
Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2007 A533

EDGEWORTH EXPANSION FOR THE ONE DIMENSIONAL DIS-

TRIBUTION OF A LÉVY PROCESS
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1 Introduction

The Lévy-Khinchine theorem gives the characteristic function of a Lévy pro-
cess. In spite of this, the distribution of a Lévy process is not analytically
known, except in few special cases such as the Brownian motion, the Poisson
process and the gamma process. For example, the distribution function of
the compound Poisson process is not known in general despite its popularity
as a risk process in insurance applications.

This article has two contributions. First of all, this article introduces some
sufficient extra conditions to get an exact Edgeworth type series representa-
tion for the one dimensional distribution of a Lévy process in the presence of
all moments. Secondly, this paper goes beyond an old result on Edgeworth
approximation introduced without a proof by Cramér (1962) as an analogue
to the i.i.d. case. This article clarifies the connection between the distribu-
tion functions of Lévy processes and classical approximation results of sums
of independent random variables.

There are lots of approximation results in the literature. The normal
approximation approximates well asymptotically the distribution function of
a Lévy process when t → ∞ if the third moment exists, see for instance
Valkeila (1995). Several authors have considered asymptotic expansions in
the central limit theorem (Edgeworth approximation) for the sums of in-
dependent random variables to improve the normal approximation, see e.g.
Petrov (1995) or Cramér (1962). These approximation methods are also well
known in statistics and insurance mathematics (Beard et al., 1977; Kolassa,
2006). Another approximation result is introduced for the distribution func-
tion of Lévy processes by Cramér (1962) as an analogue to the i.i.d. case but
without a proof.

Beside the insurance applications, the results of this article could be ap-
plicable in the simulations of Lévy processes. In fact, the classical Edgeworth
approximation has been used for getting error estimates for simulations of
the small jumps of a Lévy process (Asmussen and Rosiński, 2001). Moreover,
the exact series representations would maybe be useful tools also for proving
theoretical results on Lévy processes.

2 Definitions

In this section, we define the concepts needed in the rest of the article.
Let us consider a probability space (Ω,F ,P). Let X be a real valued

random variable defined on this space. Let vX(s) = EeisX denote the char-
acteristic function of X.

Definition 2.1 (Cramér’s condition). A random variable X is said to
satisfy Cramér’s condition if

lim sup
|s|→∞

|vX(s)| < 1.
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Remark 2.4 characterises Cramér’s condition in the case of Lévy processes.

Definition 2.2 (Cumulants). Let k ∈ N = {1, 2, . . . }. The cumulant of
order k of a random variable X is defined as

γXk =
1

ik

[

dk

dsk
log vX(s)

]

s=0

.

Note that the cumulant of X of order k is finite if we have E|X|k <∞.
We use the following definition for the (non-normalised) Hermite polyno-

mial of order n ∈ N

Hn(x) = (−1)ne
x2

2

dn

dxn
e−

x2

2 .

This choice of the definition makes the series representation much simpler
than the normalised one. The same choice is done e.g. by Petrov (1995);
Kolassa (2006). With this definition one gets the identities

Hn+1(x) = xHn(x) − nHn−1(x),

H ′
n(x) = nHn−1(x) and

Hn(−x) = (−1)nHn(x)

analogous to those in Nualart (2006).
We set V 2

X = EX2. Let ν ∈ N s.t. E|X|ν+2 < ∞. We are now ready to
define the approximating functionQX

ν to be used in the series approximations.
We set

QX
ν (x) = − 1√

2π
e−

x2

2

∑

Hν+2l−1(x)
ν
∏

m=1

1

km!

(

γXm+2

(m+ 2)!V m+2
X

)km

, (1)

where the summation is extended over the non-negative integer solutions
(k1, . . . , kν) of the equation k1+2k2+· · ·+νkν = ν. Here we have l =

∑ν

j=1 kj.
The first few of these functions are

QX
1 (x) = − 1√

2π
e−

x2

2 (x2 − 1)
γX3
6V 3

X

,

QX
2 (x) = − 1√

2π
e−

x2

2 ((x5 − 10x3 + 15x)
(γX3 )2

72V 6
X

+ (x3 − 3x)
γX4

24V 4
X

),

QX
3 (x) = − 1√

2π
e−

x2

2 ((x8 − 28x6 + 210x4 − 420x2 + 105)
(γX3 )3

1296V 9
X

+

(x6 − 15x4 + 45x2 − 15)
γX3 γ

X
4

144V 7
X

+ (x4 − 6x2 + 3)
γX5

120V 5
X

).

The approximating function of order zero is the cumulative distribution func-
tion of the standard normal distribution Φ(x).

In the remaining of this article the process X = (Xt)t≥0 is assumed to
be a Lévy process on R. The standard definition for Lévy processes can be
found for instance from Bertoin (1996).

We use the following version of the Lévy-Khinchine theorem to represent
the characteristic function vXt

(s). The theorem can be found in one form or
another for example in Bertoin (1996); Cont and Tankov (2004); Sato (1999).
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Theorem 2.3 (Lévy-Khinchine). There are unique σ2 ≥ 0, ρ ∈ R and a
Radon measure µ on R\{0} satisfying

∫

R\{0}
min (u2, 1)dµ(u) <∞

such that

ψ(s) = −1

2
σ2s2 + iρs+

∫

R\{0}
(eisu − 1 − isu1{|u|≤1})µ(du)

and
vXt

(s) = etψ(s).

The measure µ is called the Lévy measure of X and (σ2, ρ, µ) is the
characteristic triplet of X.

Remark 2.4. The random variable X1 satisfies Cramér’s condition iff we
have σ2 6= 0 or the Lévy measure µ is not concentrated on a set of the form

{kh|k ∈ Z}, for fixed h > 0.

Moreover, if X1 satisfies Cramér’s condition, then Xt satisfies the same con-
dition for all t > 0.

3 Approximation results

In the literature, there are lots of classical asymptotic expansion results for
the i.i.d. sum case. I.i.d. sums are in some sense the discrete time analogues
of the Lévy processes. The following theorem is presented in Petrov (1995).

Theorem 3.1. Let {Yj}nj=1 be a sequence of i.i.d. random variables satisfying
Cramér’s condition and E|Y1|k <∞ for some integer k ≥ 3. Then

P

(

n
∑

j=1

Yj <
√
nVY1

x

)

= Φ(x) +
k−2
∑

ν=1

QY1

ν (x)n− ν
2 + o

(

n− k−2

2

)

uniformly in x ∈ R.

This kind of results are presented also in Petrov (1975); Kolassa (2006);
Cramér (1962). Generalisation of Theorem 3.1 is presented by Cramér (1962)
as an analogue without a proof:

Theorem 3.2. Let X1 satisfy Cramér’s condition and k ≥ 3 be such an
integer that E|X1|k <∞. Then

P(Xt < xVXt
) =

k−3
∑

ν=1

QX1

ν (x)t−
ν
2 + o

(

t−
k−2

2

)

.
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In fact, Cramér (1962) introduces the form for the functions QX1

ν (x) only
implicitly. See Cramér (1962) pages 72, 98 and 99.

Note that we could include term QX1

k−2(x)t
− k−2

2 to the result of Theo-
rem 3.2 to get exactly analogous result to Theorem 3.1.

Next we are going to present some lemmata to scale the approximating
functions QXt

ν (x) with respect to t. The first of them is well-known but it is
included here for convenience.

Lemma 3.3. Let k ∈ N be s.t. E|X1|k <∞. Then

γXt

k = tγX1

k .

Proof. Take q ∈ Q+. Now q = m
n

for some m,n ∈ N. Now

γ
X 1

n

k =
1

ik

[

dk

dsk
log vX1

(s)
1

n

]

s=0

=
1

n

1

ik

[

dk

dsk
log vX1

(s)

]

s=0

=
1

n
γX1

k .

By repeating the previous argument we get

γ
Xq

k = mγ
X 1

n

k =
m

n
γX1

k = qγX1

k .

The general claim follows now by a simple density argument.

Lemma 3.4. Let ν ∈ N be s.t. E|X1|ν+2 <∞, then

QXt

ν (x) = t−
ν
2QX1

ν (x), for x ∈ R.

Proof. By definition,

QXt

ν (x) = f(x)
∑

Hν+2l−1(x)
ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

,

where f(x) = − e−
x2

2√
2π

and the summation is extended over all non-negative

integer solutions of the equation
∑ν

j=1 jkj = ν, and we have l =
∑ν

j=1 kj.

QXt

ν (x) = f(x)
∑

Hν+2l−1(x)
ν
∏

m=1

(

tγX1

m+2

(m+ 2)!(
√
tVX1

)m+2

)km

= f(x)
∑

Hν+2l−1(x)

(

ν
∏

m=1

t−
1

2
mkm

)

·





ν
∏

m=1

1

km!

(

γX1

m+2

(m+ 2)!V m+2
X1

)km





= f(x)
∑

t−
1

2

Pν
m=1

mkmHν+2l−1(x)
ν
∏

m=1

(

γX1

m+2

(m+ 2)!V m+2
X1

)km

=t−
ν
2QX1

ν (x).

In the last step, we used the fact that ν = k1 + 2k2 + · · · + νkν .
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Corollary 3.5. Let k ≥ 3 be integer s.t. E|X1|k < ∞ and let X1 satisfy
Cramér’s condition. Then

P(Xt < xVXt
) = Φ(x) +

k−2
∑

ν=1

QX1

ν (x)t−
ν
2 + o

(

t−
k−2

2

)

= Φ(x) +
k−2
∑

ν=1

QXt

ν (x) + o
(

t−
k−2

2

)

, uniformly in x ∈ R.

Proof. The result for rational t follows from Lemma 3.4 and Theorem 3.1.
The result for general t > 0 follows by a continuity argument.

From now on in this paper, we assume (if not otherwise stated) that X1

satisfies Cramér’s condition and has moments of all orders i.e.

E|X1|ν <∞, for ν ∈ N.

Now we have everything ready for introducing the main results of the
article to get exact series representations. The proofs are in Section 4. In the
following Theorems 3.6, 3.7 and 3.8, µ is assumed to be the Lévy measure of
process X.

Theorem 3.6. Let the Lévy measure of X have bounded support, then we
get for x1 < x2 points of continuity of P(Xt < ·VXt

) that

P

(

x1 <
Xt

VXt

< x2

)

= P(Xt < x2VXt
) − P(Xt < x1VXt

)

=Φ(x2) − Φ(x1) +
∞
∑

ν=1

(

QXt

ν (x2) −QXt

ν (x1)
)

=Φ(x2) − Φ(x1) +
∞
∑

ν=1

(

QX1

ν (x2) −QX1

ν (x1)
)

t−
ν
2 .

There is some discussion about the Lévy measures with bounded support
for example in Sato (1999). In fact, this is a reasonable class to be considered
in the simulations because of the practical limitations.

Nevertheless, the result of Theorem 3.6 is true with more general condi-
tions:

Theorem 3.7. Let µ be s.t. for some a ≥ 0, µ(x)1{|x|>a} is absolutely con-
tinuous with respect to the Lebesgue measure and for some C, ε > 0

dµ(x)

dx
≤ C exp{−|x|1+ε}, for |x| ≥ a.

Then the assertion of Theorem 3.6 holds.

And even more generally we get the following:
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Theorem 3.8. Assume that there are a ≥ 0 and C, ε > 0 s.t.

µ((−x− 1,−x], [x, x+ 1)) ≤ C exp{−x1+ε}, for x ≥ a.

Then the representation of Theorem 3.6 holds.

Let us consider briefly Lévy processes with only positive (respectively
negative) jumps and drift term. This is a reasonable class for risk processes,
more precisely claim surplus processess in the sense of Asmussen (2000).

Remark 3.9 (Risk process case). Consider a Lévy process satisfying con-
ditions of Theorem 3.6, 3.7 or 3.8. Furthermore, assume that its Lévy mea-
sure is concentrated on positive reals and satisfies

∫

R\{0} |x|µ(dx) <∞. Then

there is some x1 ∈ R s.t. P(Xt < x1VXt
) = 0 for all t > 0. Then we get

easily a series representation for P(Xt < x2VXt
).

Remark 3.10. In the cases of Theorems 3.6, 3.7 and 3.8, we get some series
representation also for other finite dimensional distributions since the series
representation can be written for all increments separately.

Moreover, we get a representation for the distribution function of the
absolute value of a Lévy process as follows:

Corollary 3.11. Assume that the assumptions of 3.6, 3.7 or 3.8 hold. Then
we get for x > 0 and −x points of continuity of P(Xt < ·VXt

) that

P(|Xt| < xVXt
) = 2Φ(x)−1+2

∞
∑

ν=1

QXt

2ν (x) = 2Φ(x)−1+2
∞
∑

ν=1

QX1

2ν (x)t−ν (2)

and

P(|Xt| > xVXt
) = 2 − 2Φ(x) − 2

∞
∑

ν=1

QXt

2ν (x) = 2 − 2Φ(x) − 2
∞
∑

ν=1

QX1

2ν (x)t−ν .

(3)

Proof.

P(|Xt| < xVXt
) = P(Xt < xVXt

) − P(Xt < −xVXt
)

=Φ(x) − Φ(−x) +
∞
∑

ν=1

(

QXt

ν (x) −QXt

ν (−x)
)

=2Φ(x) − 1 +
∞
∑

ν=1

(

QXt

ν (x) −QXt

ν (−x)
)

.

We use the symmetry condition for Hermite polynomials and get

QXt

ν (x) −QXt

ν (−x)

= − e−
x2

2

√
2π

∑

(Hν+2l−1(x) −Hν+2l−1(−x))
ν
∏

m=1

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

=2QXt

ν (x)1{ν=2p|p∈N}.

Equation (3) is a direct consequence of (2).
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If X1 has density function, we get the following:

Corollary 3.12. Assume besides the assumptions of 3.6, 3.7 or 3.8 that Xt

VXt

has density function gXt
(s) for t > 0. Then

gXt
(x) =

1√
2π
e−

x2

2 +
∞
∑

ν=1

d

dx
QXt

ν (x).

Corollary 3.12 gives us together with the following lemma an exact series
representation for the density function.

Lemma 3.13. For ν ∈ N we have

d

dx
QXt

ν (x) =
1√
2π
e−

x2

2

∑

Hν+2l(x)
ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

,

with the notation of (1).

Proof.

d

dx
QXt

ν (x) =

(

d

dx

(

− 1√
2π
e−

x2

2

))

∑

Hν+2l−1(x)
ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

− 1√
2π
e−

x2

2

∑ d

dx
Hν+2l−1(x)

ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

=
1√
2π
e−

x2

2

∑

(xHν+2l−1(x) − (ν + 2l − 1)Hν+2l−2(x))×

ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

=
1√
2π
e−

x2

2

∑

Hν+2l(x)
ν
∏

m=1

1

km!

(

γXt

m+2

(m+ 2)!V m+2
Xt

)km

.

In the last step, we used the recursion formula for the Hermite polynomials.

4 Proofs

The following lemma gives us a representation formula for the cumulants of
a Lévy process. The result may be well known but it is included in this
paper for convenience. It is worth mentioning that Cramér’s condition is not
assumed in the following lemma. The condition (4) is used in the literature
e.g. by Nualart and Schoutens (2000). This condition is enough to guarantee
the existence of all moments.
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Lemma 4.1. Let (σ2, ρ, µ) be the characteristic triplet of X. Furthermore,
assume that for some λ > 0 and for all δ > 0

∫

R\(−δ,δ)
eλ|x|µ(dx) <∞. (4)

Then

γX1

ν =

∫

R\{0}
xνµ(dx), ν ≥ 3.

and

γX1

2 =

∫

R\{0}
x2µ(dx) + σ2.

Proof. Define µM and µY s.t. dµM

dµ
(x) = 1{|x|≤1} and dµY

dµ
(x) = 1{|x|>1}. We

make the following Lévy-Itô type decomposition

Xt = Wt + Yt +Mt,

whereW,Y andM are independent Lévy processes. The characteristic triplet
of W is (σ2, ρ, 0). Y has the triplet (0, 0, µY ) and M has (0, 0, µM).

First, we consider the compound Poisson process Y . It follows from the
assumption that

∫

R\(−1,1)

eλ|x|µ(dx) =

∫

R\(−1,1)

∞
∑

ν=0

(λ|x|)ν
ν!

µ(dx) <∞.

It follows by using the Lévy-Khinchine theorem and the dominated conver-
gence theorem (Rudin, 1987) that

log EeiuY1 =

∫

R\(−1,1)

(eiux − 1)µ(dx) =

∫

R\(−1,1)

∞
∑

ν=1

(iux)ν

ν!
µ(dx)

=
∞
∑

ν=1

(iu)ν

ν!

∫

R\(−1,1)

xνµ(dx), for |u| ≤ λ.

Now we have

γY1

ν =

∫

R\(−1,1)

xνµ(dx), for ν = 2, 3, . . .

Next, we consider the jump martingale M . We begin by considering the
processM ε which is obtained by neglecting the jumps ofM less than ε ∈ (0, 1)
of absolute value. Rigorously, we define the measure µε by

dµε

dµ
(x) = 1{ε≤|x|≤1}

and consider the Lévy process M ε with the characteristic triplet (0, 0, µε).
Now M ε is a compensated compound Poisson process and we get like in the
case of Y that

γM
ε
1

ν =

∫

ε≤|x|≤1

xνµ(dx).

10



By the condition (4) and the Lévy-Khinchine theorem, γM1

ν is finite whenever
ν ≥ 2. Furthermore,

∫ 1

0

xνµ(dx), and

∫ 0

−1

xνµ(dx)

exist and are finite. Now we can use the monotone convergence theorem and
obtain

∫

ε≤|x|≤1

xνµ(dx) =

∫ −ε

−1

xνµ(dx) +

∫ 1

ε

xνµ(dx) → γM1

ν ,

when ε ↓ 0. Next, we use the facts that the cumulants of the normal distri-
bution vanish when ν ≥ 3 and γW1

2 = σ2 since W1 is normally distributed
with variance σ2. The general result is now obtained by the additivity of
cumulants.

The next lemma gives us another characterisation of the condition on the
Lévy measure in Theorem 3.6. From now on in this article, we will use the

following notation of scaled cumulants λXt
ν = γ

Xt
ν

V ν
Xt

, for ν ∈ N.

Lemma 4.2. The Lévy measure of process X is concentrated on some bounded
interval is equivalent to the condition that there exists some C > 0 s.t.

λX1

ν ≤ Cν , for all ν ∈ N.

Proof. Let us first assume that such C exists. Now we can use Lemma 4.1
and we get for ν ≥ 3 that

∫

R\{0}
xνµ(dx) ≤ CνV ν

X1
.

For even ν, |γν | = γν . We know also by Rudin (1987) page 71 that it holds
for Lp(µ) norms that

||x||2n+1 ≤ max (||x||2n, ||x||2n+2), for n ≥ 1.

Hence there is some D > 0 s.t.
∫

R\{0} |x|νµ(dx) ≤ Dν for all ν ≥ 4. Moreover,
we get

D ≥ ||x||ν → ||x||∞ as ν → ∞.

Now || x
D
||∞ ≤ 1 with respect to µ. In other words, µ is concentrated on some

bounded interval.

The other way is even simpler. Because µ is concentrated on some
bounded interval, it follows that ||x||∞ <∞. We can choose C = 1

VX1

supν ||x||ν .

Now we have everything ready for the proofs of the main results.

11



Proof. (Theorem 3.6)
Let us first work out the representation for the logarithm of the charac-

teristic function i.e. the characteristic exponent of the Lévy process.

∞
∑

ν=2

∣

∣

∣

∣

λXt
ν

ν!
(is)ν

∣

∣

∣

∣

=
∞
∑

ν=2

∣

∣

∣

∣

∣

1

ν!

tγX1

ν

t
ν
2V ν

X1

(is)ν

∣

∣

∣

∣

∣

=
∞
∑

ν=2

∣

∣

∣

∣

t−
ν−2

2

1

ν!

γX1

ν

V ν
X1

(is)ν
∣

∣

∣

∣

=
∞
∑

ν=2

∣

∣

∣

∣

t
λX1

ν

ν!

(

is√
t

)ν∣
∣

∣

∣

≤ t

∞
∑

ν=2

1

ν!

∣

∣

∣

∣

Cs√
t

∣

∣

∣

∣

ν

,

which is bounded when t > ε > 0 and |s| < K < ∞ for arbitrary ε,K ∈
(0,∞). In the last step, we used the characterisation of Lemma 4.2. Now
this series is dominated by the series expansion of the exponential function
and the series ∞

∑

ν=2

λXt
ν

ν!
(is)ν

converges to an analytical function when t > 0 is fixed. Now, define

fXt
(s) = vXt

(

s

VXt

)

.

By computing the cumulants, this notation gives for n ∈ N

[

dn

dsn
log fXt

(s)

]

s=0

=

[

dn

dsn
log vX1

(

s√
tVX1

)t
]

s=0

=t

(

1√
tVX1

)n [
dn

dsn
log vX1

(s)

]

s=0

=t−
n−2

2 in
γX1

n

V n
X1

= t−
n−2

2 inλX1

n = inλXt

n .

Now

log fXt
(s) =

∞
∑

ν=2

λX1

ν

ν!
t−

ν−2

2 (is)ν .

We observe that λXt

2 = 1 for all t > 0. So we obtain

fXt
(s) = e−

s2

2 exp

( ∞
∑

j=1

λX1

j+2

(j + 2)!
t−

j

2 (is)j+2

)

.

Next, consider a more general form

exp

( ∞
∑

j=1

λX1

j+2

(j + 2)!
zjuj+2

)

.

12



With fixed u, this series converges absolutely, uniformly in any compact set
with respect to the parameter z. Thus in every compact set with respect
to z, we rearrange the series of the exponential function and get a series
representation with respect to z. Hence,

exp

( ∞
∑

j=1

λX1

j+2

(j + 2)!
zjuj+2

)

= 1 +
∞
∑

ν=1

Pν(u)z
ν

for some polynomials (Pν)
∞
ν=1 that can be computed formally by compounding

these two series, which is possible due to the absolute convergence. Now

fXt
(s) = e−

s2

2 +
∞
∑

ν=1

Pν(is)e
− s2

2 t−
ν
2 .

By the inversion formula of the characteristic function (Petrov, 1995), we get
for x1, x2 points of continuity of P(Xt < ·VXt

)

P(Xt < x2VXt
) − P(Xt < x1VXt

)

=
1

2π
lim
T→∞

∫ T

−T

e−isx2 − e−isx1

−is

(

e−
s2

2 +
∞
∑

ν=1

Pν(is)e
− s2

2 t−
ν
2

)

ds.

With fixed t > 0, the series inside the integral is absolutely convergent uni-
formly in compact sets with respect to s. Thus the integral is always well-
defined and can be computed term-wise. Moreover, the limit exists since

lim
S→∞

∫ S

−S

e−isx2 − e−isx1

−is fXt
(s)ds

−
∫ T

−T

e−isx2 − e−isx1

−is

(

e−
s2

2 +
∞
∑

ν=1

Pν(is)e
− s2

2 t−
ν
2

)

ds

= lim
S→∞

∫

T<|s|<S

e−isx2 − e−isx1

−is fXt
(s)ds→ 0, when T → ∞.

In the last step, we used the fact that fXt
is a characteristic function. Hence,

there are such functions (Rν)
∞
ν=1 that we can write

P(Xt < x2VXt
)−P(Xt < x1VXt

) = Φ(x2)−Φ(x1)+
∞
∑

ν=1

(Rν(x2) −Rν(x1)) t
− ν

2 .

We use the classical Theorem 3.1 and the scaling Lemma 3.4 and find out
that for all ν = 1, 2, . . .

Rν(x) = QX1

ν (x) = t
ν
2QXt

ν (x).

13



Proof. (Theorem 3.7)

The proof proceeds analogously to the proof of Theorem 3.6 but we have
to argue why we can rearrange the series of

fXt
(s) = e−

s2

2 exp

( ∞
∑

j=1

λX1

j+2

(j + 2)!
t−

j

2 (is)j+2

)

. (5)

With these assumptions on the Lévy measure µ, we can use the representation
Lemma 4.1 for the cumulants. Let m ∈ N be such that 1

m
≤ ε. Observe now

that

∫ ∞

0

xne−x
1+ 1

m
dx =

∫ ∞

0

− m

m+ 1
xn−

1

m

(

−m+ 1

m
x

1

m e−x
1+ 1

m

)

dx

= − m

m+ 1

[

xn−
1

m e−x
1+ 1

m

]∞

0
+

∫ ∞

0

m

m+ 1

(

n− 1

m

)

xn−1− 1

m e−x
1+ 1

m
dx

=

∫ ∞

0

(

m

m+ 1

)2(

n− 1

m

)(

n− 1 − 2

m

)

xn−2− 2

m e−x
1+ 1

m
dx

=

(

m

m+ 1

)bn m
m+1

c bn m
m+1

c
∏

j=1

(

n+ 1 − j

(

1 +
1

m

))

×
∫ ∞

0

xn−bn m
m+1

c(m+1

m )e−x
1+ 1

m
dx

≤
bn m

m+1
c

∏

j=1

(

n+ 1 − j

(

1 +
1

m

))

×D,

where

D = max
l=0,...,m

∫ ∞

0

xl−bl m
m+1

c(m+1

m )e−x
1+ 1

m
dx.

Note that the constant D is finite and does not depend on n. Without loss of
generality, we can assume X̃ to be compensated compound Poisson process
with a = 0, since we can express general X as a sum of this kind of process
and a process satisfying the conditions of Theorem 3.6. Then we get a bound
for (5) by the additivity of cumulants.

Note that this decomposition can be made such a way that Cramér’s
condition does not fail here if the Lévy measure has unbounded support. This
is due to the fact that the tail of the Lévy measure is absolutely continuous
with respect to the Lebesgue measure. Now we have

∞
∑

ν=2

∣

∣

∣

∣

∣

γX̃t
ν

V ν
Xt
ν!

(is)ν

∣

∣

∣

∣

∣

=
m
∑

ν=2

∣

∣

∣

∣

∣

γX̃t
ν

V ν
Xt
ν!

(is)ν

∣

∣

∣

∣

∣

+ t

∞
∑

ν=m+1

1

ν!

∣

∣

∣γX̃1

ν

∣

∣

∣

( |s|√
tVX1

)ν

=
m
∑

ν=2

∣

∣

∣

∣

∣

γX̃t
ν

V ν
Xt
ν!

(is)ν

∣

∣

∣

∣

∣

+ t

∞
∑

j=1

m
∑

k=0

1

((m+ 1)j + k)!

∣

∣

∣
γX̃1

(m+1)j+k

∣

∣

∣

( |s|√
tVX1

)(m+1)j+k

.
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The first term is a finite sum of finite summands if 0 < t < ∞. We get an
estimate for the other sum as follows

t

∞
∑

j=1

m
∑

k=0

1

((m+ 1)j + k)!

∣

∣

∣γ
X̃1

(m+1)j+k

∣

∣

∣

( |s|√
tVX1

)(m+1)j+k

≤t
∞
∑

j=1

m
∑

k=0

1

((m+ 1)j + k)!
×

2CD

b((m+1)j+k) m
m+1

c
∏

l=1

(

(m+ 1)j + k + 1 − l

(

1 +
1

m

))( |s|√
tVX1

)(m+1)j+k

.

Now define

g(l) = (m+ 1)j + k + 1 − l −
⌊

l

m

⌋

, l = 1, . . . ,

⌊

((m+ 1)j + k)
m

m+ 1

⌋

.

We observe that g(l) > g(l + 1) and the values of g are integers from 1 to
(m + 1)j + k. Nevertheless, g does not take every (m + 1)th integer value.
This fact is due to the jump of the floor function. So there is at least j terms
missing in the product. By assuming them to be the j smallest ones, we get
a rough estimate

b((m+1)j+k) m
m+1

c
∏

l=1

(

(m+ 1)j + k + 1 − l

(

1 +
1

m

))

≤ ((m+ 1)j + k)!

j!
.

And finally

t

∞
∑

j=1

m
∑

k=0

1

((m+ 1)j + k)!

∣

∣

∣γ
X̃1

(m+1)j+k

∣

∣

∣

( |s|√
tVX1

)(m+1)j+k

≤t
∞
∑

j=1

m
∑

k=0

1

j!
2CD

( |s|√
tVX1

)(m+1)j+k

≤2CDt

(

m
∑

k=0

( |s|√
tVX1

)k
) ∞
∑

j=1

1

j!

(

( |s|√
tVX1

)m+1
)j

<∞,

as an exponential series when 0 < t < ∞. The last part of the proof is
analogous to the proof of Theorem 3.6.

Proof. (Theorem 3.8)

We have to get a suitable estimate for the cumulants from above to be
able to continue as in the proof of Theorem 3.7. Let us define function η on
positive reals as follows

η(x) = µ((−x− 1,−x], [x, x+ 1)).
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We can easily represent the growing condition for the Lévy measure using
this function. Now we can estimate the cumulants in the spirit of Lemma 4.1.
Without loss of generality, we can assume that a ≥ 1. We get

∫ ∞

−∞
|x|νµ(dx) ≤

∫ a

−a
|x|νµ(dx) +

∞
∑

j=0

|x+ a+ 1|νη(a+ j).

For ν ≥ 2, the first term is bounded by Dν for some D > 0. For the second
term we get

∞
∑

j=0

|x+ a+ 1|νη(a+ j) ≤
∫ ∞

a

(x+ 2)νCe−x
1+ε

dx ≤ C

∫ ∞

a

(3x)νe−x
1+ε

dx.

The rest of the proof is analogous to the proof of Theorem 3.7.

Proof. (Corollary 3.12)
Let (Pν)

∞
ν=1 be the same polynomials as in the proof of Theorem 3.6. We

can use the series representation for characteristic function of Xt

VXt

and get

1

2π

∫

R

e−isxfXt
(s)ds =

1

2π

∫

R

e−isx

(

e−
s2

2 +
∞
∑

ν=1

Pν(is)e
− s2

2 t−
ν
2

)

ds.

With fixed t > 0, the absolute convergence is uniform in compact sets with
respect to s, as in the preceeding proofs. Thus, the integral is well-defined
and can be computed term-wise. Moreover, with fixed x ∈ R

∫

|s|>T
e−isxfXt

(s)ds→ 0, as T → ∞,

since fXt
is a characteristic function of some random variable with density

function. Hence,

lim
T→∞

∣

∣

∣

∣

∣

gXt
(x) − 1

2π

∫ T

−T
e−isx

(

e−
s2

2 +
∞
∑

ν=1

Pν(is)e
− s2

2 t−
ν
2

)

ds

∣

∣

∣

∣

∣

= lim
T→∞

∣

∣

∣

∣

1

2π

∫

|s|>T
e−isxfXt

(s)ds

∣

∣

∣

∣

= 0.

We have shown that there is some series representation but we still have to
show that the limit equals to what is claimed. We have

1

2π

∫

R

e−isxPν(is)e
− s2

2 ds = − 1

2π

∫

R

is
e−isx

−is Pν(is)e
− s2

2 ds =
d

dx
QXt

ν (x).
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processes with a view towards simulation. Journal of Applied Probability
38, 482–493.
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