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its normal vector. The stiffness properties of the element are defined using
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tion is the derivation of the geometric curvatures from the interpolated normal
vector so as to enable explicit coupling between bending and stretching in the
strain energy functional. In addition, the bending behavior of the element
is improved with numerical modifications which include mixed interpolation
of the membrane and transverse shear strains. The numerical experiments
show that the element is able to compete in accuracy with the highly reputable
bilinear elements of the commercial codes ABAQUS and ADINA.
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1 Introduction

In this paper, we introduce a four node shell element that has its roots in
classical shell theory but is defined using standard isoparametric techniques
and geometric initial data. In particular, no explicit reference to mathemat-
ical objects such as charts or Christoffel symbols is made in the formulation.
Numerical models of this kind have actually been proposed in the early fi-
nite element literature concerning shells but those elements were usually cast
in the framework of Kirchhoff’s hypothesis and neglected transverse shear
deformation. For a discussion of such formulations, see e.g. [1, 2] and the
references therein.

Today, the majority of finite elements that are employed in engineering ap-
plications are shear deformable elements of the Reissner-Mindlin type which
are based on the so-called degenerated solid approach pioneered by Ahmad
et. al in [3]. At the beginning, the simplest and the most intriguing element
of this quadrilateral family, namely the element with four nodes, was omitted
from the published literature – probably because of its poor accuracy. Later
on, the bilinear element has anyway become the front runner thanks to the
various extensions of the degeneration procedure proposed by different au-
thors. Seminal research in this respect was done by MacNeal [4] and Dvorkin
& Bathe [5]. It seems that the transverse shear interpolation proposed by
Dvorkin & Bathe is nowadays a standard practice in four node shell elements.
The basic formulation, referred to as MITC4, is a central part of the finite
element code ADINA and forms the backbone of the bilinear shell elements
of ABAQUS as well.

The motivation of the present work comes mainly from a recent study
[6] which predicts the rising of parametric error amplification or locking phe-
nomenon when approximating boundary or interior layer effects in shell de-
formations using bilinear elements like MITC4. Here we demonstrate that
this is indeed the case by utilizing ABAQUS and ADINA in benchmark com-
putations involving real non-shallow shells.

According to the mentioned prior study, locking at layers is a consequence
of the crude representation of shell kinematics using bilinear degenerated el-
ements and hence difficult to avoid completely without taking the geomet-
ric curvature into account within each element. Our present experiments
strengthen this conclusion. Namely, the membrane behavior of MITC4 and
its relatives can be improved by different methods, see e.g. [7, 8, 9], but usu-
ally the strains are still computed from the bilinear geometry representation
so that the manner in which they are defined in the first place is not altered.
The formulation proposed here supplements the methodology in this respect
by employing strain fields that are straightforward approximations to those
of Reissner-Naghdi shell theory. Especially the effect of geometric curvature
on strains is computed explicitly by using the interpolated normal vector.
Actually, a similar approach was taken by Gebhardt and Scheizerhof in [10],
but their method suffers from severe membrane locking and has not gained
much attention. In our formulation the strain energy of each element is in-
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stead computed by applying locally a refined shallow shell model which was
derived by Malinen in [11]. The corresponding membrane and transverse
shear strains are then interpolated very carefully in order to suppress the
locking effects.

2 Numerical shell model

2.1 Geometry

The first step in the derivation of the geometrically compatible formulation
is to rectify the straight-sided quadrilateral element in cases where its four
corner nodes r1, r2, r3, r4 are not coplanar. This can be accomplished by pro-
jecting the element to the plane which passes through the element midpoint
rc = 1

4
(r1 + r2 + r3 + r4) and is parallel to the diagonals d1 = r3 − r1 and

d2 = r2 − r4 joining the corner nodes. Following MacNeal in [4], we define
the directions of the local co-ordinates x, y by

ex =
d̂1 + d̂2

|d̂1 + d̂2|
, ey =

d̂1 − d̂2

|d̂1 − d̂2|
(1)

where d̂1 = d1/|d1| and d̂2 = d2/|d2|. With this choice the local coordinate
system can only rotate by multiples of 90 degrees when the node sequence
changes.

The local co-ordinates (xi, yi) of node i are given by

xi = (ri − rc) · ex, yi = (ri − rc) · ey

and the planar element so obtained is denoted by K. We assume that all
interior angles of K are less than 180 degrees so that the reference element
K̂ = (−1, 1)× (−1, 1) can be mapped onto K by one-to-one transformation

x(ξ, η) =
4∑

i=1

xiNi(ξ, η), y(ξ, η) =
4∑

i=1

yiNi(ξ, η)

where Ni are the standard bilinear shape functions defined on K̂:

N1(ξ, η) =
1

4
(1− ξ)(1− η), N2(ξ, η) =

1

4
(1 + ξ)(1− η)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η), N4(ξ, η) =

1

4
(1− ξ)(1 + η)

The derivatives of the shape functions with respect to the co-ordinates x, y
are computed using the Jacobian matrix J as follows





∂Ni

∂x

∂Ni

∂y



 = J−T





∂Ni

∂ξ

∂Ni

∂η



 , J =





∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η
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2.2 Kinematics

The stiffness properties of the element are formulated in terms of five indepen-
dent degrees of freedom per node. These consist of the three displacements
Ui, Vi,Wi of the middle surface and the two rotations Θi,Ψi of its normal
vector e

(i)
3 . This unit vector is specified as initial data (usually referred to

as the nodal director) and the two orthogonal directions e
(i)
1 and e

(i)
2 tan-

gent to the middle surface can then be generated in different ways, see e.g.
[12, 13, 14, 9].

In our case the actual displacement interpolation within each element
is introduced separately for the tangential and normal components of the
middle surface displacements. For this purpose we will assume that the global
degrees of freedom (Ui, Vi,Wi) are already related to the triad (e

(i)
1 , e

(i)
2 , e

(i)
3 ).

The transformation of the local degrees of freedom ui, vi, wi to the global
ones is then performed such that

uiex + viey = Uie
(i)
1 + Vie

(i)
2 , wi = Wi

The local rotational degrees of freedom θi, ψi are defined in the same way as
ui, vi so that the whole displacement transformation may be written as

ui =





ui

vi

wi

θi

ψi




=




Si 0 0
0 1 0
0 0 Si









Ui

Vi

Wi

Θi

Ψi




= TiUi, Si =

[
ex · e(i)

1 ex · e(i)
2

ey · e(i)
1 ey · e(i)

2

]
(2)

These displacement components are then interpolated using standard bilinear
shape functions:

u(ξ, η) =





u(ξ, η)
v(ξ, η)
w(ξ, η)
θ(ξ, η)
ψ(ξ, η)




=

4∑

i=1

uiNi(ξ, η) (3)

In case of homogeneous and isotropic material with Young’s modulus E
and Poisson ratio ν, the deformation energy of the shell over K may be
written (approximately, see the remarks below) as

1

2
AK(u,u) =

Et

2(1− ν2)

∫

K

[
ν(β11 + β22)

2 + (1− ν)(β2
11 + 2β2

12 + β2
22)

]
dxdy

+ k
Et

4(1 + ν)

∫

K

[
γ2

1 + γ2
2

]
dxdy

+
Et3

24(1− ν2)

∫

K

[
ν(κ11 + κ22)

2 + (1− ν)(κ2
11 + 2κ2

12 + κ2
22)

]
dxdy

(4)
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Here t is the (constant) thickness of the shell and k is an additional (optional)
shear correction factor. The quantities βij, γi and κij denote the components
of the membrane strain, transverse shear strain and bending strain tensors,
respectively. These are given by

β11 =
∂u

∂x
+ b11w

β22 =
∂v

∂y
+ b22w

β12 =
1

2

(
∂u

∂y
+
∂v

∂x

)
+ b12w

(5)

and

γ1 = θ − ∂w

∂x
+ b11u+ b12v

γ2 = ψ − ∂w

∂y
+ b12u+ b22v

(6)

and

κ11 =
∂θ

∂x
− b12

(
∂v

∂x
+ b12w

)

κ22 =
∂ψ

∂y
− b12

(
∂u

∂y
+ b12w

)

κ12 =
1

2

[
∂θ

∂y
+
∂ψ

∂x
− b11

(
∂u

∂y
+ b12w

)
− b22

(
∂v

∂x
+ b12w

)]
(7)

Here bij denote the components of the curvature tensor of the shell over K.
These can be approximated using the interpolated normal vector

n(ξ, η) =
4∑

i=1

e
(i)
3 Ni(ξ, η) (8)

as

b11 = ex ·
∂n

∂x
, b22 = ey ·

∂n

∂y
, b12 = ex ·

∂n

∂y
(9)

Remark 1. The model (4)–(7) may be viewed as a local approximation of the
classical geometrically compatible Reissner-Naghdi model, see [11, 15]. The
relative error of the deformation energy is expected to be of order O(hK/R),
where hK is the diameter of K and R denotes the minimum principal ra-
dius of curvature of the shell middle surface over K. Moreover, the relative
truncation error arising from the computation of bij using (8) and (9) is
generally only of order O(hK/R) and not better. Anyway, these errors (in
the initial data) are expected to be insignificant compared to the numerical
discretization error of u using bilinear shape functions.

Remark 2. The bending strains (7) are not tensorially invariant under gen-
eral transformations of the co-ordinates x, y. However, it is easy to check
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that κij transform correctly if the local coordinate system is only rotated
by multiple of 90 degrees. Consequently, the resulting stiffness matrix will
not depend on node sequencing when the local basis vectors are defined by
(1). If desired, the tensorial invariance could be retained under more gen-
eral co-ordinate transformations by adding certain linear combinations of the
membrane strains βij to the expressions of the bending strains, cf. [11]. Any-
way, it seems that this type of orthodoxy is not required because the added
terms would have a negligible effect on the strain energy when t is small.

2.3 Numerical strain reductions

The standard bilinear scheme based on (3)–(9) suffers from parametric lock-
ing effects because of its inability to reproduce inextensional deformation
states with vanishing membrane and transverse shear strains. As a rem-
edy, we modify the critical terms βij and γi in the strain energy functional
numerically as βij →֒ βij,h and γi →֒ γi,h.

The “shear trick” γi →֒ γi,h consists of two steps. In the first step the
transverse shear strain vector γ is projected to the space

S(K) =
{

η = J−T η̂, η̂ ∈ S(K̂)
}

where S(K̂) is spanned by [1 0]T , [0 1]T , [η 0]T and [0 ξ]T . The inter-
polation projection operator into S(K) is denoted by ΛK and is defined by
the conditions

(ΛKρ− ρ) · t = 0 at the midpoint of every edge E of K (10)

Here t is the tangent vector to the edge E.
In the second step the (dimensionless) shear correction factor is redefined

as

k →֒ kK =
t2

t2 + αKh2
K

where hK is a characteristic dimension of K and αK ≥ 0 is a stabilization
parameter to be chosen. We take hK to be the length of the shortest edge
of K and set αK = 0.5(1 − τK), where τK is the so called taper ratio of K,
0 < τK ≤ 1. It measures the deviation of K from a rectangle and is defined
as

τK =
4 mini µ(Ti)∑4

i=1 µ(Ti)

where µ(Ti), i = 1, 2, 3, 4 denote the areas of the four triangles which are
formed by subdividing K with its diagonals, see Figure 1. Consequently, we
will have αK = 0, i.e. no stabilization, for rectangular elements with τK = 1
and αK ≈ 0.1 for relatively distorted elements with τK ≈ 0.8.

The “stretching trick” βij →֒ βij,h is performed in a similar way. The
membrane strain tensor β is projected into the space M(K) spanned by

{[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
,

[
ψ1

1
2
ψ2

1
2
ψ2 0

]
,

[
0 1

2
ψ1

1
2
ψ1 ψ2

]}
(11)
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T1

T2

T3

T4

Figure 1: Subdivision of K used in the definition of the taper ratio τK .

e1

e2

Figure 2: The basis vectors e1 and e2 used in the definition of ΠK .

using a projector operator ΠK which is defined by the interpolation condi-
tions

t · (ΠKβ − β) t = 0 at the midpoint of every edge E of K

e1 · (ΠKβ − β) e2 = 0 at the midpoint of K

Here e1 and e2 are tangent vectors to the lines joining the midpoints of
opposite edges of K, see Figure 2. The strains ψ1 and ψ2 in (11) are defined
by

ψ1 =
∂Ξ

∂x
, ψ2 =

∂Ξ

∂y

where Ξ is the “hourglass”mode which has the values Ξi = {+1,−1,+1,−1}
at the nodes, cf. [16, 17].

Furthermore, the reduced membrane shear strain β12,h is evaluated at the
center of the element (ξ = η = 0) and this value is used in the evaluation of
the strain energy functional at the 2× 2 set of Gauss points. The necessity
of this additional modification follows from the analysis of [6].

Remark 3. In case of a flat plate, the above shear strain reduction and
stabilization correspond to the so called stabilized MITC4 element introduced
by Lyly, Stenberg and Vihinen in [18]. When αK is set to zero (like for
rectangular elements), the MITC4 element of Bathe and Dvorkin is obtained.
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Remark 4. In case of a curved shell, the above treatment of transverse shear
strains differs slightly from the one used in the original MITC4 shell element
even if αK = 0. Here the interpolation is based on the tangential compo-
nents of the 2D transverse shear strains (6) whereas the original formulation
relies on the isoparametric geometry approximation and interpolates the co-
variant transverse shear components of the corresponding Green-Lagrange
strain tensor. According to [11], the outcome of both procedures is virtually
the same at least for nearly rectangular elements.

Remark 5. For smooth deformations and nearly rectangular elements the
above “stretching trick” leads to membrane strains that are also very close to
those arising from the bilinear geometry representation applied in MITC4,
see [11]. On the other hand, notable differences between the formulations are
expected in cases where anisotropically varying displacement modes, such as
boundary layers or vibration modes, are being captured by using elongated
elements, see [6].

2.4 Linear static analysis

The element stiffness matrix Ku corresponding to the local degrees of freedom
ui is obtained through

AK(u,u) = zTKuz, z =
[
u1 u2 u3 u4

]T

and its contribution is assembled to the global stiffness matrix K using the
co-ordinate transformation (2) as

K← TTKuT, T =





T1

T2

T3

T4



 (12)

The finite element equations of static equilibrium are

KZ = F

where Z =
[
U1 . . .UN

]T
is the vector of unknown displacements at each

unconstrained node of the finite element mesh and the vector F represents
external loading.

For instance, a distributed surface traction can be represented by con-
centrated forces fi = (f

(i)
U , f

(i)
V , f

(i)
W ) acting at the nodes. The element load

vector FU is then calculated using the potential energy

LK(U) =

∫

K

f ·U dxdy = zTFU

and bilinear interpolation for f . The contribution can be assembled to the
consistent load vector directly as

F← Fu
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2.5 Frequency analysis

The natural frequencies and vibration modes of the shell are computed from
the generalized eigenvalue problem

KΦi = ω2
i MΦi

where M is the mass matrix and ωi and Φi are the angular frequency and
mode shape, respectively, for mode i.

The element mass matrix Mu is defined as

MK(u,u) = ρt

∫

K

(u2 + v2 + w2) dxdy + ρ
t3

12

∫

K

(θ2 + ψ2) dxdy

= zTMuz

and its contribution to the global mass matrix is given by

M← TTMuT

analogously to (12). Here we have assumed for simplicity that the mass
density ρ is constant.

3 Benchmark computations

The primary objective of this section is to demonstrate the usage of the
bilinear shell element presented above in some selected test problems. The
secondary objective is to compare the accuracy of the new formulation with
the established four node elements of the finite element codes ABAQUS and
ADINA. Especially the asymptotic behavior of the different formulations is
investigated when the shell thickness approaches the limit value of zero.

Our first test concerns the classical pinched cylinder with rigid diaphragm
support at the two ends. This is a challenging problem where the shell car-
ries the external loading by a rather complex combination of membrane and
bending actions. On the other hand, the diaphragm support resembles closely
periodic boundary conditions at the two ends so that some analytical insight
of the deformation can be obtained using Fourier analysis, see Appendix.

In the second test a shell structure of the shape of a hyperbolic paraboloid
is pinched in turn. The edges are assumed to be completely fixed here and
we shall rely on numerical reference solutions (Appendix). In principle, the
resulting load-carrying mechanism is similar to that of the pinched cylin-
der but the deformation now contains some special features characteristic to
hyperbolic shells.

The dynamic capabilities of the formulations are tested in the last two
problems by means of eigenvalue analysis. These problems involve the same
structures as above so that analytical solution is available for the cylinder
and numerical reference solution can be computed for the hyperbolic shell.

The various bilinear shell finite element formulations that were evaluated
are listed below:
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MITC4. This archetypical four-noded isoparametric shell element
was introduced by Dvorkin and Bathe in [5]. The formulation utilizes
mixed interpolation of the covariant transverse shear strain compo-
nents whereas the remaining in-layer strains are computed using the
standard displacement interpolations. The element is available in the
ADINA System whose version 8.5 was used in our comparison tests
[19].

MITC4IM. The membrane properties of MITC4 can be improved by
supplementing the associated in-plane displacements with the so called
incompatible modes, see [9]. In fact, this enhancement is used by default
in ADINA System starting from version 8.4.

S4. This is a general-purpose bilinear element that is included in the
shell element library of ABAQUS/Standard, see [20]. The formulation
assumes a similar transverse shear strain field as MITC4 but employs
one point integration plus hourglass stabilization in the evaluation of
the transverse shear energy. The membrane strains of S4 are fully
integrated but treated with an assumed strain method which is closely
related to the concept of incompatible displacement modes.

S4R. This is a one point quadrature element with specialized mem-
brane and bending hourglass control. The handling of transverse shear
strains is identical with S4. It would seem that S4R is currently more
or less the default shell element of ABAQUS.

MITC4S (Present). The formulation introduced in Section 2 is given
here the label MITC4S to maintain some consistence with the naming
conventions used in earlier works of the author and collaborators, see
[21, 16, 6]. An academic implementation of the element was performed
using Wolfram Mathematica 6.

3.1 Static problems

Pinched cylinder with end diaphragms

Consider a circular cylinder of radius R = 100 and length 2L = 200, the shell
middle surface being described by the equation

Y 2 + Z2 = R2, −L < X < L

in the global Cartesian XY Z-coordinate system. The Poisson ratio and
Young modulus are set to ν = 0.3 and E = 3 · 107. The cylinder is loaded by
two normal point loads of magnitude F = 1 located centrally at the opposite
sides of the structure, see Figure 3.

Exploiting symmetry only one eighth of the cylinder was numerically
analyzed. The corresponding boundary conditions can be imposed here in
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Figure 3: Pinched cylinder.

terms of the generalized displacement components in the global Cartesian
coordinate directions as follows:

UY = ΦX = ΦZ = 0 on AB

UY = UZ = ΦX = 0 on BC

UZ = ΦX = ΦY = 0 on CD

UX = ΦY = ΦZ = 0 on AD

(13)

Moreover, only one fourth of the total load magnitude is directed at the
computational domain ABCD.

Firstly, the numerical calculations were carried out for a shell with R/t =
100 using 7×7, 14×14 and 28×28 grids of elements. In addition to canonical
uniform subdivisions, two families of non-uniform grids were used as well in
the computations. First of these was formed by refining the mesh towards the
load application point A so that the element width along each edge increases
geometrically away from A. In the second version the refinement was per-
formed merely along the edges adjacent to A while keeping the subdivisions
of BC and CD as uniform. The value r = 10 was used for the ratio of the
largest and the smallest element width along the refined edges. The coarsest
mesh of each sequence is shown in Figure 4.

The numerical results displaying the convergence of the displacement un-
der the point load, which is linearly related to the strain energy, are reported
in Figures 5–7. The finite reference value used here was obtained from a
double Fourier series solution of the classical shell equations, see Appendix
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A
B

C

D

A
B

C

D

A
B

C

D

Figure 4: Discretizations of the pinched cylinder using uniform, uniformly
refined and non-uniformly refined meshes.

Figure 5: Strain energy convergence of the pinched cylindrical shell: uniform
meshes at R/t = 100.

and also [1, 22]. These results indicate that the present formulation is supe-
rior to the geometrically incompatible formulations in terms of coarse-mesh
accuracy. Nevertheless, each element reaches the reference value up to the
accuracy of 2% as the mesh spacing diminishes – S4R slightly faster than the
other four-node elements of ABAQUS and ADINA especially on rectangular
grids.

The asymptotic behavior of the different formulations was investigated
by decreasing gradually the value of the thickness parameter t. The compu-
tations were performed using refined 28×28 meshes which were concentrated
further towards the load application point A by setting r = 33, 100 and 333
corresponding to the radius to thickness ratio R/t = 1000, 10000 and 100000.
We point out that the most dominant part of the deformation is expected to
be restricted into the range of ∼

√
Rt from A, see Figure 8 and [21, 23].

The normalized displacement values under the point load are shown in
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Figure 6: Strain energy convergence of the pinched cylindrical shell: uni-
formly refined meshes at R/t = 100.

Figure 7: Strain energy convergence of the pinched cylindrical shell: non-
uniformly refined meshes at R/t = 100.
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Figure 8: Deformation of the pinched cylindrical shell: uniformly refined
28× 28 meshes of MITC4S elements at R/t = 100, 1000, 10000 and 100000.
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R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 0.99 0.99 0.99 0.99 1.00
10000 0.98 0.98 0.98 0.99 0.99
100000 0.95 0.98 0.98 0.99 0.99

Table 1: Normalized displacement of the pinched cylindrical shell: uniformly
refined meshes with 28 elements per side.

R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 0.95 0.95 0.96 0.97 0.99
10000 0.81 0.82 0.86 0.92 1.00
100000 0.54 0.55 0.60 0.79 0.94

Table 2: Normalized displacement of the pinched cylindrical shell: non-
uniformly refined meshes with 28 elements per side.

Tables 1 and 2 for the uniformly and non-uniformly refined meshes. On the
uniformly refined mesh, all elements except for MITC4 preserve their accu-
racy also when the thickness is reduced. The locking of MITC4 is probably a
consequence of the inability of bilinear degenerated elements to capture the
long-range angular layer modes of cylindrical shells, see [6]. In this case such
a layer develops near the generator of the cylinder passing through the load
application point as shown in Figure 8. Apparently the method of incompat-
ible displacement modes used in MITC4IM and S4 as well as the one-point
quadrature of S4R are able to correct this defect.

On the non-uniformly refined meshes, all four-node elements of ABAQUS
and ADINA lose the relative accuracy of 2% already at R/t = 1000 and finish
with unbearable error levels of 21–46% at R/t = 100000. On the other hand,
the accuracy of MITC4S is satisfactory almost uniformly with respect to R/t
also here.

Pinched hyperbolic paraboloid with clamped edges

In this test we consider a hyperbolic paraboloid described by the equation

Z =
1

R
XY, −L < X, Y < L

in the Cartesian coordinate system. Here R = 100 is the radius of twist and
L = 100 stands for the length of the structure whose material parameters are
taken from the previous problem. The structure is loaded by a single normal
point load at (X,Y, Z) = (0, 0, 0) while restraining the edges completely from
moving.

Only one quarter of the shell (Figure 9) was numerically modeled using
the symmetry conditions

UX = ΦX = 0 on AB

UY = ΦY = 0 on AD
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Figure 9: Pinched hyperbolic paraboloid.

We start again by setting t = 1 and by examining the strain energy
convergence of the formulations on mesh sequences analogous to the ones
used for the pinched cylinder – see Figure 10 for the 7 × 7 mesh of each
type. The results of Figures 11–13 are quite similar to those obtained in the
previous benchmark problem, the advantage of the geometrically compatible
approach being obvious especially on the coarsest grid. In this case there is
no clear order of superiority among the other competitors.

We move now on to the asymptotic convergence tests by reducing the
thickness and re-refining the meshes precisely in the same way as described
earlier. The normalized displacement values for the two types of refined
meshes are reported in Tables 3 and 4. This time the accuracy of all geomet-

A

B

C

D

A

B

C

D

A

B

C

D

Figure 10: Discretizations of the pinched hyperbolic paraboloid using uni-
form, refined rectangular and refined non-rectangular meshes.
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Figure 11: Strain energy convergence of the pinched hyperbolic paraboloid:
uniform meshes at R/t = 100.

Figure 12: Strain energy convergence of the pinched hyperbolic paraboloid:
uniformly refined meshes at R/t = 100.
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Figure 13: Strain energy convergence of the pinched hyperbolic paraboloid:
non-uniformly refined meshes at R/t = 100.

R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 0.98 0.99 0.98 0.99 0.99
10000 0.93 0.97 0.94 0.98 0.99
100000 0.82 0.92 0.83 0.97 0.99

Table 3: Normalized strain energy of the pinched hyperbolic paraboloid:
uniformly refined meshes with 28 elements per side.

rically incompatible elements deteriorates already on the uniformly refined
meshes. The phenomenon is supposedly related to the approximation of the
characteristic layers that develop near the generators of the hyperbolic sur-
face passing through the load point, see Figure 14.

As a matter of fact, a rather severe error amplification has been theo-
retically predicted in [6] concerning the approximation of line layers in hy-
perbolic shells using bilinear degenerated elements. It would seem that even
S4R cannot wriggle out of this situation completely despite of its one-point
quadrature. In any case the present formulation with reduced geometrically
compatible strains appears uniformly convergent as anticipated in [6].

On the non-uniformly refined meshes, the accuracy of the bilinear ele-
ments in ABAQUS and ADINA deteriorates from the error level of 2–3% at
R/t = 1000 to 7-25% at R/t = 100000. The relative error of MITC4S stays
under 2% uniformly with respect to the thickness at the same time.

3.2 Dynamical problems

Cylinder with end diaphragms

Consider once more the cylindrical shell described above and constrained
kinematically as in (13). In this test, we utilize as a benchmark the mini-
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R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 0.97 0.98 0.98 0.98 1.00
10000 0.90 0.96 0.92 0.97 0.99
100000 0.75 0.85 0.79 0.93 0.98

Table 4: Normalized strain energy of the pinched hyperbolic paraboloid:
non-uniformly refined meshes with 28 elements per side.

Figure 14: Deformation of the pinched hyperbolic paraboloid: uniformly
refined 28× 28 meshes of MITC4S elements at R/t = 100, 1000, 10000 and
100000 (only part of the computational domain is shown).
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Figure 15: Convergence of the lowest eigenvalue of the cylindrical shell at
R/t = 100: uniform 7×N meshes with N = 7, 14, 28.

mum eigenvalue λ = mini ω
2
i corresponding to the fundamental frequency of

natural vibrations of the structure, see Section 2.5. The mass density of the
shell is taken to be ρ = 0.3 and different values of the thickness were again
used in the computations.

Let us begin with the most realistic situation where R/t = 100. A se-
quence of uniform 7 × N meshes with N = 7, 14, 28 was used here to check
the convergence behavior of the lowest eigenvalue with respect to the angular
mesh spacing. The results are shown in Figure 15. On a coarse mesh, the
advantage of MITC4S over the non-curved ones is very clear. But note that
its convergence is not monotonic in this problem setup.

Concerning the asymptotic behavior of the eigenproblem as t/R becomes
smaller, the results in [24] show in particular that (see also Appendix)

1. The axial profile of the lowest eigenmode is virtually independent of t

2. The lowest eigenmode oscillates in the angular direction with a wave
length proportional to (L2Rt)1/4

Here these oscillations are followed up by employing uniform 7× N meshes
where the angular mesh density N attains the values 32, 58 and 104 when
R/t equals 1000, 10000 and 100000, respectively, see Figure 16.

The corresponding eigenvalues, which have been computed using the dif-
ferent formulations and normalized with respect to the analytical values ob-
tained from Fourier analysis (see Appendix), are reported in Table 5. Firstly,
the performance of the elements seems to be independent of the thickness
excluding MITC4 which overestimates the lowest eigenvalue and hence the
fundamental frequency rather severely when the thickness is small. Obvi-
ously here the locking effect arises from the oscillation of the vibration mode
in the angular direction in the same way as in the approximation of the
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Figure 16: Lowest eigenmode of the cylindrical shell at R/t = 100, 1000,
10000 and 100000: uniform 7×N meshes of MITC4S elements with N = 19,
32, 58 and 104.
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R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 1.08 1.06 1.06 1.05 1.01
10000 1.15 1.05 1.05 1.04 0.99
100000 1.36 1.05 1.05 1.04 1.00

Table 5: Lowest eigenvalues of the cylindrical shell (normalized to unity).

angular layer modes, see [24, 6]. Secondly, the enhanced geometrically in-
compatible elements also lag behind MITC4S in terms of their prediction
accuracy. Indeed, for the lowest eigenvalue a relative accuracy of 1% can
barely be reached using a 14× 58 mesh of S4R elements when R/t = 1000 so
that almost quadruple number of degrees of freedom are required to overtake
MITC4S in this case.

Hyperbolic paraboloid with clamped edges

As a final numerical test, we compute the lowest eigenmodes of the hyperbolic
paraboloid structure using the same material parameters, computational do-
main and kinematic constraints as before. At the beginning, the eigenmodes
corresponding to the different thickness values were computed using a uni-
form 72× 72 mesh of MITC4S elements.

The results of Figure 17 show that also here the vibration mode oscillates
more and more rapidly as the thickness becomes smaller. Moreover, the
displacement amplitudes show a strong decay from the peak values which
occur near the clamped edges. Observe that the range of these “edge effects”
becomes approximatively halved when the thickness is reduced by a factor of
ten. This indicates that the wavelength of the oscillations is proportional to
(LRt)1/3, i.e. to the characteristic length scale of hyperbolic shell layers [15].

The actual benchmark test was carried out again in two phases. In the
first phase, the convergence of the lowest eigenvalue was assessed at R/t =
100 by using a uniform N × N mesh sequence with N = 7, 14, 28. Figure
18 is in line with the previous observations: the relative error of MITC4S is
roughly four times smaller than the corresponding errors of the geometrically
incompatible formulations.

In the second phase of the test, the asymptotic convergence was studied by
employing 29×29 meshes which were refined uniformly towards the clamped
edges. The refinement was done again so that the length of the element
edges progress geometrically, the ratio of the largest and the smallest element
side lengths being r = 3, 6, and 12 when R/t = 1000, 10000 and 100000,
respectively.

The lowest eigenvalues are reported in Table 6. These results show that
the accuracy of all geometrically incompatible formulations deteriorates on
the anisotropically refined meshes as the parameter t/R tends to the limit
value of zero. MITC4S seems to be more or less uniformly convergent also
here.
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Figure 17: Lowest eigenmode of the hyperbolic paraboloid at R/t = 100,
1000, 10000 and 100000: uniform 72× 72 mesh of MITC4S elements.

Figure 18: Convergence of the lowest eigenvalue of the hyperbolic paraboloid
at R/t = 100: uniform N ×N meshes with N = 7, 14, 28.
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R/t MITC4 MITC4IM S4 S4R MITC4S (Present)

1000 1.05 1.04 1.04 1.04 1.01
10000 1.13 1.08 1.09 1.08 1.03
100000 1.38 1.18 1.25 1.17 1.04

Table 6: Lowest eigenvalues of the hyperbolic paraboloid (normalized to
unity).

4 Conclusions

We have presented a four-node shell element (MITC4S) based on a refined
shallow shell model to address the locking problems that arise in the approxi-
mation of shell layer or vibration modes using bilinear degenerated elements.
Our approach was based on numerical experiments with two types of shell
structures featuring the characteristic layer and vibration modes of parabolic
and hyperbolic shells.

Concerning parabolic or cylindrical shells, the experiments show that

1. When approximating the characteristic layer or vibration mode of cylin-
drical shells, the basic bilinear degenerated formulation (MITC4) ex-
hibits approximation failure, or locking, as the thickness tends to a
limiting value of zero. In particular, this occurs if the mesh is re-
fined anisotropically in accordance with the asymptotic nature of the
layer/vibration mode.

2. The locking can be removed, at least on rectangular meshes, by em-
ploying the method of incompatible displacement modes (MITC4IM,
S4), one point quadrature plus stabilization (S4R) or by reducing the
geometrically compatible membrane strains (MITC4S).

The situation with hyperbolic shells is not so favorable because

1. None of the four-node elements in ABAQUS or ADINA appears to be
asymptotically convergent, even for rectangular element shapes, when
approximating the characteristic layer or vibration mode of hyperbolic
shells on anisotropically refined meshes.

2. The method of incompatible displacement modes and the one point
quadrature are able to alleviate the locking effect to some extent but
MITC4S is more robust in this case.

Moreover, the convergence constant of MITC4S seems to be smaller than
those of the non-curved elements. The present experiments indicate that in
some cases the error in strain energy or eigenvalues may decrease even to one
fourth if the effects of membrane and bending strain are coupled properly in
the strain energy functional via geometric curvature. This means that the
errors of stresses and vibration frequencies are effectively halved.
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Appendix

To solve the problems involving the circular cylindrical shell we introduce
the distance measuring longitudinal and circumferential coordinates X and
ϕ. The equilibrium law of the shell deformation can be expressed in terms of
the normal displacement W and the normal force Q by the so called Donnell–
Vlasov equation

Et3

12(1− ν2)
∆4W +

Et

R2

∂4W

∂X4
= ∆2Q (14)

where ∆ = ∂2

∂X2 + ∂2

∂ϕ2 . The above equation is obtained from the exact
but complex set of equations for cylindrical shells by neglecting some small-
looking terms, see e.g. [25] and the references therein. As emphasized in [26],
(14) is valid if the circumferential wavelength of the deformation pattern is
small compared to the radius R.

In our case the normal load can be expressed in the double Fourier series
form1

Q(X,ϕ) =
∞∑

m=1

∞∑

n=0

′Qmn cos
(m− 1

2
)πX

L
cos

2nϕ

R

where the coefficients Qmn are defined as

Qmn =
F

πLR

corresponding to point loads of magnitude F at (0, nπR). Likewise, writing

W (X,ϕ) =
∞∑

m=1

∞∑

n=0

′Wmn cos
(m− 1

2
)πX

L
cos

2nϕ

R
(15)

we find from (14) that Wmn takes the form

Wmn =
12(1− ν2)R2Qmn

Et

(M2 +N2)2

R2t2(M2 +N2)4 + 12(1− ν2)M4
(16)

where M = (m− 1
2
π)/L and N = 2n/R.

The solution to the complete set of cylindrical shell equations proceeds
along the same lines. The longitudinal and circumferential displacement
components U and V are represented as

U(X,ϕ) =
∞∑

m=1

∞∑

n=0

′Umn sin
(m− 1

2
)πX

L
cos

2nϕ

R

V (X,ϕ) =
∞∑

m=1

∞∑

n=1

Vmn cos
(m− 1

2
)πX

L
sin

2nϕ

R

(17)

1The notation

∞∑

n=0

′ indicates that the first term with n = 0 is multiplied by one half.
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R/t Donnell–Vlasov Novozhilov

100 −5.380× 10−6 −5.484× 10−6

1000 −9.659× 10−4 −9.715× 10−4

10000 −1.722× 10−1 −1.725× 10−1

100000 −3.064× 101 −3.066× 101

Table 7: Displacement of the cylinder under the point load.

and the unknown coefficients Umn, Vmn,Wmn can be found by solving a 3× 3
matrix equation.

The displacement values under the point load are reported in Table 7.
These have been obtained by using the parameter values given in Section 3
and truncating the series (15) at m = n = 10000. Two results are given here,
one from the simplified Donnell–Vlasov equation (14) and the second from
the ‘exact’ shell equations as represented by Novozhilov in [26]. We observe
a small difference between the models which diminishes as t decreases. The
values of the Novozhilov model were anyway used as a reference in Section
3.

Equation (14) can be applied to the vibration problem as well if the
normal surface load Q is replaced by the radial inertia force

Q = ρt
∂2W

∂τ 2

and circumferential and longitudinal inertia forces are neglected. When W
is proportional to cos(ωτ), we obtain the equation

Et3

12(1− ν2)
∆4W +

Et

R2

∂4W

∂X4
= ω2ρt∆2W

from which we find that the vibration frequencies of the principal modes in
the expression (15) are given by

ω2 =
E

12(1− ν2)ρR2

R2t2(M2 +N2)4 + 12(1− ν2)M4

(M2 +N2)2

An examination of this expression reveals that ω2 attains its minimum at

M ∼ L−1, N ∼
(
L2Rt

)
−1/4

and that the minimum eigenvalue is of order

ω2 ∼ E

ρ
L−2R−1t

If the tangential inertia forces are taken into account and the complete
set of shell equations are employed, the vibration frequencies of the principal
modes defined by (15) and (17) can be found by computing the eigenvalues
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R/t Donnell–Vlasov Novozhilov

100 1.767× 102 1.644× 102

1000 1.541× 101 1.507× 101

10000 1.523× 100 1.512× 100

100000 1.493× 10−1 1.490× 10−1

Table 8: Lowest eigenvalues of the cylindrical shell problem.

R/t S8R5

100 −2.449 · 10−6

1000 −2.991 · 10−4

10000 −3.649 · 10−2

100000 −4.319 · 100

Table 9: Displacement of the hyperbolic paraboloid under the point load.

of a 3 × 3 matrix. The two results whose difference vanishes as t decreases,
are shown in Table 8. The values of the Novozhilov model were again used
as a reference in Section 3.

The reference solutions for the two problems involving the hyperbolic
paraboloid structure were computed numerically using very fine meshes of
quadratic thin shell elements of ABAQUS. For the load problem, a 256×256
mesh was employed where all edges were refined as described in Section 3.
The results are shown in Table 9.

For the vibration problem, respectively, we employed a uniform 256×256
mesh. The lowest eigenvalues are reported in Table 10.
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R/t S8R5

100 1.306 · 103

1000 2.203 · 102

10000 3.539 · 101

100000 6.207 · 100

Table 10: Lowest eigenvalues of the hyperbolic paraboloid problem.
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A555 Juho Könnö, Rolf Stenberg

Finite Element Analysis of Composite Plates with an Application to the Paper

Cockling Problem

December 2008

A554 Lasse Leskelä
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