arising of jump terms at
interelement boundaries. In the context of pure diffusion problems, gradient
averaging has already been used in goal-oriented estimates [11, 12, 15] but
the approach to be presented is more general and based on different premises.
Second, the error in the quantity of interest is expressed in terms of nodal
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values [18], which yields a nonoscillatory distribution of weighted residuals.
Moreover, errors due to the lack of Galerkin orthogonality are localized in a
simple and natural way. The conversion of nodal errors to element contribu-
tions is straightforward.

The derivation of the above error estimate is followed by a discussion of
algorithmic details and application to a one-dimensional convection-diffusion
problem. The availability of analytical solutions makes it possible to perform
a detailed analysis of accuracy and to identify the major sources of error.

2 Goal-oriented error estimation

Consider the Dirichlet problem that models steady convection and diffusion
of a conserved scalar quantity u(x) in a domain Ω with boundary Γ

{

∇ · (vu− ε∇u) = f in Ω,
u = b on Γ,

(1)

where v(x) is a known velocity field, ε > 0 is a constant diffusion coefficient,
f(x) is a volumetric source/sink, and b(x) is the prescribed boundary data.

A variational form of problem (1) can be constructed by the weighted
residual method using integration by parts. Let H1(Ω) be the Sobolev space
of square integrable functions with first derivatives in L2(Ω). Furthermore, let
H1

0 (Ω) denote a subspace of functions from H1(Ω) vanishing on the boundary
Γ. The problem statement becomes: Find u ∈ H1(Ω) such that u = b on Γ
and

a(w, u) = (w, f), ∀w ∈ H1
0 (Ω), (2)

where the bilinear form a(·, ·) and the L2 scalar product (·, ·) are defined by

a(w, u) =

∫

Ω

w∇ · (vu) dx +

∫

Ω

∇w · (ε∇u) dx, ∀w, u ∈ H1(Ω), (3)

(w, f) =

∫

Ω

wf dx, ∀w, f ∈ L2(Ω). (4)

Let uh ∈ H1(Ω) be a numerical solution of problem (2) satisfying the Dirich-
let boundary condition uh = b on Γ. It is convenient to define uh as a fi-
nite element interpolant of nodal values computed by an arbitrary numerical
scheme.

Numerical errors can be quantified using the residual of the weak form
(2)

ρ(w, uh) = (w, f) − a(w, uh), ∀w ∈ H1
0 (Ω). (5)

Note that the value of ρ(w, uh) depends on the choice of w. This weight
should carry information about the propagation of errors and goals of simu-
lation.

In many cases, the quantities of interest vary linearly with the solution.
For example, if the solution behavior in a subdomain ω ⊂ Ω is of particular
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interest, then a possible definition of the linear target functional j(·) reads
[11, 12]

j(u) =

∫

ω

u dx, ∀u ∈ L2(ω). (6)

In order to estimate the value of j(u) = j(uh) + j(e) and/or the error j(e) in
the quantity of interest for the primal problem (2), consider the associated
dual or adjoint problem [3, 4] which reads: Find z ∈ H1

0 (Ω) such that

a(z, w) = j(w), ∀w ∈ H1
0 (Ω). (7)

Hence, the error j(u− uh) and residual (5) are related by the formula

j(u− uh) = a(z, u− uh) = ρ(z, uh). (8)

An arbitrary approximation zh ∈ H1
0 (Ω) to the exact solution z of the dual

problem (7) can be used to decompose the so-defined error as follows

j(u− uh) = ρ(z − zh, uh) + ρ(zh, uh). (9)

The value of ρ(z− zh, uh) depends on the unknown solution z of the dual
problem, whereas the contribution of ρ(zh, uh) is computable. If Galerkin
orthogonality holds for the pair of approximations uh and zh, then ρ(zh, uh) =
0.

The error representation (9) leads to a posteriori error estimates of the
form

|j(u− uh)| ≤ Φ(zh, uh) + Ψ(zh, uh), (10)

where Φ(zh, uh) and Ψ(zh, uh) represent the upper bounds for the magnitudes
of the residuals ρ(z − zh, uh) and ρ(zh, uh), respectively. Let Φi and Ψi be
the local bounds associated with nodes (vertices) of the mesh such that

Φ(zh, uh) =
∑

i

Φi, Ψ(zh, uh) =
∑

i

Ψi. (11)

The corresponding element contributions ηk to (10) are supposed to sat-
isfy

Φ(zh, uh) + Ψ(zh, uh) = η(zh, uh) =
∑

k

ηk. (12)

The derivation of (10)–(12) is nontrivial since (i) the dual solution z is gener-
ally unknown and (ii) the decomposition of the global error into nodal/element
contributions is nonunique. In what follows, we elaborate on the approxima-
tion of z and present a practical approach to estimation of local errors.

3 Approximation of dual solutions

Since the exact dual solution z is usually unknown, it needs to be replaced by
a suitable approximation ẑ ≈ z. By virtue of (9), the setting ẑ := zh yields
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the estimate j(u − uh) ≈ ρ(zh, uh) which is useless if ρ(zh, uh) = 0 due to
Galerkin orthogonality. If zh belongs to the same finite-dimensional space as
uh, then ẑ should reside in a different subspace of H1(Ω) and possess higher
accuracy.

For simplicity, we assume that the nodal values of the approximate solu-
tions uh and zh are defined on the same mesh. Consider the finite element
interpolants

uh =
∑

j

ujϕj, zh =
∑

i

ziϕi, ẑ =
∑

i

ziψi, (13)

where the piecewise-polynomial basis functions ϕi and ψi correspond, e.g.,
to the P1/P2 or Q1/Q2 approximation on a pair of embedded meshes with
spacing h and 2h, respectively. For details, we refer to Schmich and Vexler
[18].

Alternatively, the space spanned by {ϕi} may be enriched by adding
quadratic bubble functions [15]. In this case, some postprocessing of zh or
solution of local subproblems is required to determine the additional degrees
of freedom.

4 Residuals and diffusive flux errors

Given ẑ ≈ z, the first term in the right-hand side of (9) is approximated by

ρ(ẑ − zh, uh) =

∫

Ω

(ẑ − zh)(f −∇ · (vuh)) dx

− ε

∫

Ω

∇(ẑ − zh) · ∇uh dx. (14)

In the classical DWR method, elementwise integration by parts is applied to
the second integral. Due to the discontinuity of the diffusive flux, this leads
to the arising of jump terms that need to be estimated separately [1, 4].
Instead, we opt to perform integration by parts globally using a continuous
counterpart gh ∈ H(div,Ω) of the consistent primal gradient ∇uh ∈ L2(Ω).
Since the boundary values of ẑ and zh are the same, the Green formula yields

∫

Ω

(ẑ − zh)∇ · gh dx +

∫

Ω

∇(ẑ − zh) · gh dx = 0. (15)

Therefore, the residual weighted by the dual error can be written as fol-
lows

ρ(ẑ − zh, uh) =

∫

Ω

(ẑ − zh)(f −∇ · (vuh − εgh)) dx

+ ε

∫

Ω

∇(ẑ − zh) · (gh −∇uh) dx. (16)
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Due to the continuity of gh, there are no jump terms in this formula. More-
over, the magnitude of f −∇ · (vuh − εgh) yields a realistic estimate of the
local error, whereas the consistent residual f − ∇ · (vuh − ε∇uh) degener-
ates into f − ∇ · (vuh) for linear finite element approximations. A similar
representation of the diffusive term can be found in [11, 12, 15], where (i)
both gh and ∇ẑ are defined as averaged gradients, (ii) superconvergence is
required, (iii) neither convective terms nor Galerkin orthogonality errors are
taken into account.

A wealth of gradient recovery techniques are available for postprocessing
and error estimation purposes [21, 22]. For example, the averaged gradient gh

can be defined as the L2 projection of ∇uh onto a subspace Vh of H(div,Ω)

∫

Ω

wh · gh dx =

∫

Ω

wh · ∇uh dx, ∀wh ∈ Vh. (17)

Let the approximate solution uh and gradient gh be interpolated using the
same set of piecewise-polynomial basis functions {ϕi}. Then the algebraic
systems associated with the L2 projection (17) can be written in the form

MCg = q, (18)

where the mass matrix MC = {mij} and load vector q = {qi} are defined by

mij =

∫

Ω

ϕiϕj dx, qi =

∫

Ω

ϕi∇uh dx, ∀i, j. (19)

In the case of linear or multilinear finite elements, the lumped mass matrix

ML = diag{mi}, mi =

∫

Ω

ϕi dx =
∑

j

mij (20)

is a good approximation to MC . For efficiency reasons, it is worthwhile to
consider g = M−1

L q or solve system (18) by the following iterative algorithm

MLg
(m+1) = q + (ML −MC)g(m), m = 0, . . . ,M − 1. (21)

For practical purposes, as few as M = 3 iterations are enough. The lumped-
mass version corresponds to g(0) = 0 and M = 1. The resulting g = g(1)

is not as accurate as a smooth solution to (18) but devoid of undershoots
and overshoots in regions where uh changes abruptly. The flux-corrected
transport (FCT) algorithm can be used to perform adaptive mass lumping so
as to achieve an accurate and nonoscillatory approximation of steep gradients
[14].

5 Localization of global quantities

The representation of j(u−uh) in terms of computable integrals over Ω makes
it possible to verify the accuracy of the approximate solution uh but is of little
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help in finding the regions in which the computational mesh is too coarse or
too fine. To obtain an error estimate of the form (10), it is necessary to
localize global errors, i.e., distribute them among individual nodes and/or
elements.

In the literature, the Cauchy-Schwarz inequality is frequently employed
to derive element contributions ηk to the upper bound for ρ(ẑ− zh, uh). This
practice is not to be recommended since it results in a strong overestimation
of the global error [9] and leads to an oscillatory distribution of local errors.
The latter deficiency is particularly pronounced in the 1D case if the ‘exact’
dual solution ẑ is constructed from zh using higher-order interpolation [15].

Building on the methodology developed by Schmich and Vexler [18], we
refrain from using the Cauchy-Schwarz inequality and begin with decompo-
sition of the target functional j(u− uh) into nodal contributions. A straight-
forward definition of the local error indicators Φi and Ψi for estimate (10)
is

Φi = |ziρ(ψi − ϕi, uh)|, Ψi = |ziρ(ϕi, uh)|, (22)

where the weighted residuals are evaluated by formulae (16) and (5), respec-
tively. If the residual is orthogonal to the test function ϕi, then Ψi = 0. A
nonvanishing value of Ψi implies that Galerkin orthogonality does not hold.

Using the fact that Lagrange basis functions sum to unity (
∑

i ϕi ≡ 1),
the share of node i in the upper bound for (16) can be redefined as follows

Φi =

∫

Ω

ϕi|(ẑ − zh)(f −∇ · (vuh − εgh))| dx

+ ε

∫

Ω

ϕi|∇(ẑ − zh) · (gh −∇uh)| dx. (23)

The result depends not only on zi but also on the values of zh at neighboring
nodes. Furthermore, no assumptions are made regarding the structure of ẑ.

By definitions (5) and (22), the Galerkin orthogonality error is measured
by

Ψi =

∣

∣

∣

∣

∣

∣

∫

Ω

zi[ϕi(f −∇ · (vuh)) −∇ϕi · (ε∇uh)] dx

∣

∣

∣

∣

∣

∣

. (24)

To define the element contributions ηk, consider the continuous error func-
tion

ξ(x) =
∑

i

ξiϕi(x), ξi =
Φi + Ψi
∫

Ω
ϕi dx

. (25)

Note that the denominator of ξi equals the diagonal entry mi of the lumped
mass matrix ML given by (20). By definition, the global error (12) equals

Φ(zh, uh) + Ψ(zh, uh) =

∫

Ω

ξ(x) dx = η(zh, uh) (26)
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and admits the following decomposition into individual element contributions

η(zh, uh) =
∑

k

ηk, ηk =

∫

Ωk

ξ(x) dx. (27)

In a practical implementation, the midpoint rule is employed to calculate ηk.
The sharpness of an a posteriori error estimate is frequently measured in

terms of the effectivity index Ieff defined as the ratio of estimated and true
error

Ieff =
η(zh, uh)

|j(u− uh)|
. (28)

However, this definition may turn out to be misleading when the denominator
is small or zero and the evaluation of integrals is subject to rounding errors.
In our experience, it is worthwhile to consider the relative effectivity index

Irel =

∣

∣

∣

∣

η(zh, uh) − |j(u− uh)|

j(u)

∣

∣

∣

∣

(29)

which provides another criterion for evaluating the quality of an error esti-
mate.

6 Numerical experiments

A simple test problem that illustrates the utility of the above goal-oriented
error estimates is the one-dimensional convection-diffusion equation

Pe
du

dx
−

d2u

dx2
= 0 in Ω = (0, 1). (30)

The Peclet number Pe = v
ε

is assumed to be constant and positive. The
problem statement is completed by the Dirichlet boundary conditions

u(0) = 0, u(1) = 1. (31)

It is easy to verify that the exact solution u and its gradient u′ are given by

u(x) =
ePe x − 1

ePe − 1
, u′(x) =

Pe ePe x

ePe − 1
. (32)

Following Cnossen et al. [5], we define the quantity of interest as follows

j(u− uh) =

∫

Ω

(u(x) − uh(x)) dx =
ePe − 1 − Pe

Pe (ePe − 1)
−

∫

Ω

uh(x) dx. (33)

If the numerical solution uh is bounded by its endpoint values 0 and 1, as
required by the discrete maximum principle (DMP) for elliptic problems,
then negative values of j(u− uh) imply that uh is overly diffusive. Thus, the
above target functional makes it possible to assess the amount of numerical
diffusion.
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The associated dual problem (7) is endowed with the homogeneous Dirich-
let boundary conditions and can also be solved analytically. The result is [5]

z(x) =
ePe (1−x) + x(ePe − 1) − ePe

Pe (1 − ePe )
,

z′(x) =
−Pe ePe (1−x) + ePe − 1

Pe (1 − ePe )
. (34)

At large values of the Peclet number Pe , the primal and the dual problems
are both singularly perturbed, which manifests itself in the formation of
boundary layers in the neighborhood of the endpoints x = 1 and x = 0,
respectively.

In the below numerical study, the nodal values of the approximate so-
lutions uh and zh are computed on a uniform mesh with spacing h = 0.1
and interpolated using ten linear finite elements. The dual solution z is ap-
proximated by the quadratic interpolant ẑ of the N = 1/h + 1 nodal values
{zi}. The use of quadratic bubble functions was found to produce compara-
ble results for this particular test problem. The computation of the averaged
gradient g ≈ u′ is performed using the lumped-mass L2 projection with linear
elements. This approach is equivalent to approximating u′(xi) by the central
difference

gi =
ui+1 − ui−1

2h
, i = 1, . . . , N − 1 (35)

at internal points and by a first-order forward/backward difference otherwise

g0 =
u1 − u0

h
, gN =

uN − uN−1

h
. (36)

To obtain second-order accuracy, we employ the one-sided approximations

g0 = −
3u0 − 4u1 + u2

2h
, gN =

uN−2 − 4uN−1 + 3uN

2h
. (37)

A typical discretization of equation (30) can be written in the generic form

Pe
(1 + αi−1/2)(ui − ui−1) + (1 − αi+1/2)(ui+1 − ui)

2h

−
ui−1 − 2ui + ui+1

h2
= 0, i = 1, . . . , N − 1, (38)

where the diffusive term is approximated by a second-order central difference.
The approximation of the convective term represents a linear or nonlinear

combination of forward (αi±1/2 = −1) and backward (αi±1/2 = 1) differences.
Due to the assumption that Pe > 0, the latter setting corresponds to the
classical upwind difference scheme (UDS) which satisfies the DMP uncondi-
tionally but is only first-order accurate. The average of forward and back-
ward differences (αi±1/2 = 0) corresponds to the central difference scheme
(CDS) of second order. The same approximation is obtained with linear
finite elements. Hence, numerical solutions exhibit Galerkin orthogonality
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but a violation of the discrete maximum principle and formation of spurious
oscillations are possible. The CDS scheme is guaranteed to be nonoscillatory
only if h satisfies

Peh ≤ 2.

The third discretization to be considered is a nonlinear total variation
diminishing (TVD) scheme [8, 13, 20]. The corresponding correction factors
αi+1/2 depend on the slope ratio ri which serves as the smoothness indicator

ri =
ui+1 − ui

ui − ui−1

, i = 1, . . . , N − 1. (39)

For example, the use of the monotonized centered (MC) limiter function yields

αi+1/2 = 1 − max

{

0,min

{

2,
1 + ri

2
, 2ri

}}

(40)

and the resulting TVD scheme (38) can be shown to possess the DMP prop-
erty.

The results for Pe = 10 and Pe = 100 are shown in Figures 1–3, where
the smooth curves represent the continuous functions u, z, and g. The cor-
responding numerical solutions are depicted as circles connected by straight
lines, while the distribution of ηk is displayed as a bar plot. The sums of
node/element contributions and the relative effectivity index Irel for each
scheme are listed in Tables 1–3. The discrepancy between the true and esti-
mated errors is remarkably small as compared to the magnitude of the target
functional.

The distribution of weighted element contributions reflects the qualita-
tive behavior of local errors and indicates that stronger mesh refinement is
required in the vicinity of boundary layers as the Peclet number increases.
The Galerkin orthogonality error Ψ(zh, uh) is negligible for the finite ele-
ment discretization (CDS) but becomes dominant in the case of UDS and
TVD solutions at large Peclet numbers. The error estimates for Pe = 100
are particularly sharp since Φ(zh, uh) is negligible, while Ψ(zh, uh) is com-
putable. These results indicate that the setting ẑ = zh is to be recommended
for TVD-like schemes that violate Galerkin orthogonality only in regions of
insufficient mesh resolution.

7 Conclusions

A posteriori error control for numerical approximations to convection-diffusion
equations was addressed. The interplay between various kinds of errors that
affect the quantities of interest was discussed. Goal-oriented error estima-
tion based on the duality argument was shown to provide a proper control
of numerical errors. A possible violation of Galerkin orthogonality was taken
into account using a node-based approach to localization of errors. A 1D
numerical study was included to illustrate the implications of upwinding and
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flux limiting in non-Galerkin approximations to convection-dominated trans-
port problems. It turns out that the associated Galerkin orthogonality error
provides a useful criterion for mesh adaptation purposes. Two-dimensional
results for steady hyperbolic and elliptic problems will be presented in a
forthcoming paper.

Acknowledgements

This research was supported by the German Research Association (DFG)
under grants KU 1530/3-2 and KU 1530/5-1. The funding by the Academy
of Finland under project No. 124619 is also gratefully acknowledged. The
authors would like to thank Prof. Boris Vexler (TU München) for valuable
remarks.

References

[1] W. Bangerth and R. Rannacher, Adaptive finite element methods for
differential equations. Lectures in Mathematics, ETH Zürich, Birkhäuser,
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[19] P. Šolin and L. Demkowicz, Goal-oriented hp-adaptivity for elliptic prob-
lems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 449–468.

[20] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic
conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011.

[21] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates. Part 1: The recovery techniques. Int. J.

Numer. Methods Engrg. 33 (1992) 1331–1364.

[22] O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and
a posteriori error estimates. Part 2: Error estimates and adaptivity. Int.

J. Numer. Methods Engrg. 33 (1992) 1365–1382.

16



(continued from the back cover)

A556 Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg

A posteriori error analysis for the Morley plate element with general boundary

conditions

December 2008
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Stochastic relations of random variables and processes

October 2008

A553 Rolf Stenberg

A nonstandard mixed finite element family

September 2008

A552 Janos Karatson, Sergey Korotov

A discrete maximum principle in Hilbert space with applications to nonlinear

cooperative elliptic systems

August 2008
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