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Abstract: This thesis studies the global regularity theory for degen-
erate nonlinear parabolic partial differential equations. Our objective
is to show that weak solutions belong to a higher Sobolev space than
assumed a priori if the complement of the domain satisfies a capacity
density condition and if the boundary values are sufficiently smooth.
Moreover, we derive integrability estimates near the lateral and initial
boundaries. The results of the thesis extend to parabolic systems as
well. The higher integrability estimates provide a useful tool in several
applications.
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Tiivistelmä: Väitöskirjassa tutkitaan epälineaaristen parabolisten osit-
taisdifferentiaaliyhtälöiden ratkaisujen globaalia säännöllisyyttä. Työs-
sä osoitetaan, että yhtälöiden heikot ratkaisut kuuluvat parempaan So-
bolevin avaruuteen kuin määritelmässä oletetaan, jos alueen komple-
mentti toteuttaa kapasiteettitiheysehdon ja reuna-arvot ovat tarpeek-
si säännöllisiä. Lisäksi ratkaisujen gradienteille johdetaan integroitu-
vuusestimaatteja sekä lähellä alkuhetkeä että lähellä alueen reunaa.
Tämäntyyppiset estimaatit ovat osoittautuneet tärkeiksi monissa so-
velluksissa. Väitöskirjan tulokset yleistyvät myös parabolisille systee-
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GLOBAL HIGHER INTEGRABILITY FOR NONLINEAR

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

IN NONSMOOTH DOMAINS

Mikko Parviainen

1. Introduction

Higher integrability questions have been extensively studied over the
last few decades. In this work, we investigate the parabolic equations
of the type

∂u

∂t
= div A(x, t,∇u),

where A(x, t,∇u) satisfies the well-known Carathéodory-type condi-
tions and p-growth conditions. In particular, the results apply to the
parabolic p-Laplace equation

∂u

∂t
= div

(

|∇u|p−2 ∇u
)

,

with 2 ≤ p < ∞.

Weak solutions of the above equations locally belong to a slightly higher
Sobolev space than assumed a priori, as Kinnunen and Lewis proved in
[KL00]. We intend to show that this also holds globally, that is, up to
the boundary. To this end, we prove that the gradient of a weak solution
satisfies a global reverse Hölder inequality. In contrast to the local
case, the regularity of the boundary, as well as the boundary and initial
values, play a role in the proofs. We assume that the complement of the
domain satisfies a capacity density condition, which is essentially sharp
for our main results. In addition, the boundary values are assumed to
belong to an appropriate higher Sobolev space. Note, however, that
the results of this work are already nontrivial for regular domains and
smooth boundary values.

The proofs are based on Caccioppoli and Sobolev-Poincaré-type in-
equalities, as well as on the self-improving property of a reverse Hölder
inequality. Due to nonquadratic growth conditions, the proofs apply
intrinsic scaling and covering arguments. One of the advantages of this
method lies in the fact that it can be employed to a wide variety of
problems. Indeed, the proofs extend to parabolic systems of the form

∂ui

∂t
= div Ai(x, t,∇u), i = 1, 2, . . . , n,

although we consider the scalar case for simplicity.

6



Global higher integrability 7

Motivation for studying the higher integrability comes from applica-
tions to partial regularity (see, for example, [GM79]) and stability ques-
tions, to mention a few. On the other hand, the regularity properties
of solutions are often interesting in their own right.

The first higher integrability results apparently date back to a 1957
paper of Bojarski, [Boj57]. Later, Elcrat and Meyers proved the local
higher integrability for nonlinear elliptic systems in [EM75] (see also
[Gia83]). In [GS82], Giaquinta and Struwe studied similar questions
for systems of parabolic equations with quadratic growth conditions.
In addition, Arkhipova has considered the global integrability questions
for parabolic systems, for example, in [Ark92] and [Ark95]. For recent
higher integrability results, see [AM07].

In [Gra82], Granlund showed that an elliptic minimizer has the higher
integrability property if the complement of the domain satisfies a mea-
sure density condition. Later, Kilpeläinen and Koskela generalized the
elliptic results to the uniform capacity density condition in [KK94].
For a good survey of boundary regularity, see Section 8 of [Mik96].
Recently, it was shown in [Par] that parabolic quasiminimizers with
quadratic growth conditions have a global higher integrability prop-
erty.

This work is organized as follows. Section 2 introduces the problem and
notation, while the following sections consider the higher integrability
near the lateral and initial boundaries separately: Sections 3 and 4
concentrate on the lateral boundary case while Sections 5 and 6 are
devoted to estimates near the initial boundary. Theorem 4.7 provides
the main result.

2. Preliminaries

Let Ω be a bounded open set in R
n, n ≥ 2 and let p ≥ 2. We study

the equation

∂u

∂t
= div A(x, t,∇u), (x, t) ∈ Ω × (0, T ), (2.1)

where u : Ω × (0, T ) → R, A : Ω × (0, T ) × R
n → R

n, and A satisfies
the following conditions.

(1) x 7→ A(x, t, ξ) and t 7→ A(x, t, ξ) are measurable for every ξ,
(2) ξ 7→ A(x, t, ξ) is continuous for almost every (x, t),
(3) there exist constants 0 < α ≤ β < ∞ such that for every ξ

and for almost every (x, t), we have A(x, t, ξ) · ξ ≥ α |ξ|p and
|A(x, t, ξ)| ≤ β |ξ|p−1.
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As usual, W 1,p(Ω) denotes the Sobolev space of functions in Lp(Ω)
whose first distributional partial derivatives belong to Lp(Ω) with the
norm

||u||W 1,p(Ω) = ||u||Lp(Ω) + ||∇u||Lp(Ω) .

The Sobolev space W 1,p
0 (Ω) is a completion of C∞

0 (Ω) in the norm of
W 1,p(Ω).

The parabolic space Lp(0, T ; W 1,p(Ω)) is a collection of measurable
functions u(x, t) such that for almost every t ∈ (0, T ), the function
x 7→ u(x, t) belongs to W 1,p(Ω), and the norm

||u||Lp(0,T ;W 1,p(Ω)) =

(∫ T

0

||u||pW 1,p(Ω) dt

)1/p

is finite. Analogously, the space Lp(0, T ; W 1,p
0 (Ω)) is a collection of

measurable functions u(x, t) such that for almost every t ∈ (0, T ), the
function x 7→ u(x, t) belongs to W 1,p

0 (Ω) and

||u||Lp(0,T ;W 1,p(Ω)) < ∞.

The parabolic Sobolev space W 1,2(0, T ; L2(Ω)) is defined as

W 1,2(0, T ; L2(Ω))

= {ϕ ∈ L2(0, T ; L2(Ω)) :
∂ϕ

∂t
∈ L2(0, T ; L2(Ω))}

with the norm

||ϕ||W 1,2(0,T ;L2(Ω)) = ||ϕ||L2(0,T ;L2(Ω)) +

∣

∣

∣

∣

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

L2(0,T ;L2(Ω))

.

Finally, the space C([0, T ]; L2(Ω)) comprises all continuous functions
u : [0, T ] → L2(Ω) (that is, u is continuous with respect to t in the
norm || · ||L2(Ω)) such that

max
t∈[0,T ]

||u(·, t)||L2(Ω) < ∞.

In the Bochner integration theory, the space Lp(0, T ; W 1,p(Ω)) is de-
fined as a collection of strongly measurable functions u : (0, T ) →
W 1,p(Ω) for which

(∫ T

0

||u||pW 1,p(Ω) dt

)1/p

< ∞.

We could take this definition as a starting point as well. Indeed, u(x, t)
is not, in general, product measurable, but there always exists a mea-
surable representative. Consequently, Fubini’s theorem is available in
this setting also. The reader is referred to Chapter 4 of [Soh01] and
Chapter 23 of [Kut98] for further information.
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A function u belonging to the space Lp
loc(0, T ; W 1,p

loc (Ω)) is a weak solu-
tion to (2.1) if

−

∫ T

0

∫

Ω

u
∂φ

∂t
dx dt +

∫ T

0

∫

Ω

A(x, t,∇u) · ∇φ dx dt = 0, (2.2)

for every φ ∈ C∞
0 (Ω × (0, T )).

There is a well-recognized difficulty in proving Caccioppoli-type esti-
mates for weak solutions: One often needs a test function depending on
u itself, but u may not be admissible. For example, the time derivative
of the test function contains ∂u

∂t
, which does not necessarily exist as a

function. There are several ways to treat this difficulty: We may, for
example, use the Steklov averages, as on page 25 in [DiB93], or we may
use the standard mollifications. We adopt the latter approach and set

φ̃(x, t) =

∫

R

φ(x, t − s)ζε(s) ds,

where φ ∈ C∞
0 (Ω × (0, T )) and ζε(s) is a standard mollifier, whose

support is contained in (−ε, ε) with ε < dist (spt(φ), Ω × {0, T}). We

insert φ̃ into (2.2), change variables, and apply Fubini’s theorem to
obtain

−

∫ T

0

∫

Ω

uε
∂φ

∂t
dz +

∫ T

0

∫

Ω

A(x, t,∇u)ε · ∇φ dz = 0. (2.3)

Here uε and A(x, t,∇u)ε denote the standard mollifications in the time
direction.

We finish this section with the notation used throughout the work. Let

D = Ω × (0, T )

be a space-time cylinder. We denote the points of the cylinder by
z = (x, t) and employ a shorthand notation dz = dx dt. Let z0 =
(x0, t0) ∈ D and θ, ρ > 0. Then we denote

Bρ(x0) = {x ∈ R
n : |x − x0| < ρ },

Bρ(x0) = {x ∈ R
n : |x − x0| ≤ ρ },

and

Λθρ2(t0) = (t0 −
1

2
θρ2, t0 +

1

2
θρ2).

Further, a space-time cylinder in R
n+1 is denoted by

Qρ,θρ2(z0) = Qρ,θρ2(x0, t0) = Bρ(x0) × Λθρ2(t0).

When no confusion arises, we shall omit the reference points and simply
write Bρ, Λθρ2 and Qρ,θρ2 . The integral average of u is denoted by

uρ(t) =

∫

Bρ

u(x, t) dx =
1

|Bρ|

∫

Bρ

u(x, t) dx,
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where |Bρ| denotes the Lebesgue measure of Bρ. Finally, φ′ sometimes

denotes the time derivative of φ instead of ∂φ
∂t

.

3. Estimates near the lateral boundary

In this section, we derive estimates near the lateral boundary ∂Ω ×
(0, T ). These estimates are applied in Section 4 in order to prove a
reverse Hölder inequality.

A Lebesgue-type initial condition and a Sobolev-type boundary condi-
tion turn out to be convenient for our purposes. To be more specific,
we say that u is a global solution if u ∈ Lp(0, T ; W 1,p(Ω)) satisfies (2.2)
as well as the initial and boundary conditions:

u(·, t) − ϕ(·, t) ∈ W 1,p
0 (Ω) for almost every t ∈ (0, T )

and

1

h

∫ h

0

∫

Ω

|u − ϕ|2 dx dt → 0 as h → 0,

(3.1)

for a given

ϕ ∈ W 1,2(0, T ; L2(Ω)) ∩ Lp(0, T ; W 1,p(Ω)).

Observe that already smooth ϕ leads to a nontrivial theory. We start
with a Caccioppoli-type inequality.

Lemma 3.2 (Caccioppoli). Let u be a global solution with the bound-

ary and initial conditions (3.1). Let θ > 0, suppose that 0 < ρ < M
for some M > 0, and let Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R

n+1. Then there

exists a constant c = c(n, p,M, α, β) > 0 such that
∫

Q
ρ,θρ2∩D

|∇u|p dz + ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2 dx

≤
c

θρ2

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz +
c

ρp

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

+ c

∫

Q4ρ,θ(4ρ)2∩D

fp dz,

where D = Ω × (0, T ) and f =
(

|ϕ′|p/(p−1) + |∇ϕ|p
)1/p

.

Proof: We may assume that Qρ,θρ2 ∩ D 6= ∅ since otherwise the claim
is trivial. Let t1 ∈ Λθρ2 ∩ (0, T ). We define χh

0,t1
(t) to be a piecewise

linear approximation of a characteristic function such that

χh
0,t1

(t) = 1 as h ≤ t ≤ t1 − h,

χh
0,t1

(t) = 0 as t ≤ h/10 or t ≥ t1 − h/10,
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and
∣

∣(χh
0,t1

(t))′
∣

∣ ≤
10

9h
.

Further, denote by χh,ε
0,t1

(t), uε and ϕε the standard mollifications in the
time direction for ε < h/20. We choose a test function

φε(x, t) = ηp(x, t)(uε(x, t) − ϕε(x, t))χh,ε
0,t1

(t),

where η ∈ C∞
0 (Rn+1) is a cut-off function such that spt η ⊂ Q4ρ,θ(4ρ)2 ,

η(x, t) = 1 in Qρ,θρ2 , 0 ≤ η ≤ 1, and

ρ |∇η| + θρ2

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

≤ c. (3.3)

The mollification in the time direction does not affect the lateral bound-
ary values, and thus φε(·, t) ∈ W 1,p

0 (Ω) for almost every t ∈ (0, T ).

To begin with, we insert the test function into (2.3) and manipulate
the first term to have

−

∫

D

uεφ
′
ε dz = −

∫

D

(uε − ϕε)φ
′
ε dz −

∫

D

ϕεφ
′
ε dz. (3.4)

By integrating the first term on the right hand side of (3.4) by parts,
we obtain

−

∫

D

(uε − ϕε)φ
′
ε dz

= −

∫

D

(

(uε − ϕε)
2(ηpχh,ε

0,t1
)′ +

1

2

[

(uε − ϕε)
2
]′

ηpχh,ε
0,t1

)

dz

= −
1

2

∫

D

(uε − ϕε)
2(ηpχh,ε

0,t1
)′ dz.

As a next step, we take limits, apply the initial condition, and use the
well-known convergence properties of mollified functions. We deduce
for almost every t1 ∈ Λθρ2 ∩ (0, T ) that

−

∫

D

(uε − ϕε)φ
′
ε dz→−

1

2

∫

Ω×(0,t1)

|u − ϕ|2pηp−1η′ dz

+
1

2

∫

Ω

|u(x, t1) − ϕ(x, t1)|
2ηp(x, t1) dx,

as first ε → 0 and then h → 0. Because we take the limits in this
order, the mollifications are well defined. Observe also that the initial
boundary term disappears at t = 0 because of the initial condition.
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Then we combine the previous estimates, integrate the last term of
(3.4) by parts, and obtain

−

∫

D

uεφ
′
ε dz →−

1

2

∫

Ω×(0,t1)

|u − ϕ|2pηp−1η′ dz

+
1

2

∫

Ω

(u(x, t1) − ϕ(x, t1))
2ηp(x, t1) dx

+

∫

Ω×(0,t1)

ϕ′ηp(u − ϕ) dz,

as first ε → 0 and then h → 0.

Inserting the test function into the second term of (2.3) implies
∫

D

A(x, t,∇u)ε · ∇
(

ηp(uε − ϕε)χ
h,ε
0,t1

)

dz

→

∫

Ω×(0,t1)

A(x, t,∇u) ·
[

pηp−1∇η(u − ϕ) + ηp(∇u −∇ϕ)
]

dz,

as first ε → 0 and then h → 0.

Collecting the facts, we arrive at
∫

Ω×(0,t1)

ηpA(x, t,∇u) · ∇u dz +
1

2

∫

Ω

|u(x, t1) − ϕ(x, t1)|
2ηp(x, t1) dx

≤
1

2

∫

Ω×(0,t1)

|u − ϕ|2pηp−1 |η′| dz +

∫

Ω×(0,t1)

|ϕ′| ηp|u − ϕ| dz

+

∫

Ω×(0,t1)

|A(x, t,∇u)| pηp−1 |∇η| |u − ϕ| dz

+

∫

Ω×(0,t1)

|A(x, t,∇u)| ηp |∇ϕ| dz.

(3.5)

In view of our hypotheses on A, the first term on the left hand side
satisfies the inequality

α

∫

Ω×(0,t1)

ηp |∇u|p dz ≤

∫

Ω×(0,t1)

ηpA(x, t,∇u) · ∇u dz.

Since ρ < M , there exists a constant c > 0 such that 1 ≤ c/ρp, where
c, of course, depends on M . Consequently, Young’s inequality implies
∫

Ω×(0,t1)

|ϕ′| ηp|u − ϕ| dz

≤ ε

∫

Ω×(0,t1)

|ϕ′|
p/(p−1)

ηp dz +
c

ρp

∫

Ω×(0,t1)

|u − ϕ|pηp dz,
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where the constant depends on M and ε > 0. Next we estimate the
third term on the right hand side of (3.5). Young’s inequality and the
structural assumptions on A lead to

∫

Ω×(0,t1)

|A(x, t,∇u)| pηp−1 |∇η| |u − ϕ| dz

≤ ε

∫

Ω×(0,t1)

|∇u|p ηp dz + c

∫

Ω×(0,t1)

|∇η|p |u − ϕ|p dz.

A similar reasoning allows us to estimate the fourth term on the right
hand side of (3.5) as

∫

Ω×(0,t1)

|A(x, t,∇u)| ηp |∇ϕ| dz

≤ ε

∫

Ω×(0,t1)

|∇u|p ηp dz + c

∫

Ω×(0,t1)

ηp |∇ϕ|p dz.

Let us then estimate the second term on the left hand side of (3.5).
We can choose t1 ∈ Λθρ2 ∩ (0, T ) such that

1

2
ess sup

t∈Λ
θρ2∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2ηp dx

≤

∫

Ω

|u(x, t1) − ϕ(x, t1)|
2ηp(x, t1) dx.

Finally, we combine the above estimates with (3.5) and choose ε > 0
small enough to absorb

ε

∫

Ω×(0,t1)

ηp |∇u|p dz

into the left hand side. Since η satisfies condition (3.3), we obtain the
claim. �

The regularity of the boundary plays a role in the global higher inte-
grability. In this work, we assume that the complement of the domain
satisfies a uniform capacity density condition.

Let 1 < p < ∞. The variational p-capacity of a compact set C ⊂ Ω is
defined to be

capp(C, Ω) = inf
g

∫

Ω

|∇g|p dx,

where the infimum is taken over all the functions g ∈ C∞
0 (Ω) such that

g = 1 in C. To define the variational p-capacity of an open set U ⊂ Ω,
we take the supremum over the capacities of the compact sets belonging
to U . The variational p-capacity of an arbitrary set E ⊂ Ω is defined
by taking the infimum over the capacities of the open sets containing
E. For further details, see Chapter 2 of [HKM93], Chapter 2 of [MZ97],
or Chapter 4 of [EG92].
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A set E ⊂ R
n is said to be of p-capacity zero if

capp(E ∩ U,U) = 0

for all open U ⊂ R
n. For the capacity of a ball, we obtain the following

simple formula
capp(Bρ, B2ρ) = cρn−p, (3.6)

where c > 0 depends only on n and p.

Let us now introduce the capacity density condition which we later
impose on the complement of the domain. For the higher integrability
results, this condition is essentially sharp as pointed out in Remark 3.3
of [KK94] in the elliptic case.

Definition 3.7. A set E ⊂ R
n is uniformly p-thick if there exist con-

stants µ, ρ0 > 0 such that

capp(E ∩ Bρ(x), B2ρ(x)) ≥ µ capp(Bρ(x), B2ρ(x)),

for all x ∈ E and for all 0 < ρ < ρ0.

If we replace the capacity with the Lebesgue measure in the definition
above, then we obtain a measure density condition. A set E, satisfying
the measure density condition, is uniformly p-thick for all p > 1. If
p > n, then every nonempty set is uniformly p-thick. The following
lemma extends the capacity estimate in Definition 3.7.

Lemma 3.8. Let Ω be a bounded open set, and suppose that R
n \Ω is

uniformly p-thick. Choose y ∈ Ω such that B 4
3
ρ(y) \ Ω 6= ∅. Then there

exists a constant µ̃ = µ̃(µ, ρ0, n, p) > 0 such that

capp(B2ρ(y) \ Ω, B4ρ(y)) ≥ µ̃ capp(B2ρ(y), B4ρ(y)).

Proof: Since B 4
3
ρ(y) \ Ω 6= ∅, we may choose x ∈ R

n \ Ω such that

dist(x, y) < 4
3
ρ. Then

B4ρ(y) ⊂ B( 4
3
+4)ρ(x) and B 2

3
ρ(x) ⊂ B2ρ(y),

and hence due to the properties of the capacity, we obtain

capp(B2ρ(y) \ Ω, B4ρ(y)) ≥ capp(B2ρ(y) \ Ω, B( 4
3
+4)ρ(x))

≥ capp(B 2
3
ρ(x) \ Ω, B( 4

3
+4)ρ(x)).

(3.9)

Lemma 2.16 of [HKM93] provides the estimate

capp(B 2
3
ρ(x) \ Ω, B( 4

3
+4)ρ(x)) ≥ c capp(B 2

3
ρ(x) \ Ω, B 4

3
ρ(x)),

and hence the uniform p-thickness condition implies

capp(B 2
3
ρ(x) \ Ω, B( 4

3
+4)ρ(x)) ≥ cµ capp(B 2

3
ρ(x), B 4

3
ρ(x)). (3.10)
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According to (3.6), there exists a constant c > 0 such that

capp(B 2
3
ρ(x), B 4

3
ρ(x)) ≥ c capp(B2ρ(y), B4ρ(y)). (3.11)

A combination of (3.9), (3.10), and (3.11) implies the result. �

A uniformly p-thick domain has a deep self-improving property. This
result was shown by Lewis in [Lew88]. See also [Anc86] and [Mik96].

Theorem 3.12. Let 1 < p ≤ n. If a set E is uniformly p-thick, then

there exists a constant q = q(n, p, µ) such that 1 < q < p for which E
is uniformly q-thick.

A uniformly q-thick set is also uniformly p-thick for all p ≥ q. This is
a simple consequence of Hölder’s and Young’s inequalities. We prove
the claim for a compact set.

Lemma 3.13. If a compact set E is uniformly q-thick, then E is uni-

formly p-thick for all p ≥ q.

Proof: Choose x ∈ E and ρ such that 0 < ρ < ρ0, where ρ0 is the
constant in Definition 3.7. Denote Bρ = Bρ(x). By (3.6), we have

capp(Bρ, B2ρ) = cρn−p = cρq−p capq(Bρ, B2ρ),

where the constant in the last expression depends on n, p and q.

We choose g ∈ C∞
0 (B2ρ) such that g = 1 in E ∩Bρ. Consequently, g is

admissible in calculating the q-capacity for E ∩ Bρ, and thus Hölder’s
inequality implies

capq(E ∩ Bρ, B2ρ)

≤

∫

B2ρ

|∇g|q dx ≤ cρn(1−q/p)

(

∫

B2ρ

|∇g|p dx

)q/p

.

By the uniform q-thickness of E and the above estimates, we get

capp(Bρ, B2ρ) = cρq−p capq(Bρ, B2ρ)

≤ µ−1cρq−p capq(E ∩ Bρ, B2ρ)

≤ cρ(q−p)(1−n/p)

(

∫

B2ρ

|∇g|p dx

)q/p

.

Then we apply Young’s inequality and have

capp(Bρ, B2ρ) ≤ ερn−p + c

∫

B2ρ

|∇g|p dx.
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The first term on the right can be absorbed into the left side by choosing
ε > 0 small enough. The result follows by taking the infimum with
respect to g. �

Next we establish a well-known version of the Sobolev-type inequality
(see [Hed81], Chapter 10 of [Maz85] and also Lemma 3.1 of [KK94]).
Later, we combine this estimate with the boundary regularity condition
and obtain a boundary version of Sobolev’s inequality. We repeat the
proof for the convenience of the reader.

The proof uses quasicontinuous representatives of the Sobolev func-
tions. We call u ∈ W 1,p(Ω) p-quasicontinuous if for each ε > 0 there
exists an open set U , U ⊂ Ω ⊂ BR′ , such that capp(U,B2R′) ≤ ε, and
the restriction of u to the set Ω \ U is finite valued and continuous.

The p-quasicontinuous functions are closely related to the Sobolev space
W 1,p(Ω): For example, if u ∈ W 1,p(Ω), then u has a p-quasicontinuous
representative. In addition, the capacity can be written in terms of
quasicontinuous representatives.

From now on, we only consider the case p ≤ n for simplicity. This
restriction is only technical, but, in this way, we avoid repeating es-
sentially the same proofs with more complicated powers emerging from
the different versions of the Sobolev-Poincaré inequalities.

Lemma 3.14. Suppose that q ∈ (1, p) and that u ∈ W 1,q(B2ρ) is q-
quasicontinuous. Denote

NBρ
(u) = {x ∈ Bρ : u(x) = 0}

and choose q̃ ∈ [q, q∗], where q∗ = qn/(n − q). Then there exists a

constant c = c(n, q) > 0 such that
(

∫

B2ρ

|u|q̃ dx

)1/q̃

≤

(

c

capq(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|q dx

)1/q

.

Proof: First, assume that uB2ρ
=
∫

B2ρ
u(x) dx 6= 0. Then choose

φ ∈ C∞
0 (B2ρ) such that φ = 1 in Bρ and |∇φ| ≤ c/ρ. We define

v = φ(uB2ρ
− u).

Clearly, v ∈ W 1,q
0 (B2ρ) is q-quasicontinuous and

v = uB2ρ
− u in Bρ.

Furthermore,
∫

B2ρ

|∇v|q dx ≤ c

∫

B2ρ

|∇u|q dx (3.15)

due to Poincaré’s inequality.



Global higher integrability 17

The variational q-capacity of a set E ⊂ Bρ can be written in the form

capq(E,B2ρ) = inf
g

∫

B2ρ

|∇g|q dx,

where g ∈ W 1,q
0 (B2ρ) is q-quasicontinuous and g ≥ 1 in E, except on a

set of q-capacity zero (see, for example, pages 75 and 66 of [MZ97]). It
follows that

∫

B2ρ

∣

∣∇v/uB2ρ

∣

∣

q
dx ≥ capq(NBρ

(u), B2ρ)

since v/uB2ρ
= 1 in NBρ

(u), and hence

∣

∣uB2ρ

∣

∣ ≤

(

1

capq(NBρ
(u), B2ρ)

∫

B2ρ

|∇v|q dx

)1/q

. (3.16)

The triangle inequality, (3.16), Poincaré’s inequality, and (3.15) lead to
(

∫

B2ρ

|u|q̃ dx

)1/q̃

≤

(

∫

B2ρ

|uB2ρ
− u|q̃ dx

)1/q̃

+
∣

∣uB2ρ

∣

∣

≤ c

(

ρq−n

∫

B2ρ

|∇u|q dx

)1/q

+

(

1

capq(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|q dx

)1/q

.

Since NBρ
(u) ⊂ Bρ, estimate (3.6) implies

capq(NBρ
(u), B2ρ) ≤ cρn−q,

and, consequently,
(

∫

B2ρ

|u|q̃ dx

)1/q̃

≤

(

c

capq(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|q dx

)1/q

.

If uB2ρ
= 0, the claim follows immediately from Poincaré’s inequality.

�

In the same way, we could prove that the above estimate holds if the
powers on both sides are replaced by p.

Lemma 3.17. Suppose that u ∈ W 1,p(B2ρ) is p-quasicontinuous and

let NBρ
(u) be as above. Then there exists a constant c = c(n, p) > 0

such that
(

∫

B2ρ

|u|p dx

)1/p

≤

(

c

capp(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|p dx

)1/p

.
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In order to derive a reverse Hölder inequality, we estimate the right
hand side of Caccioppoli’s inequality in terms of the gradient. A natural
idea is to use Sobolev’s inequality, but there is a principal difficulty in
the parabolic case: We assume little regularity for a weak solution
u in the time direction, and Sobolev’s inequality is not applicable in
space-time cylinders as such. Nevertheless, weak solutions satisfy the
following version of parabolic Sobolev’s inequality.

Lemma 3.18 (parabolic Sobolev). Let u be a global solution with the

boundary and initial conditions (3.1). Suppose that R
n \Ω is uniformly

p-thick. Let θ > 0 and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R
n+1 such that

B 4
3
ρ(x0) \ Ω 6= ∅. Further, choose M such that ρ < M . Then there

exists a constant c = c(n, p,M, µ, ρ0, α, β) > 0 so that

ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2 dx

≤ cρn+2

(

1
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|p dz

)2/p

+ c

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|p dz + c

∫

Q4ρ,θ(4ρ)2∩D

fp dz,

where f =
(

|ϕ′|p/(p−1) + |∇ϕ|p
)1/p

.

Proof: In order to prove the claim, we estimate the right hand side
of Caccioppoli’s inequality by applying Lemma 3.17 and the uniform
capacity density condition.

Lemma 3.2 provides the estimate

ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2 dx

≤
c

θρ2

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz +
c

ρp

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

+ c

∫

Q4ρ,θ(4ρ)2∩D

fp dz.

(3.19)

We extend u(·, t)−ϕ(·, t) by zero outside of Ω and use the same notation
for the extension. For a given t, we denote

NB2ρ
(u − ϕ) = {x ∈ B2ρ : u(x, t) − ϕ(x, t) = 0}.
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We estimate the first term on the right side of (3.19) by using Hölder’s
inequality and Lemma 3.17. Consequently,

c

θρ2

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz

≤
c

θρ2

∫

Λ
θ(4ρ)2∩(0,T )

ρn

(

1

|B4ρ|

∫

B4ρ

|u − ϕ|p dx

)2/p

dt

≤
cρn

θρ2

∫

Λ
θ(4ρ)2∩(0,T )

(

1

capp(NB2ρ
(u − ϕ), B4ρ)

∫

B4ρ

|∇(u − ϕ)|p dx

)2/p

dt.

Since R
n \Ω is uniformly p-thick and B 4

3
ρ(x0) \Ω 6= ∅, we conclude by

Lemma 3.8 and (3.6) that

capp(NB2ρ
(u − ϕ), B4ρ(x0)) ≥ µ̃ capp(B2ρ(x0), B4ρ(x0)) = cρn−p

for almost every t ∈ [0, T ]. Notice that this estimate still holds true
if we redefine u(·, t) − ϕ(·, t) in a set of measure zero in Ω. Next we
merge the estimates and obtain

c

θρ2

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz

≤ cρn+2

(

1
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|p dz

)2/p

.

A similar calculation can be repeated for the second term on the right
hand side of (3.19), and thus the result follows. �

One of the difficulties in proving the main result is the fact that both
powers 2 and p play a role in the above inequalities. For example, if
we simply divide the term

c

ρp

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

into two parts, as in the quadratic case (see [GS82]), powers do not
match. Therefore, we derive a Sobolev-type lemma that takes both
powers into account. We again work out the proof in the case p ≤ n
for simplicity.

Lemma 3.20. Let u be a global solution with the boundary and initial

conditions (3.1). Suppose that R
n \ Ω is uniformly p-thick. Let θ > 0

and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R
n+1 such that B 4

3
ρ(x0) \ Ω 6= ∅.

Then there exist constants q̃ = q̃(n, p, µ) < p and c = c(n, p, µ, ρ0) > 0
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such that

1
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|q̃ dz

)q/q̃

·

(

ess sup
t∈Λ

θ(4ρ)2∩(0,T )

∫

B4ρ∩Ω

|u − ϕ|2 dx

)q/n

,

where q = pn/(n + 2).

Proof: The proof is based on Hölder’s and Sobolev’s inequalities. We
set

v(x, t) = |u(x, t) − ϕ(x, t)| ,

and employ Hölder’s inequality to obtain
∫

B4ρ∩Ω

vp dx =

∫

B4ρ∩Ω

v2p/(2+n)vp−2p/(2+n) dx

≤

(

∫

B4ρ∩Ω

v2 dx

)q/n(
∫

B4ρ∩Ω

vq∗ dx

)q/q∗

,

where q∗ = qn/(n−q) = np/(n+2−p). Observe that q∗ is well defined
provided that p < n + 2. This condition is satisfied since we assumed
that p ≤ n.

We extend v(·, t) by zero outside of Ω and use the same notation for
the extension. Let q̃ ≥ q be fixed later and set q̃∗ = q̃n/(n − q̃).
Furthermore, for a given t, denote

NB2ρ
(v) = {x ∈ B2ρ : v(x, t) = 0}.

According to Hölder’s inequality and Lemma 3.14, we get
(

∫

B4ρ∩Ω

vq∗ dx

)q/q∗

≤ cρnq/q∗

(

1

|B4ρ|

∫

B4ρ

vq̃∗ dx

)q/q̃∗

≤ cρnq/q∗

(

1

capq̃(NB2ρ
(v), B4ρ)

∫

B4ρ

|∇v|q̃ dx

)q/q̃

.

(3.21)

Notice that the assumption q̃ < p ≤ n is used here. In the case q̃ > n,
we should use a different version of Sobolev’s inequality.
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To continue, we would like to use the uniform capacity density con-
dition, but this is not immediately possible since q̃ < p and since we
only assumed that the complement of the domain is uniformly p-thick.
Nevertheless, Theorem 3.12 asserts that the density condition satisfies
the self-improving property. This, together with Lemma 3.8 and (3.6),
implies

capq̃(NB2ρ
(u − ϕ), B4ρ) ≥ µ̃ capq̃(B2ρ, B4ρ) = cρn−q̃,

for almost every t and for large enough q̃ < p. We combine this capacity
estimate with (3.21) and conclude that

(

∫

B4ρ∩Ω

vq∗ dx

)q/q∗

≤ cρn

(

∫

B4ρ

|∇v|q̃ dx

)q/q̃

.

Collecting the estimates, we arrive at

1

|B4ρ|

∫

B4ρ∩D

vp dx

≤ c

(

∫

B4ρ

v2 dx

)q/n(

1

|B4ρ|

∫

B4ρ∩D

|∇v|q̃ dx

)q/q̃

.

The claim follows by integrating this estimate with respect to time and
using Hölder’s inequality. �

4. Reverse Hölder inequalities near the lateral

boundary

In this section, we derive a reverse Hölder inequality for the gradient
of a solution near the lateral boundary and show that this inequality
has a self-improving property. We first apply the estimates from the
previous section in scaled space-time cylinders and later use covering
arguments to extend the results to general cylinders. The scaling takes
both the nonlinearity and the boundary effects into account.

Lemma 4.1 (reverse Hölder). Let u be a global solution with the

boundary and initial conditions (3.1). Suppose that R
n \Ω is uniformly

p-thick. Let λ > 0, set θ = λ2−p, and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂
R

n+1 such that B 4
3
ρ(x0) \ Ω 6= ∅. Further, choose M such that ρ < M

and suppose that there exists a constant c1 ≥ 1 for which

c−1
1 λp ≤

1

|Qρ,θρ2|

∫

Q
ρ,θρ2∩D

(

|∇u|p + fp
)

dz

≤
c1

∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

(

|∇u|p + fp
)

dz ≤ c2
1λ

p,

(4.2)
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where f =
(

|∇ϕ|p + |ϕ′|p/(p−1) )1/p
. Then there exist constants c =

c(n, p, c1, µ, ρ0,M, α, β) > 0 and q̃ = q̃(n, p, µ) < p such that

1
∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q
ρ,θρ2∩D

|∇u|p dz

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇u|q̃ dz

)p/q̃

+
c

∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

fp dz.

Proof: The idea in the proof is to estimate the terms on the right
hand side of Caccioppoli’s inequality with the gradient by using the
parabolic and capacity versions of Sobolev’s inequality. The scaling of
the time direction is used in absorbing the additional terms into the
left.

Recalling Lemma 3.2, we have

1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

(

|∇u|p + fp
)

dz

≤
c

θρ2
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz

+
c

ρp
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

+
c

∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

fp dz.

(4.3)

Since p ≥ 2 and θ = λ2−p, we may estimate the first term on the right
in terms of the second by using Hölder’s and Young’s inequalities. We
conclude that

c

θρ2
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|2 dz

≤ cλp−2

(

1

ρp
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

)2/p

≤ λpε +
c

ρp
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz,

(4.4)

and hence it is enough to estimate the second term on the right hand
side of (4.3).
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In view of Lemma 3.20, there exists a constant q̃ < p such that

1
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|q̃ dz

)q/q̃

·

(

ess sup
t∈Λ

θ(4ρ)2∩(0,T )

∫

B4ρ

|u − ϕ|2 dx

)q/n

.

(4.5)

Furthermore, Lemma 3.18 allows us to estimate

ess sup
t∈Λ

θ(4ρ)2∩(0,T )

∫

B4ρ∩Ω

|u − ϕ|2 dx

≤ cρn+2

(

1
∣

∣Q16ρ,θ(16ρ)2
∣

∣

∫

Q16ρ,θ(16ρ)2∩D

|∇(u − ϕ)|p dz

)2/p

+ c

∫

Q16ρ,θ(16ρ)2∩D

|∇(u − ϕ)|p dz + c

∫

Q16ρ,θ(16ρ)2∩D

fp dz

≤ cρn+2λ2,

(4.6)

where we also used assumption (4.2) and the scaling θ = λ2−p.

Young’s inequality, (4.5), and (4.6) imply

c

ρp
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|u − ϕ|p dz

≤
c

ρp

(

1
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|q̃ dz

)q/q̃
(

ρn+2λ2
)q/n

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|q̃ dz

)p/q̃

+ ελp

since ρ−p = ρ−(n+2)q/n. We combine the previous estimate with (4.3)
and (4.4). Thus, we deduce

1

|Qρ,θρ2|

∫

Q
ρ,θρ2∩D

(

|∇u|p + fp
)

dz

≤ 2ελp +

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇(u − ϕ)|q̃ dz

)p/q̃

+
c

∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

fp dz.
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By assumption (4.2), we have

c−1
1 λp ≤

1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

(

|∇u|p + fp
)

dz,

and, as a consequence, we can choose ε > 0 small enough to absorb
2ελp into the left hand side. Finally, since (4.2) implies

1
∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

|∇u|p dz

≤
c

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

(

|∇u|p + fp
)

dz,

we have proven the claim. �

Next we prove that the reverse Hölder inequality has a self-improving
property. In the case p = 2, we could use the well-known Giaquinta-
Modica lemma, which can be found from [GM79] or [Gia83]. See also
[Geh73], [Str80], and [GS82]. Since p ≥ 2, we follow a different strategy:
We split the space-time domain into scaled cylinders so that the reverse
Hölder inequality holds in each of them.

We say that Q4R,(4R)2(x0, t0) intersects the lateral boundary if

Q4R,(4R)2(x0, t0) ∩ (∂Ω × [0, T ]) 6= ∅,

and that Q4R,(4R)2(x0, t0) intersects the initial boundary if

Q4R,(4R)2(x0, t0) ∩ (Ω × {0}) 6= ∅.

Furthermore, we denote

Ṽ p
δ(0, T ; Ω)

= {ϕ ∈ W 1,2(0, T ; L2(Ω)) ∩ Lp+δ(0, T ; W 1,p+δ(Ω)) :

ϕ ∈ C([0, T ]; L2(Ω)), ϕ(·, 0) ∈ W 1,q+δ(Ω)},

where δ > 0 and q = pn/(n + 2).

The proof of the following theorem quotes some initial boundary esti-
mates from Section 6. We postpone the proofs of these estimates in
order to provide the main result as early as possible.

Theorem 4.7. Let u be a global solution to (2.2), satisfying the bound-

ary and initial conditions (3.1) for a boundary function

ϕ ∈ Ṽ p
δ (0, T ; Ω),

where δ > 0. Suppose that R
n \Ω is uniformly p-thick and that R < M

for some M > 0. Choose QR,R2 = QR,R2(x0, t0) ⊂ R
n+1 such that

Q4R,(4R)2 intersects the lateral and initial boundaries. Then there exist
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constants ε0 = ε0(n, p,M, δ, ρ0, µ, α, β) > 0 and c > 0 with the same

dependencies such that for all 0 ≤ ε < ε0, we have

(

1

|QR,R2 |

∫

Q
R,R2∩D

|∇u|p+ε dz

)1/(p+ε)

≤

(

c

|B4R|

∫

B4R∩Ω

f̃ q+ε dx

)1/(q+ε)

+

(

c
∣

∣Q4R,(4R)2
∣

∣

∫

Q4R,(4R)2∩D

(

|∇u|p + fp+ε
)

dz

)1/(p+ε)

+

(

c
∣

∣Q4R,(4R)2
∣

∣

∫

Q4R,(4R)2∩D

(|∇u|p + fp) dz

)σ

,

where σ = (2 + ε)/(2(p + ε)), q = pn/(n + 2), f̃ = |∇ϕ(x, 0)|, and

f =
(

|∇ϕ|p + |ϕ′|p/(p−1) )1/p
.

Proof: The proof consists of several steps. First, we cover the space-
time cylinder with smaller Whitney-type cylinders. By using Whitney
cylinders, we are able to derive estimates with constants independent of
the location. Then we divide the space-time cylinder into a good and a
bad set. In the good set, the function |∇u|p is in control by definition,
and in the bad set, we can estimate the average of the gradient by using
the reverse Hölder inequality. The Calderón-Zygmund decomposition is
usually applied for this, but here we use a different strategy that seems
to work better in the parabolic setting with general growth conditions.
Finally, we obtain the higher integrability by using Fubini’s theorem.

We denote Q0 = Q4R,(4R)2(z0) = Q4R,(4R)2(x0, t0) and divide Q0 into
the Whitney-type cylinders

Qi = Qri,r2
i
(yi, τi), i = 1, 2, . . . ,

where ri is comparable to the parabolic distance of Qi to the ∂Q0 (see,
for example, page 15 of [Ste93]). Parabolic distance is defined to be

distp (E,F ) = inf
{

|x − x| + |t − t|1/2 : (x, t) ∈ E, (x, t) ∈ F
}

.

In addition, cylinders Qi are of bounded overlap, meaning that every
z belongs, at most, to a fixed finite number of cylinders, and

Q5ri,(5ri)2 ⊂ Q0.

The next step is to divide Q0 into a good and a bad set. We aim to
choose the scaling λ > 0 so that condition (4.2) holds in the cylinders
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having a center point in the bad set. To this end, set

λ′
0 =

(

1

|Q0|

∫

Q0∩D

(|∇u|p + fp) dz

)1/2

,

and choose λ such that

λ > max(λ′
0, 1) = λ0.

For (x, t) ∈ Q0 ∩ D, we define

h(x, t) =
1

c2 |Q0|
1/2

min{|Qi|
1/2 : (x, t) ∈ Qi} |∇u(x, t)| ,

where c2 ≥ 1 is fixed later. Further, choose (x̃, t̃) ∈ D such that

h(x̃, t̃) > λ

and fix Qi for which (x̃, t̃) ∈ Qi ∩ D. We define

α = α(x̃, t̃) =
|Q0|

|Qi|
,

and
θ = λ2−pα1−p/2.

If (x̃, t̃) belongs to many Whitney cylinders, any of them will do.

Next we show that the second inequality in condition (4.2) is valid due
to the definition of λ. For Qr,θr2 = Qr,θr2(x̃, t̃), ri/20 ≤ r ≤ ri, we
obtain

1

|Qr,θr2 |

∫

Q
r,θr2∩D

(|∇u|p + fp) dz

≤
c |Q0|

|Qi|θ

1

|Q0|

∫

Q0∩D

(|∇u|p + fp) dz

≤ c2
pαp/2λp,

where c2 is chosen to be large enough. The first inequality in (4.2) will
be valid for small cylinders due to Lebesgue’s differentiation theorem.
We arrive at

lim
r′→0

1

|Qr′,θr′2 |

∫

Q
r′,θr′2 (x̃,t̃)

(|∇u|p + fp) dz > c2
pαp/2λp,

which holds for almost every (x̃, t̃) ∈ Qi ∩D such that h(x̃, t̃) > λ. An
appropriate version of Lebesgue’s differentiation theorem is proven in
[Zyg34].

Observe that the integral above is continuous with respect to r. Fur-
thermore, the integral is less than or equal to c2

pαp/2λp for all r,
ri/20 ≤ r ≤ ri, and greater than c2

pαp/2λp for r small enough. Thus,
there exists ρ1, 0 < ρ1 ≤ ri/20, such that the integral equals c2

pαp/2λp

if r = ρ1. Moreover, for all larger values of r, the integral is less than
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or equal to c2
pαp/2λp. Consequently, there exists a constant c ≥ 1,

independent of the location, such that

c−1αp/2λp

≤
1

∣

∣

∣Qρ1,θρ2
1

∣

∣

∣

∫

Q
ρ1,θρ2

1
∩D

(|∇u|p + fp) dz

≤
c

∣

∣Q20ρ1,θ(20ρ1)2
∣

∣

∫

Q20ρ1,θ(20ρ1)2∩D

(|∇u|p + fp) dz ≤ c2αp/2λp.

(4.8)

Similar reasoning implies that there exists ρ2 < ρ1, 0 < ρ2 ≤ ri/20,
such that

c−1αp/2λp ≤
1

∣

∣

∣
Qρ2,θρ2

2

∣

∣

∣

∫

Q
ρ2,θρ2

2
∩D

|∇u|p dz

≤
c

∣

∣Q20ρ2,θ(20ρ2)2
∣

∣

∫

Q20ρ2,θ(20ρ2)2∩D

|∇u|p dz ≤ c2αp/2λp.

(4.9)

At this point, we remark that α, λ > 1, and, therefore, θ < 1 as well as
Q20ρ1,θ(20ρ1)2 ⊂ Q0.

If λ is replaced by α1/2λ, then (4.8) shows that condition (4.2) in
Lemma 4.1 holds with ρ1 whenever h(x̃, t̃) > λ and, further, θρ2 =
(α1/2λ)2−pρ2. If B 4

3
ρ1

(x̃) \ Ω 6= ∅, then Lemma 4.1 implies

1
∣

∣

∣Qρ1,θρ2
1

∣

∣

∣

∫

Q
ρ1,θρ2

1
∩D

|∇u|p dz

≤

(

c
∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩D

|∇u|q̃ dz

)p/q̃

+
c

∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩D

fp dz,

(4.10)

for some q̃ < p.

Assume then that B 4
3
ρ2

(x̃) \ Ω = ∅ and denote q = pn/(n + 2). If

Q 7
6
ρ2,θ( 7

6
ρ2)2 does not intersect the initial boundary, we obtain a local
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result

1
∣

∣

∣Qρ2,θρ2
2

∣

∣

∣

∫

Q
ρ2,θρ2

2
∩D

|∇u|p dz

≤ c





∣

∣

∣
Q 7

6
ρ2,θ( 7

6
ρ2)2

∣

∣

∣

−1
∫

Q 7
6 ρ2,θ( 7

6 ρ2)2
∩D

|∇u|q dz





p/q

≤

(

c
∣

∣Q4ρ2,θ(4ρ2)2
∣

∣

∫

Q4ρ2,θ(4ρ2)2∩D

|∇u|q̃ dz

)p/q̃

,

(4.11)

where Hölder’s inequality was applied in the last step. For the proof of
the local result, we refer to Lemma 3.4 in [KL00].

Next we quote a result from Section 6. If B 4
3
ρ2

(x̃) \ Ω = ∅ and if

Q 7
6
ρ2,θ( 7

6
ρ2)2 intersects the initial boundary, then we obtain an initial

boundary estimate

1
∣

∣

∣
Qρ2,θρ2

2

∣

∣

∣

∫

Q
ρ2,θρ2

2
∩D

|∇u|p dz

≤

(

c
∣

∣Q4ρ2,θ(4ρ2)2
∣

∣

∫

Q4ρ2,θ(4ρ2)2∩D

|∇u|q̃ dz

)p/q̃

+

(

c

|B4ρ2 |

∫

B4ρ2∩Ω

f̃ q dx

)p/q

,

(4.12)

where f̃ = |∇ϕ(x, 0)|. Due to our assumptions on the initial values, the
last term is well-defined. Actually, we derive this estimate in a slightly
different form in Lemma 6.1. Nonetheless, the same proof applies here
since ϕ ∈ C([0, T ]; L2(Ω)) and since (4.9) is available.

Let us now return to the case B 4
3
ρ1

(x̃) \ Ω 6= ∅. From (4.8), we obtain

c−1λp

≤
1

∣

∣

∣Qρ1,θρ2
1

∣

∣

∣

∫

Q
ρ1,θρ2

1
∩D

(

hp + α−p/2fp
)

dz

≤
c

∣

∣Q20ρ1,θ(20ρ1)2
∣

∣

∫

Q20ρ1,θ(20ρ1)2∩D

(

hp + α−p/2fp
)

dz ≤ c2λp

(4.13)
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since the volumes of all the Whitney cylinders intersecting Q20ρ1,θ(20ρ1)2

are comparable. In view of (4.10) and (4.13), we have

1
∣

∣Q20ρ1,θ(20ρ1)2
∣

∣

∫

Q20ρ1,θ(20ρ1)2∩D

hp + α−p/2fp dz

≤

(

c
∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩D

hq̃ dz

)p/q̃

+
c

∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩D

α−p/2fp dz.

(4.14)

We used (4.13) above and thus obtained a larger cylinder on the left
hand side. The cylinder Q20ρ1,θ(20ρ1)2 might intersect the boundary of
D even if Q4ρ1,θ(4ρ1)2 does not. On the other hand, the first term on
the right hand side also depends, in a sense, on the values near the
boundary since h(x̃, t̃) > λ.

Next we decompose Q0 into level sets. We define

G(λ) = {(x, t) ∈ Q0 ∩ D : h(x, t) > λ}

and

G̃(λ) = {(x, t) ∈ Q0 ∩ D : f(x, t) > λ}.

Since h(x, t) > λ in G(λ), we can use the previous estimates in G(λ).

Observe that

h(x, t) ≤ ηλ whenever (x, t) ∈ (Q4ρ1,θ(4ρ1)2 ∩ D) \ G(ηλ),

and

f(x, t) ≤ ηλ whenever (x, t) ∈ (Q4ρ1,θ(4ρ1)2 ∩ D) \ G̃(ηλ).

Furthermore, since

α−p/2 = (|Qi| / |Q0|)
p/2 ≤ 1,

we obtain by (4.14) that

1
∣

∣Q20ρ1,θ(20ρ1)2
∣

∣

∫

Q20ρ1,θ(20ρ1)2∩D

(

hp + α−p/2fp
)

dz

≤ cηpλp +

(

c
∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩G(ηλ)

hq̃ dz

)p/q̃

+
c

∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩G̃(ηλ)

fp dz.

(4.15)
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By Hölder’s inequality and (4.13), there exists a constant c ≥ 1 such
that

(

1
∣

∣Q4ρ1,θ(4ρ1)2
∣

∣

∫

Q4ρ1,θ(4ρ1)2∩D

hq̃ dz

)(p−q̃)/q̃

≤ cλp−q̃. (4.16)

To continue, we choose η > 0 small enough to absorb the first term
on the right hand side of (4.15) into the left. This is possible due to
(4.13). We combine the result with (4.16), multiply by

∣

∣Q20ρ1,θ(20ρ1)2
∣

∣,
and get

∫

Q20ρ1,θ(20ρ1)2∩D

hp dz ≤ cλp−q̃

∫

Q4ρ1,θ(4ρ1)2∩G(ηλ)

hq̃ dz

+ c

∫

Q4ρ1,θ(4ρ1)2∩G̃(ηλ)

fp dz.

(4.17)

If B 4
3
ρ2

(x̃) \ Ω = ∅ and if Q 7
6
ρ2,θ( 7

6
ρ2)2 does not intersect the initial

boundary, then we obtain a local version of the above estimate by
using (4.9) and (4.11). Consequently,

∫

Q20ρ2,θ(20ρ2)2∩D

hp dz ≤ cλp−q̃

∫

Q 7
6 ρ2,θ( 7

6 ρ2)2
∩G(ηλ)

hq̃ dz

≤ cλp−q̃

∫

Q4ρ2,θ(4ρ2)2∩G(ηλ)

hq̃ dz.

(4.18)

Finally, if B 4
3
ρ2

(x̃) \ Ω = ∅ and if Q 7
6
ρ2,θ( 7

6
ρ2)2 intersects the initial

boundary, then we obtain an initial boundary version by using (4.9)

and (4.12). Since
∣

∣Q20ρ2,θ(20ρ2)2
∣

∣

−1
= c |B4ρ2 |

−p/q, we deduce
∫

Q20ρ2,θ(20ρ2)2∩D

hp dz ≤ cλp−q̃

∫

Q4ρ2,θ(4ρ2)2∩G(ηλ)

hq̃ dz

+

(

c

∫

B4ρ2∩G(ηλ)

f̃ q dx

)p/q

,

(4.19)

where

G(ηλ) = {x ∈ B4R(x0) ∩ Ω : f̃(x) > ηλ}.

We consider this case in more detail in the proof of Theorem 6.6. Since
ρ2 < ρ1, either B 4

3
ρ2

(x̃) \Ω = ∅ and (4.9) holds, or B 4
3
ρ1

(x̃) \Ω 6= ∅ and

(4.8) holds. Thus, one of the above estimates is always available.

As a next step, we use a covering argument to extend the estimates to
the whole of G(λ). By Vitali’s covering theorem, we have a disjoint set
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of cylinders

{Q4ρ′i,θ(4ρ′i)
(z̃i)}

∞
i=1, z̃i ∈ G(λ), z̃i = (x̃i, t̃i) (4.20)

such that almost everywhere

G(λ) ⊂
∞
⋃

i=1

Q20ρ′i,θ(20ρ′i)
2(z̃i) ⊂ Q0,

and either (4.17), (4.18) or (4.19) holds in each of the cylinders. Then
we sum over i and obtain
∫

G(λ)

hp dz ≤
∞
∑

i=1

∫

Q20ρi,θ(20ρi)
2 (z̃i)∩D

hp dz

≤ c

∞
∑

i=1

(

λp−q̃

∫

Q4ρi,θ(4ρi)
2 (z̃i)∩G(ηλ)

hq̃ dz + bi

)

≤ cλp−q̃

∫

G(ηλ)

hq̃ dz + c

∫

G̃(ηλ)

fp dz + c

(∫

G(ηλ)

f̃ q dx

)p/q

,

(4.21)

where bi is either the lateral boundary term, initial boundary term, or
zero, depending on the corresponding estimate. When summing over
the initial boundary terms, we used the fact that p/q > 1.

The higher integrability result is now a consequence of (4.21) and Fu-
bini’s theorem. To see this, we integrate over G(λ0) and use (4.21)
together with Fubini’s theorem. Thus,

∫

G(λ0)

hp+ε dz =

∫

G(λ0)

(∫ h

λ0

ελε−1 dλ + (λ0)
ε

)

hp dz

= ε

∫ ∞

λ0

λε−1

∫

G(λ)

hp dz dλ + (λ0)
ε

∫

G(λ0)

hp dz

≤ c

∫ ∞

λ0

(

ελε−1+p−q̃

∫

G(ηλ)

hq̃ dz + ελε−1

∫

G̃(ηλ)

fp dz

+ ελε−1
(

∫

G(ηλ)

f̃ q dx
)p/q

)

dλ + (λ0)
ε

∫

G(λ0)

hp dz.

(4.22)

We estimate the right hand side in three parts. First, by Fubini’s
theorem, we see that

ε

∫ ∞

λ0

λε−1+p−q̃

∫

G(ηλ)

hq̃ dz dλ + (λ0)
ε

∫

G(λ0)

hp dz

= cε

∫

G(ηλ0)

∫ h/η

λ0

λε−1+p−q̃hq̃ dλ dz + (λ0)
ε

∫

G(λ0)

hp dz

≤
cε

ε + p − q̃

∫

G(ηλ0)

(

hε+pηq̃−p−ε − (λ0)
ε+p−q̃hq̃

)

dz + (λ0)
ε

∫

G(λ0)

hp dz.
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Since the second term in the first integral is negative, it follows that

cε

ε + p − q̃

∫

G(ηλ0)

(

hε+pηq̃−p−ε − λ0
ε+p−q̃hq̃

)

dz

≤
cε

ε + p − q̃

(∫

G(λ0)

hε+pηq̃−p−ε dz + (λ0)
ε

∫

G(ηλ0)\G(λ0)

hpηq̃−p−ε dz

)

≤
cε

ε + p − q̃

∫

G(λ0)

hε+p dz + c (λ0)
ε

∫

G(ηλ0)

hp dz,

where we also used the fact that λ0 ≥ h in G(ηλ0) \G(λ0). We end up
with

ε

∫ ∞

λ0

λε−1+p−q̃

∫

G(ηλ)

hq̃ dz dλ + (λ0)
ε

∫

G(λ0)

hp dz

≤
cε

ε + p − q̃

∫

G(λ0)

hε+p dz + c (λ0)
ε

∫

G(ηλ0)

hp dz.

(4.23)

Let us now estimate the lateral boundary term in (4.22). We utilize
Fubini’s theorem and obtain

ε

∫ ∞

λ0

λε−1

∫

G̃(ηλ)

fp dz dλ =

∫

G̃(ηλ0)

((f/η)ε − (λ0)
ε) fp dz

≤ c

∫

G̃(ηλ0)

f ε+p dz.

(4.24)

The initial boundary term in (4.22) can be estimated as

ε

∫ ∞

λ0

λε−1

(∫

G(ηλ)

f̃ q dx

)p/q

dλ

≤ cR2ε/(q+ε)

(∫

G(ηλ0)

f̃ q+ε dx

)(p+ε)/(q+ε)

.

(4.25)

A detailed calculation for the initial boundary term is presented in
(6.12).

Now we are ready to collect the estimates. We combine (4.23), (4.24),
and (4.25) with (4.22). Then we choose ε > 0 small enough to absorb
the term containing hp+ε into the left hand side and get

∫

G(λ0)

hp+ε dz ≤ c (λ0)
ε

∫

G(ηλ0)

hp dz + c

∫

G̃(ηλ0)

fp+ε dz

+ cR2ε/(q+ε)

(∫

G(ηλ0)

f̃ q+ε dx

)(p+ε)/(q+ε)

.

(4.26)

Notice that if the term we would like to absorb is infinite, then we can
replace h by hk = min{h, k}, k > λ0. Indeed, estimate (4.21) continues
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to hold in the form
∫

{hk>λ}

hp−q̃
k dµ ≤ cλp−q̃

∫

{hk>ηλ}

dµ

+ c

∫

G̃(ηλ)

fp dz + c

(∫

G(ηλ)

f̃ q dx

)p/q

,

(4.27)

where dµ = hq̃ dz. Then we use this estimate in the calculations start-
ing from (4.22) and end up with
∫

{hk>λ0}

hp−q̃+ε
k dµ ≤

cε

ε + p − q̃

∫

{hk>λ0}

hp−q̃+ε
k dµ

+ c (λ0)
ε

∫

{hk>ηλ0}

hp−q̃
k dµ + c

∫

G̃(ηλ0)

fp+ε dz

+ cR2ε/(q+ε)

(∫

G(ηλ0)

f̃ q+ε dx

)(p+ε)/(q+ε)

.

As a result, we can absorb the first term on the right hand side into
the left and then employ Lebesgue’s dominated convergence theorem
to let k → ∞. Thus, we obtain (4.26).

Since h ≤ λ0 in (Q0 ∩D) \G(λ0), estimate (4.26) extends to the whole
of QR,R2 ∩ D. Indeed,

∫

Q
R,R2∩D

hp+ε dz ≤ (λ0)
ε

∫

(Q0∩D)\G(λ0)

hp dz +

∫

G(λ0)

hp+ε dz

≤ c (λ0)
ε

∫

Q0∩D

hp dz + c

∫

Q0∩D

fp+ε dz

+ cR2ε/(q+ε)

(∫

B0∩Ω

f̃ q+ε dx

)(p+ε)/(q+ε)

.

We divide the estimate by |Q0| and apply the definition of h(z). Since
QR,R2 lies far away from the boundary of Q0 = Q4R,(4R)2 , there exists
c > 0, independent of R, such that

min{|Qi|
1/2 : (x, t) ∈ Qi}/ |Q0|

1/2 > c

for every (x, t) ∈ QR,R2 ∩ D. On the right hand side, we estimate

min{|Qi|
1/2 : (x, t) ∈ Qi}/ |Q0|

1/2 ≤ 1,

and, consequently,

1

|Q0|

∫

Q
R,R2∩D

|∇u|p+ε dz ≤
c (λ0)

ε

|Q0|

∫

Q0∩D

|∇u|p dz

+
c

|Q0|

∫

Q0∩D

fp+ε dz +

(

c

|B0|

∫

B0∩Ω

f̃ q+ε dx

)(p+ε)/(q+ε)

.
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Next we take the cut-off level into account. Remember that either

λ0 = 1 or λ0 = λ′
0.

The first case is clear. Moreover, if λ0 = λ′
0, then Young’s inequality

and the definition of λ′
0 leads to

1

|QR,R2 |

∫

Q
R,R2∩D

|∇u|p+ε dz ≤

(

c

|Q0|

∫

Q0∩D

|∇u|p dz

)(ε+2)/2

+

(

c

|Q0|

∫

Q0∩D

fp dz

)(ε+2)/2

+
c

|Q0|

∫

Q0∩D

fp+ε dz

+

(

c

|B0|

∫

B0∩Ω

f̃ q+ε dx

)(p+ε)/(q+ε)

.

This finishes the proof. �

5. Estimates near the initial boundary

This section provides estimates near the initial boundary Ω×{0}. Here
we compare the solution with its average instead of the boundary func-
tion, and the estimates become somewhat different. Furthermore, the
regularity of the lateral boundary does not play a role in the proofs,
and weaker assumptions on the initial data can be used.

We say that u is a weak solution to an initial value problem if u,
belonging to the parabolic space Lp(0, T ; W 1,p

loc (Ω)), satisfies (2.2) and
the initial condition

1

h

∫ h

0

∫

C

|u(x, t) − ϕ(x)|2 dx dt → 0 as h → 0, (5.1)

for all compact sets C ⊂ Ω and for a given initial value function ϕ ∈
W 1,2∗

loc (Ω). Here 2∗ = 2n/(n + 2).

The proof uses the weighted mean

uη
2ρ(t) =

∫

B2ρ
ηp(x, t)u(x, t) dx
∫

B2ρ
ηp(x, t) dx

,

instead of the standard mean

u2ρ(t) =

∫

B2ρ

u(x, t) dx.

The weighted mean should be close to the standard mean, and therefore
the weight η ∈ C∞

0 (Rn+1) is defined to be a cut-off function such that

spt η ⊂ Q2ρ,θ(2ρ)2(x0, t0), 0 ≤ η ≤ 1, and η = 1 in Qρ,θρ2(x0, t0),



Global higher integrability 35

where θ > 0. In addition,

sup
x∈B2ρ

η(x, t) ≤ c̃

∫

B2ρ

η(x, t) dx, t ∈ Λθ(2ρ)2(t0), (5.2)

where

Λθ(2ρ)2(t0) = (t0 −
1

2
θ(2ρ)2, t0 +

1

2
θ(2ρ)2).

The following lemma gives a useful connection between the standard
mean and the weighted mean.

Lemma 5.3. Suppose that B2ρ ⋐ Ω, let u(·, t) ∈ Lp
loc

(Ω), where p > 1,
and let η, uη

2ρ(t), u2ρ(t) be as above. Then there exists a constant

c = c(p, c̃) > 0 such that
∫

B2ρ

|u − u2ρ(t)|
p dx ≤ c

∫

B2ρ

|u − uη
2ρ(t)|

p dx

and
∫

B2ρ

|u − uη
2ρ(t)|

p dx ≤ c

∫

B2ρ

|u − u2ρ(t)|
p dx.

Here c̃ is the constant in (5.2).

Proof: Let us begin with the first inequality. We add and subtract
uη

2ρ(t), which leads to
∫

B2ρ

|u − uη
2ρ(t) + uη

2ρ(t) − u2ρ(t)|
p dx

≤ c

∫

B2ρ

|u − uη
2ρ(t)|

p dx + c |B2ρ|
∣

∣uη
2ρ(t) − u2ρ(t)

∣

∣

p

since p > 1. This implies the desired estimate since

|B2ρ|
∣

∣uη
2ρ(t) − u2ρ(t)

∣

∣

p
≤

∫

B2ρ

|uη
2ρ(t) − u|p dx

due to Hölder’s inequality.

To obtain the second inequality of the claim, we add and subtract
u2ρ(t). It follows that

∫

B2ρ

|u − uη
2ρ(t)|

p dx

≤ c

∫

B2ρ

|u − u2ρ(t)|
p dx + c|u2ρ(t) − uη

2ρ(t)|
p.
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Then we estimate the last terms on the right hand side by using the
definition of uη

2ρ(t), Hölder’s inequality, and assumption (5.2). We con-
clude that

|uη
2ρ(t) − u2ρ(t)| ≤

∫

B2ρ
|u − u2ρ(t)|η

p dx
∫

B2ρ
ηp dx

≤

(

supx∈B2ρ
η

∫

B2ρ
η dx

)p
∫

B2ρ

|u − u2ρ(t)| dx

≤ c̃p

(

∫

B2ρ

|u − u2ρ(t)|
p dx

)1/p

,

which completes the proof. �

When we employ Lemma 5.3 in deriving estimates, the constants in the
final estimates depend on c̃ in condition (5.2). Since this constant is
fixed as soon as the weight is fixed, we do not write out this dependency
explicitly.

From now on, we assume that the cut-off function η, defined at the
beginning of the section, also satisfies

ρ |∇η| + θρ2

∣

∣

∣

∣

∂η

∂t

∣

∣

∣

∣

≤ c. (5.4)

Next we derive a Caccioppoli-type inequality near the initial boundary.

Lemma 5.5 (Caccioppoli). Let u be a solution to an initial value

problem with the initial condition (5.1). Let θ > 0 and choose Qρ,θρ2 =
Qρ,θρ2(x0, t0) ⊂ R

n+1 such that B4ρ(x0) ⊂ Ω and 0 ∈ Λθ(2ρ)2(t0). Then

there exists a constant c = c(n, p, α, β) > 0 such that
∫

Q
ρ,θρ2∩D

|∇u|p dz + ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ

|u − uη
2ρ(t)|

2 dx

≤
c

θρ2

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
2 dz +

c

ρp

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz

+ c

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

,

where 2∗ = 2n/(n + 2) and D = Ω × (0, T ).

Proof: We may assume that Qρ,θρ2 ∩ D 6= ∅ since otherwise the claim
is trivial. We choose a test function

φε(x, t) = ηp(x, t)(uε(x, t) − uη
2ρ,ε(t))χ

h,ε
0,t1

(t), t1 ∈ Λθρ2 ∩ (0, T ),
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where uη
2ρ,ε(t) is the weighted average of uε and otherwise the notation

is the same as in Lemma 3.2.

Next we aim to estimate the first term of (2.3). To accomplish this, we
add and subtract uη

2ρ,ε(t)φ
′
ε to obtain

−

∫

D

uεφ
′
ε dz = −

∫

D

(uε − uη
2ρ,ε(t))φ

′
ε dz −

∫

D

uη
2ρ,ε(t)φ

′
ε dz. (5.6)

The last term in the above expression vanishes. To see this, we integrate
by parts, use the definition of uη

2ρ,ε(t), and have

−

∫

D

uη
2ρ,ε(t)φ

′
ε dz

=

∫ t1

0

χh,ε
0,t1

(t)

(

∫

B2ρ

uεη
p dx −

∫

B2ρ
ηp dx

∫

B2ρ
ηpuε dx

∫

B2ρ
ηp dx

)

(uη
2ρ,ε(t))

′ dt

= 0.

Let us then integrate the first term of (5.6) by parts, take limits, apply
the initial condition, and deduce for almost every t1 that

−

∫

D

uεφ
′
ε dz

→−
1

2

∫

Ω×(0,t1)

|u − uη
2ρ(t)|

2pηp−1η′ dz −
1

2

∫

B2ρ

|ϕ − ϕη
2ρ|

2ηp(x, 0) dx

+
1

2

∫

B2ρ

|u(x, t1) − uη
2ρ(t1)|

2ηp(x, t1) dx,

as first ε → 0 and then h → 0. See also the proof of Lemma 3.2. We
may now choose t1 ∈ Λθρ2 ∩ (0, T ) such that

1

2
ess sup

t∈Λ
θρ2∩(0,T )

∫

Bρ

|u − uη
2ρ(t)|

2ηp dx

≤

∫

B2ρ

|u(x, t1) − uη
2ρ(t1)|

2ηp(x, t1) dx.

Furthermore, we use Lemma 5.3 and Poincaré’s inequality to estimate

∫

B2ρ

|ϕ − ϕη
2ρ|

2 dx ≤ c

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

.

To continue, we estimate the second term of (2.3). We see that
∫

D

A(x, t,∇u)ε · ∇φε dz

→

∫

Ω×(0,t1)

A(x, t,∇u) ·
[

pηp−1∇η(u − uη
2ρ(t)) + ηp∇u

]

dz,
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as first ε → 0 and then h → 0.

Collecting the estimates, we end up with
∫

Ω×(0,t1)

A(x, t,∇u) · ηp∇u dz +
1

2
ess sup

t∈Λ
θρ2∩(0,T )

∫

Bρ

ηp|u − uη
2ρ(t)|

2 dx

≤ c

∫

Ω×(0,t1)

|u − uη
2ρ(t)|

2η |η′| dz + c

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

+

∫

Ω×(0,t1)

|A(x, t,∇u)| pηp−1 |∇η|
∣

∣u − uη
2ρ(t)

∣

∣ dz.

Finally, we complete the argument in a way similar to that used in the
proof of Lemma 3.2: We apply the growth bounds, Young’s inequality,
and assumption (5.4). Due to Lemma 5.3, we can replace the weighted
means by the standard means on the right hand side of the resulting
estimate. �

Next we prove a parabolic Poincaré-type inequality.

Lemma 5.7 (parabolic Poincaré). Let u be a solution to an ini-

tial value problem with the initial condition (5.1). Let θ > 0 and

choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R
n+1 such that B4ρ(x0) ⊂ Ω and

0 ∈ Λθ(2ρ)2(t0). Then there exists a constant c = c(n, p, α, β) > 0
such that

ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ

|u − uη
2ρ(t)|

2 dx ≤
c

θ

∫

Q2ρ,θ(2ρ)2∩D

|∇u|2 dz

+ c

∫

Q2ρ,θ(2ρ)2∩D

|∇u|p dz + c

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

,

where 2∗ = 2n/(n + 2).

Proof: We leave out the first term on the left hand side in Lemma 5.5
and have

ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ

|u − uη
2ρ(t)|

2 dx

≤
c

θρ2

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
2 dz

+
c

ρp

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz + c

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

.
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We may estimate the first term on the right hand side as

c

θρ2

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
2 dz

≤
c

θρ2

∫

Λ
θ(2ρ)2∩(0,T )

∫

B2ρ

|u − u2ρ(t)|
2 dx dt

≤
c

θ

∫

Λ
θ(2ρ)2∩(0,T )

∫

B2ρ

|∇u|2 dx dt,

by Poincaré’s inequality. Similar reasoning also implies

c

ρp

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz ≤ c

∫

Λ
θ(2ρ)2∩(0,T )

∫

B2ρ

|∇u|p dx dt,

which completes the proof. �

The following lemma helps us to combine Caccioppoli’s inequality with
parabolic Poincaré’s inequality. The proof is a straightforward appli-
cation of Hölder’s and Poincaré’s inequalities.

Lemma 5.8. Let u ∈ Lq(0, T ; W 1,q
loc

(Ω)), where q = pn/(2 + n). Let

θ > 0 and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R
n+1 such that B4ρ(x0) ⊂ Ω

and 0 ∈ Λθ(2ρ)2(t0). Then there exists a constant c = c(n, p) > 0 such

that
∫

Q
ρ,θρ2∩D

|u − uρ(t)|
p dz

≤ c

∫

Q
ρ,θρ2∩D

|∇u|q dz

(

ess sup
t∈Λ

θρ2∩(0,T )

∫

Bρ

|u − u2ρ(t)|
2 dx

)q/n

.

Proof: First, we apply Hölder’s inequality and obtain
∫

Bρ

|u − uρ(t)|
p dx

=

∫

Bρ

|u − uρ(t)|
2p/(2+n) |u − uρ(t)|

p−2p/(2+n) dx

≤

(

∫

Bρ

|u − uρ(t)|
2 dx

)q/n(
∫

Bρ

|u − uρ(t)|
q∗ dx

)q/q∗

,

where q∗ = qn/(n − q) = np/(n + 2 − p) is well-defined only when
q < n, that is, p < n + 2. The claim, nevertheless, is true for large
values of p as well. To prove the result for p ≥ n + 2, we should use
Poincaré’s inequality with the exponent 1 instead of q and then use
Hölder’s inequality once more.
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The previous estimate and Poincaré’s inequality lead to

∫

Bρ

|u − uρ(t)|
p dx ≤ c

∫

Bρ

|∇u|q dx

(

∫

Bρ

|u − uρ(t)|
2 dx

)q/n

.

We would like to have u2ρ(t) on the right hand side instead of uρ(t)
when applying this lemma. This can be obtained since
∫

Bρ

|u − uρ(t)|
2 dx ≤

∫

Bρ

|u − u2ρ(t) + u2ρ(t) − uρ(t)|
2 dx

≤ c

∫

Bρ

|u − u2ρ(t)|
2 dx + c |Bρ| |u2ρ(t) − uρ(t)|

2

and the last term can be estimated as

|u2ρ(t) − uρ(t)|
2 ≤

∣

∣

∣

∣

∣

∫

Bρ

(u2ρ(t) − u) dx

∣

∣

∣

∣

∣

2

≤

∫

Bρ

|u2ρ(t) − u|2 dx.

Combining the estimates, we have

∫

Bρ

|u − uρ(t)|
p dx ≤ c

∫

Bρ

|∇u|q dx

(

∫

Bρ

|u − u2ρ(t)|
2 dx

)q/n

.

The claim follows by integrating this inequality with respect to time.�

6. Reverse Hölder inequalities near the initial boundary

In this section, we show that the gradient is integrable to a higher power
near the initial boundary. First, we derive a reverse Hölder inequality
and then show that it has a self-improving property. We already have
used some estimates from this section in the proof of Theorem 4.7, but
now we work out the details. Observe that cylinders are not scaled
with respect to initial values, since this would not simplify the proof
here.

Lemma 6.1 (reverse Hölder). Let u be a solution to an initial value

problem with the initial condition (5.1). Let λ > 0, set θ = λ2−p,

and choose Qρ,θρ2 = Qρ,θρ2(x0, t0) ⊂ R
n+1 such that B40ρ(x0) ⊂ Ω and

0 ∈ Λθ(4ρ)2(t0). Suppose that there exists a constant c1 ≥ 1 for which

c−1
1 λp ≤

1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

|∇u|p dz

≤
c1

∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

|∇u|p dz ≤ c2
1λ

p.

(6.2)
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Then there exists a constant c = c(n, p, c1, α, β) > 0 such that

1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

|∇u|p dz

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

|∇u|q dz

)p/q

+ c

(

∫

B4ρ

|∇ϕ|q dx

)p/q

,

where q = np/(n + 2).

Proof: In view of Lemma 5.5, we have

1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

|∇u|p dz

≤
c

θρ2
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
2 dz

+
c

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz

+
c

θ

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

.

(6.3)

Since p ≥ 2 and θ = λ2−p, we can estimate the first term on the right
hand side in terms of the second in the same way as in (4.4). Thus, we
can concentrate on the second term of (6.3).

Recalling Lemma 5.8, we see that

1

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz

≤
c

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|∇u|q dz

· ess sup
t∈Λ

θ(2ρ)2∩(0,T )

(

∫

B2ρ

|u − uη
4ρ(t)|

2 dx

)q/n

.

We also applied Lemma 5.3 to manipulate the last part. The first inte-
gral is of the correct form, but the second integral should be estimated
from above by the gradient. To accomplish this, we apply Lemma 5.7,
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Hölder’s inequality, and assumption (6.2). This leads to

ess sup
t∈Λ

θ(2ρ)2∩(0,T )

∫

B2ρ

|u − uη
4ρ(t)|

2 dx

≤
c

θ

∫

Q4ρ,θ(4ρ)2∩D

|∇u|2 dz + c

∫

Q4ρ,θ(4ρ)2∩D

|∇u|p dz

+ c

(

∫

B4ρ

|∇ϕ|2∗ dx

)2/2∗

≤ cρn+2λ2 + c

(

∫

B4ρ

|∇ϕ|2∗ dx

)2/2∗

since θ = λ2−p and
∣

∣Q4ρ,θ(4ρ)2
∣

∣ = c θρn+2.

Collecting the facts, we end up with

1

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|u − uη
2ρ(t)|

p dz

≤
c

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|∇u|q dz

·



ρn+2λ2 +

(

∫

B4ρ

|∇ϕ|2∗ dx

)2/2∗




q/n

.

Observe that ρ−p = ρ−(n+2)q/n and, on the other hand, ρ−p = (ρ−n)2q/(2∗n).
Young’s inequality now implies

1

ρp
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|u − u2ρ(t)|
p dz

≤

(

c
∣

∣Q2ρ,θ(2ρ)2
∣

∣

∫

Q2ρ,θ(2ρ)2∩D

|∇u|q dz

)p/q

+ ε

(

∫

B4ρ

|∇ϕ|2∗ dx

)p/2∗

+ ελp.

(6.4)

Next we estimate the last term in (6.3). Since θ = λ2−p, we see by
Young’s and Hölder’s inequalities that

c

θ

(

∫

B2ρ

|∇ϕ|2∗ dx

)2/2∗

≤ ελp + c

(

∫

B4ρ

|∇ϕ|q dx

)p/q

. (6.5)

Moreover, the second term on the right hand side of (6.4) can be esti-
mated by the last term of (6.5) due to Hölder’s inequality.

Finally, we combine (6.3), (6.4), and (6.5), as well as recall the remark
after (6.3). Furthermore, we absorb the terms containing λp into the
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left by choosing ε > 0 small enough. This is possible due to assumption
(6.2). �

The previous lemma makes sense if the gradient of the initial value
function is integrable to the power pn/(n + 2) instead of p. Below, we
show that the reverse Hölder inequality has a self-improving property
in this case as well.

Theorem 6.6. Let u be a solution to an initial value problem with the

initial condition (5.1) and a given initial value function

ϕ ∈ W 1,q+δ
loc

(Ω),

where δ > 0 and q = pn/(n + 2). Let QR,R2(x0, t0) ⊂ R
n+1 be such

that B8R(x0) ⊂ Ω and 0 ∈ Λ(4R)2(t0). Then there exist constants ε0 =
ε0(n, p, α, β, δ) and c > 0 with the same dependencies such that for all

0 ≤ ε < ε0, we have

(

1

|QR,R2 |

∫

Q
R,R2∩D

|∇u|p+ε dz

)1/(p+ε)

≤ c

(∫

B4R

|∇ϕ|q+ε dx

)1/q+ε

+

(

c
∣

∣Q4R,(4R)2
∣

∣

∫

Q4R,(4R)2∩D

|∇u|p dz

)σ

+

(

c
∣

∣Q4R,(4R)2
∣

∣

∫

Q4R,(4R)2∩D

|∇u|p dz

)1/(p+ε)

,

where σ = (2 + ε)/(2(p + ε)).

Proof: The proof is partly similar to the proof of Theorem 4.7. The
main difference is in the choice of the level sets and in the calculations
concerning the boundary term. We shall focus our attention on the
changes.

We denote Q0 = Q4R,(4R)2(z0) = Q4R,(4R)2(x0, t0) and divide Q0 into
the Whitney-type cylinders

Qi = Qri,r2
i
(yi, τi), i = 1, 2, . . . ,

in the same way as in the proof of Theorem 4.7.

We choose

λ′
0 =

(

1

|Q0|

∫

Q0∩D

|∇u|p dz

)1/2

and

λ > max(λ′
0, 1) = λ0.
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Let h(x, t), α and θ be defined as in the proof of Theorem 4.7. Again,
we consider (x̃, t̃) ∈ Qi ∩ D such that

h(x̃, t̃) > λ.

Reasoning similar to that in Theorem 4.7 implies that, for almost all
such (x̃, t̃) and for Qρ,θρ2 = Qρ,θρ2(x̃, t̃), we obtain

c−1λp ≤
1

|Qρ,θρ2 |

∫

Q
ρ,θρ2∩D

hp dz

≤
c

∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

hp dz ≤ c2λp.

(6.7)

Notice also that θ < 1 and that

Q20ρ,θ(20ρ)2 ⊂ Q0.

Since the volumes of all the Whitney cylinders intersecting Q20ρ,θ(20ρ)2

are comparable and since

α−p/2 ≤ (|Qi| / |Q0|)
p/2 ≤ 1,

we conclude by Lemma 6.1 that

1
∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

hp dz

≤

(

c
∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩D

hq dz

)p/q

+ c

(

∫

B4ρ

|∇ϕ|q dx

)p/q

,

(6.8)

if 0 ∈ Λθ(4ρ)2(t̃). On the other hand, if 0 /∈ Λθ(4ρ)2(t̃), then we obtain a
local result without the boundary term by using similar methods as in
the proof of Lemma 6.1. See also (4.11).

Let us then consider the case 0 ∈ Λθ(4ρ)2(t̃). We define the level sets

G(λ) = {(x, t) ∈ Q0 ∩ D : h(x, t) > λ},

and
G(λ) = {x ∈ B4R(x0) : |∇ϕ(x)| > λ}.

Estimates (6.7) and (6.8) now imply

1
∣

∣Q20ρ,θ(20ρ)2
∣

∣

∫

Q20ρ,θ(20ρ)2∩D

hp dz ≤
cλp−q

∣

∣Q4ρ,θ(4ρ)2
∣

∣

∫

Q4ρ,θ(4ρ)2∩G(ηλ)

hq dz

+

(

c

|B4ρ|

∫

B4ρ∩G(ηλ)

|∇ϕ|q dx

)p/q

.
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For further details, we refer to (4.17).

Since q = pn/(n + 2) and θ < 1, we have

∣

∣Q4ρ,θ(4ρ)2
∣

∣ / |B4ρ|
p/q ≤ c.

Thus, if we multiply the previous estimate by
∣

∣Q20ρ,θ(20ρ)2
∣

∣, it follows
that

∫

Q20ρ,θ(20ρ)2∩D

hp dz ≤ cλp−q

∫

Q4ρ,θ(4ρ)2∩G(ηλ)

hq dz

+ c

(

∫

B4ρ∩G(ηλ)

|∇ϕ|q dx

)p/q

.

(6.9)

Let us now construct a Vitali covering for G(λ) (see (4.20)) such that
either (6.9) or the local estimate holds in each of the cylinders. Similarly
to (4.21), a summation over the covering implies

∫

G(λ)

hp dz ≤ cλp−q

∫

G(ηλ)

hq dz + c

(∫

G(ηλ)

|∇ϕ|q dx

)p/q

. (6.10)

Here we also used the fact that p/q > 1.

In much the same way as in the calculations starting from (4.22), we
obtain

∫

G(λ0)

hp+ε dz ≤
cε

ε + p − q

∫

G(λ0)

hε+p dz + c (λ0)
ε

∫

G(ηλ0)

hp dz

+ cε

∫ ∞

λ0

λε−1

(∫

G(ηλ)

|∇ϕ|q dx

)p/q

dλ.

(6.11)

Next we estimate the initial boundary term in (6.11). First, we divide
the term into two parts as

ε

∫ ∞

λ0

λε−1

(∫

G(ηλ)

|∇ϕ|q dx

)p/q

dλ

≤

(∫

G(ηλ0)

|∇ϕ|q dx

)p/q−1 ∫ ∞

λ0

ελε−1

∫

G(ηλ)

|∇ϕ|q dx dλ.
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Now we can apply Fubini’s theorem to estimate the second part. The
first part can be estimated by using Hölder’s inequality. It follows that

ε

∫ ∞

λ0

λε−1

(∫

G(ηλ)

|∇ϕ|q dx

)p/q

dλ

≤

(∫

G(ηλ0)

|∇ϕ|q dx

)p/q−1 ∫

G(ηλ0)

∫ |∇ϕ|/η

λ0

ελε−1 |∇ϕ|q dλ dx

≤ cR2ε/(q+ε)

(∫

G(ηλ0)

|∇ϕ|q+ε dx

)(p+ε)/(q+ε)

.

(6.12)

To continue, we merge (6.11) with (6.12) and choose ε > 0 small enough
to absorb the term containing hp+ε into the left. If the term containing
hp+ε is infinite, then we can consider the truncated functions instead,
as in (4.27).

So far we have considered G(λ0), but the estimate extends to the whole
of Q0 ∩ D. Indeed,

hp+ε ≤ λε
0h

p in (Q0 ∩ D) \ G(λ0),

and, consequently,

∫

Q0∩D

hp+ε dz ≤ c (λ0)
ε

∫

Q0∩D

hp dz

+ cR2ε/(q+ε)

(∫

B4R

|∇ϕ|q+ε dx

)(p+ε)/(q+ε)

.

(6.13)

Taking a smaller cylinder on the left side, we can estimate h by |∇u|.
Since q = pn/(n + 2), it follows that

|Q0|
−1 R2ε/(q+ε) = c |B0|

−(p+ε)/(q+ε) .

Thus, (6.13) implies

1

|Q0|

∫

Q0∩D

|∇u|p+ε dz ≤
c (λ0)

ε

|Q0|

∫

Q0∩D

|∇u|p dz

+ c

(∫

B4R

|∇ϕ|q+ε dx

)(p+ε)/(q+ε)

.

(6.14)
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The final step is to take the cut-off level into account. The case λ0 = 1
is again clear. Moreover, if λ0 = λ′

0, then Young’s inequality implies

1

|QR,R2 |

∫

Q
R,R2∩D

|∇u|p+ε dz

≤

(

c
∣

∣Q4R,(4R)2
∣

∣

∫

Q4R,(4R)2∩D

|∇u|p dz

)(ε+2)/2

+ c

(∫

B4R

|∇ϕ|q+ε dx

)(p+ε)/(q+ε)

.

This proves the claim. �
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