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caré inequality, quasiminimizer, quasisubminimizer, quasisuperminimizer, Rayleigh
quotient, Sobolev space, subminimizer, superminimizer.

Niko Marola: Variaatiolaskennan säännöllisyys- ja suppenemistuloksia metrises-
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Regularity and convergence results in the
calculus of variations on metric spaces

Niko Marola

1. Introduction

This dissertation is about the calculus of variations on metric measure spaces.
More precisely, we discuss regularity, stability and convergence of minimizers
of variational integrals in the metric setting; Harnack’s inequality and Har-
nack’s convergence principle for quasiminimizers of the p-Dirichlet integral
are studied. This section is devoted to giving a short overview of metric
spaces equipped with a doubling measure and supporting a weak Poincaré
inequality which is the framework of this treatise. It has been next to impos-
sible, as well as unnecessary, to include all the relevant material here, hence,
some additional results related to the topic are only appropriately cited.

1.1. Doubling metric spaces with a Poincaré inequality

Analysis in abstract metric spaces with no a priori smooth structure has been
developed in recent years. In particular, abstract Sobolev space theories have
been studied extensively. A short list, far from being exhaustive, includes
the papers by Cheeger [14], Heinonen–Koskela [35], Haj lasz [28], Haj lasz–
Koskela [30], Franchi et al. [20], Shanmugalingam [62, 63], Semmes [61], and
the books by Ambrosio–Tilli [1], Haj lasz–Koskela [31] and Heinonen [33].
More references will be given in the course of the overview.

Motivation for such an abstract formulation comes from applications to
Carnot–Carathéodory spaces and analysis on fractals, to mention only a few.
One of the advantages of the metric space setting is that a wide variety of
cases, such as manifolds, graphs, vector fields and groups, can be dealt with
using the same universal method. Moreover, methods used in this general
setup seem to open a new point of view in the Euclidean case also. By
brushing aside everything that is not really needed in arguments, it is easier
to see the essential phenomena behind the results and also obtain new results.

Tools required in these theories are a notion of first-order Sobolev space, a
doubling measure and a suitably formulated Poincaré inequality for elements
of such a space. The classical theory of Sobolev spaces is based on the notion
of distributional derivatives. More precisely, distributional derivatives are
defined in terms of an action on smooth functions via integration by parts.
Hence, in general metric spaces, an alternative way of defining Sobolev spaces
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2 Niko Marola

is needed. In cases where this mechanism can be defined, one can reasonably
consider, for example, variational problems, partial differential equations and
potential theory.

There are various approaches to the development of Sobolev-type spaces
on metric spaces. We apply a geometric approach via the notion of upper
gradients. (Cheeger [14] and Haj lasz [28] introduce alternative definitions
of Sobolev spaces on metric spaces. These definitions, however, lead to the
same space, see Shanmugalingam [62]. For a good survey of Sobolev-type
spaces on metric spaces, see Haj lasz [29].)

Definition 1.1. A nonnegative Borel-measurable function g is an upper gra-
dient of an extended real-valued function f on X if for all rectifiable paths
γ : [a, b] → X,

|f(γ(b)) − f(γ(a))| ≤

∫

γ

g ds

whenever both f(γ(a)) and f(γ(b)) are finite, and
∫

γ
g ds = ∞ otherwise.

A path (or a curve) in X is a continuous mapping from a compact interval,
moreover, a path is rectifiable if its length is finite. A path can thus be
parameterized by arc length.

In, e.g., Heinonen–Koskela [35] and Koskela–MacManus [48] upper gra-
dients have been studied. However, this concept has recently been collected
together independently by Cheeger [14] and Shanmugalingam [62, 63]. This
approach gives a first-order theory that allows for applications of varia-
tional methods in potential theory and partial differential equations, see,
e.g., Kinnunen–Shanmugalingam [47]. Primarily, this method provides met-
ric spaces analogs of the classical Sobolev spaces W 1,p for all values of p
between 1 and ∞. However, there is a class of metric spaces not covered
by this theory. In fact, the types of spaces for this approach that have non-
trivial content are those which support sufficiently rich families of rectifiable
paths. While this class includes a number of geometrically diverse examples,
it nevertheless rules out possibilities such as classical self-similar fractals, the
classical von Koch snowflake, for example, or other spaces lacking in rectifi-
able paths (except for the constant ones).

The framework is given by a metric space X = (X, d, µ) with a metric d
and a positive complete Borel regular measure µ such that 0 < µ(B) < ∞
for all balls B ⊂ X, where B = B(z0, r) := {z ∈ X : d(z, z0) < r}. The main
assumptions we make on the metric space X are:

1. the measure µ is doubling;

2. the space X supports a weak Poincaré inequality.

We want to emphasize that a notion of Sobolev space on metric spaces is
also reasonable enough without the requirement of a doubling condition and
a weak Poincaré inequality. With these very conditions, however, a host of



Regularity and convergence results in the calculus of variations 3

properties true in the Euclidean case hold true in abstract metric spaces as
well.

Let us comment these assumptions in brief.

Definition 1.2. The measure µ is said to be doubling if there exists a con-
stant cµ ≥ 1, called the doubling constant of µ, such that for all balls B
in X,

µ(2B) ≤ cµµ(B),

where 2B = B(z0, 2r).

By the doubling property there exists a lower bound for the density of the
measure. Indeed, if B(y, R) is a ball in X, z ∈ B(y, R) and 0 < r ≤ R < ∞,
then

µ(B(z, r))

µ(B(y, R))
≥ c

( r

R

)s

for s = log2 cµ and some constant c only depending on cµ. The exponent s
serves as a counterpart of the dimension related to the measure. We point
out that this is not the topological dimension of X, as it can be greater, and
it depends on the measure µ and the metric d. The dimensions may change
if we change the metric d.

Notice that the support of a nontrivial doubling measure is all the space
X.

A metric space is doubling if there exists a constant c < ∞ such that
every ball B(z, r) can be covered by c balls with radii 1

2
r. It is now easy to

see that every bounded set in a doubling metric space is totally bounded.
Then, the notion of doubling metric space is intrinsically finite-dimensional.
Moreover, a doubling metric space is proper (i.e., closed and bounded subsets
are compact) if and only if it is complete. Observe that a complete metric
space with a doubling measure is separable. Being proper is, furthermore, a
stronger condition than being locally compact, as Rn \{0} is locally compact
but not proper.

A metric space equipped with a doubling measure is doubling and, con-
versely, any complete doubling metric space can be equipped with a doubling
measure. There are, however, noncomplete doubling metric spaces that do
not carry doubling measures. See [33], pp. 82–83 and Chapter 13, for more
on doubling metric spaces.

Let us introduce the weak Poincaré inequality.

Definition 1.3. We say that X supports a weak (1, p)-Poincaré inequality
if there exist constants c > 0 and λ ≥ 1 such that for all balls B ⊂ X, all
measurable functions f on X and for all upper gradients g of f ,

∫

B

|f − fB| dµ ≤ c(diam B)

(
∫

λB

gp dµ

)1/p

,

where fB :=
∫

B
f dµ :=

∫

B
f dµ/µ(B). If λ = 1, then X supports a (1, p)-

Poincaré inequality.
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By the Hölder inequality, it is easy to see that, if X supports a weak
(1, p)-Poincaré inequality, then it supports a weak (1, q)-Poincaré inequal-
ity for every q > p. If X is complete and µ doubling then it is shown in
Keith–Zhong [42] that a weak (1, p)-Poincaré inequality implies a weak (1, q)-
Poincaré inequality for some q < p. Observe that a weak (1, 1)-Poincaré in-
equality is the strongest inequality in that it implies the weak (1, p)-Poincaré
inequality for every p > 1.

In Keith [41, Theorem 2], see also Heinonen–Koskela [36], it is shown that,
if a weak Poincaré inequality holds for all compactly supported Lipschitz
functions and their compactly supported Lipschitz upper gradients, then the
complete metric space X with a doubling measure supports a weak Poincaré
inequality.

Example 1.4. Let X = A ∪ B with A, B ⊂ Rn bounded open sets with
dist(A, B) > 0 and µ(A), µ(B) > 0, d Euclidean distance and µ the Lebesgue
measure. Then f = χA is Lipschitz continuous on X, |∇f | = 0, but

0 <

∫

X

|f − fX | dµ.

The example illustrates that a weak Poincaré inequality implies some kind
of connectedness. Moreover, the Poincaré inequality implies the quasiconvex-
ity of the complete metric space X, i.e., there exists a constant c ≥ 1 such
that every pair of points x and y in the space can be joined by a path whose
length is at most cd(x, y). Indeed, if the space X is doubling in measure
and supports a weak Poincaré inequality, then it is quasiconvex. See, e.g.,
Keith [41]; the proof in [41] is based loosely on the argument of Semmes, see
an exposition of Semmes’ argument in Cheeger [14, Appendix].

To outline the geometric properties of spaces dealt with in this work, it
is mentioned in passing that a quasiconvex and proper metric space can be
turned into a geodesic one. That is to say, such a space is bi-Lipschitz to a
geodesic metric space, see pp. 70–71 in Heinonen [33]. To digress slightly,
recall that metric space X is said to be geodesic if every pair of points x, y ∈ X
can be joined by a path whose length is the very distance between the points.

There are a host of examples of metric spaces equipped with a doubling
measure and satisfying a weak Poincaré inequality, see Ambrosio et al. [2],
Björn–Björn [7], Coulhon et al. [16] and Theorem 4 in Keith [41]. We list
here a few examples of such spaces.

Example 1.5.
1. Unweighted and weighted Euclidean spaces, i.e., spaces where the Lebes-

gue measure is replaced with a suitable absolutely continuous doubling
measure, see Heinonen et al. [34].

2. This example shows that the (local) dimension of the metric space is
not necessarily constant. Let X1 = [−1, 0], X2 = {z ∈ C : 0 ≤
Re z ≤ 1 and | arg z| ≤ π/4} and X = X1 ∪ X2. Further, let µ|X1

be
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the one-dimensional Lebesgue measure L1, and dµ|X2
= |z|−1 dL2, i.e.,

dµ|X2
= dr dθ in polar coordinates. It can be proved that µ is doubling

and that X satisfies the (1, 1)-Poincaré inequality, consult A. Björn [4].

3. Complete Riemannian manifolds with nonnegative Ricci curvature are
doubling and satisfy the (1, 1)-Poincaré inequality, see Buser [12] and
Saloff-Coste [60].

4. Many graphs have the following two properties: the counting measure
is doubling and a weak (1, p)-Poincaré inequality holds on the graph.
For the potential theory on such graphs, see, e.g., Holopainen–Soardi
[38], Shanmugalingam [64], Haj lasz–Koskela [31, Section 12] and the
references cited therein.

5. One of the central applications of the theory of Sobolev spaces on metric
spaces comes from Carnot–Carathéodory spaces and from the theory
of Sobolev spaces associated with a family of vector fields. We refer
the interested reader to the collection [3] of papers for a comprehensive
introduction to the Carnot–Carathéodory spaces and geometry.
In addition, Carnot groups are a special case of Carnot–Carathéodory
spaces. An important example of Carnot groups is the first Heisenberg
group H1 = C × R with the group operation

(z, t) · (z′, t′) = (z + z′, t + t′ + 2 Im z̄z′).

H1 is a doubling metric space and satisfies the (1, 1)-Poincaré inequal-
ity. The proof can be found in Heinonen [33, Theorem 9.27]. For an
extensive introduction to Carnot groups, see Folland–Stein [19]. See
also, e.g., Garofalo–Nhieu [22], Capogna–Garofalo [13], Jerison [39],
Heinonen [32], Manfredi [56] and the references therein.

6. Let us recall that a measure µ in X is called s-regular if there exist
two constants ci > 0, i = 1, 2, such that for every ball B(z, r) ⊂ X,
c1r

s ≤ µ(B(z, r)) ≤ c2r
s. If µ is s-regular then X is called an Ahlfors

s-regular space. Ahlfors s-regular spaces are particular examples of
doubling metric spaces in which there is also an upper bound for the
density of the measure. Moreover, there is also a control from below
on the dimension of the space; hence, there is a well-defined notion
of dimension that is constant on the whole space, see pp. 61–62 in
Heinonen [33].
Laakso [49] showed that, for every real number s > 1 there is an Ahlfors
s-regular space satisfying the (1, 1)-Poincaré inequality.

There is a myriad of literature regarding Sobolev spaces, Sobolev func-
tions, nonlinear potential theory and calculus of variations in metric spaces
equipped with a doubling measure and supporting a weak Poincaré inequal-
ity. In addition to above references, see the papers by A. Björn [5, 6], A.
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Björn et al. [8, 9], J. Björn [10], Buckley [11], Franchi et al. [21], Holopainen–
Shanmugalingam [37], Kallunki–Shanmugalingam [40], Kilpeläinen et al. [43],
Kinnunen–Martio [44, 45, 46], MacManus–Pérez [54], Shanmugalingam [64],
to name but a few, and the numerous references in these papers.

2. Calculus of variations on metric spaces

This section is an overview of papers [I]–[IV]. This dissertation deals with
the calculus of variations in doubling metric measure spaces supporting a
weak Poincaré inequality and its applications to nonlinear partial differen-
tial equations. We discuss regularity, stability and convergence results for
minimizers of variational integrals; Harnack’s inequality and Harnack’s con-
vergence principle are considered in connection with quasiminimizers of the
p-Dirichlet integral. In addition, we consider a nonlinear eigenvalue problem
in this setting.

Some of our results seem to be new even in the Euclidean setting, but
we study the question in metric spaces equipped with a doubling measure
and supporting a weak (1, p)-Poincaré inequality. We have chosen this more
general approach to emphasize the fact that the obtained properties hold in a
very general context. Indeed, our approach covers weighted Euclidean spaces,
Riemannian manifolds, Carnot–Carathéodory spaces, including Carnot groups
such as Heisenberg groups, and graphs, see Example 1.5.

2.1. Moser iteration for (quasi)minimizers

In [I] and [III], the Moser iteration is considered in connection with both
minimizers and quasiminimizers of the p-Dirichlet integral. We have chosen
this more general approach to emphasize the fact that the method itself holds
in a very general context. Paper [III] is a joint work with Anders Björn from
Linköping University.

Let Ω ⊂ Rn be a bounded open set and 1 < p < ∞. A function u ∈
W 1,p

loc
(Ω) is a Q-quasiminimizer, Q ≥ 1, of the p-Dirichlet integral in Ω if for

every open set Ω′
b Ω and for all ϕ ∈ W 1,p

0 (Ω′) we have
∫

Ω′

|∇u|p dLn ≤ Q

∫

Ω′

|∇(u + ϕ)|p dLn.

In the Euclidean case, the problem of minimizing the p-Dirichlet integral
∫

Ω

|∇u|p dLn

among all functions with given boundary values is equivalent to solving the
p-Laplace equation

− div(|∇u|p−2∇u) = 0.

A minimizer, or 1-quasiminimizer, is a weak solution of the p-Laplace equa-
tion. Being a weak solution is clearly a local property; however, being a
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quasiminimizer is not a local property, see Kinnunen–Martio [45]. The theory
for quasiminimizers, therefore, usually differs from the theory for minimizers.

Quasiminimizers were extensively studied by Giaquinta–Giusti, see [24]
and [25]. See also DiBenedetto–Trudinger [18], Tolksdorf [66] and Ziemer
[67]. The interest of this notion is mainly its unifying feature: it includes,
among other things, minimizers of variational integrals, solutions of elliptic
partial differential equations and systems, and quasiregular mappings.

Quasiminimizers have been used as tools in studying the regularity of
minimizers of variational integrals for quasiminimizers have a rigidity that
minimizers lack: the quasiminimizing condition applies to the whole class of
variational integrals at the same time. For example, if a variational kernel
F (x,∇u) satisfies the standard growth conditions

α|h|p ≤ F (x, h) ≤ β|h|p

for some 0 < α ≤ β < ∞, then the minimizers of
∫

F (x,∇u) are quasimin-
imizers of the p-Dirichlet integral. Apart from this, quasiminimizers have a
fascinating theory in themselves, see, for example, Kinnunen–Martio [45].

Giaquinta–Giusti [24, 25] proved several fundamental properties for quasi-
minimizers, including the interior regularity result that a quasiminimizer can
be modified on a set of measure zero so that it becomes Hölder continuous.
Moreover, higher integrability of the gradient and boundary continuity has
been studied. Some of these results have been extended to metric spaces,
see A. Björn [5], Björn–Björn [7], J. Björn [10], [45], Kinnunen–Shanmuga-
lingam [47].

In Rn, minimizers of the p-Dirichlet integral are known to be locally
Hölder continuous. This can be seen using either of the celebrated methods
by De Giorgi, see [17], and Moser, see [57] and [58]. See also, for example, the
books by Giaquinta [23], Giusti [27], Chen–Wu [15], Gilbarg–Trudinger [26],
Heinonen et al. [34], Maly–Ziemer [55].

Moser’s method gives Harnack’s inequality first and then Hölder continu-
ity follows from this in a standard way, whereas De Giorgi first proves Hölder
continuity and then Harnack’s inequality can be obtained as in DiBenedetto–
Trudinger [18].

At first sight, it seems that Moser’s technique is strongly based on the
differential equation, whereas De Giorgi’s method relies only on the mini-
mization property. In Kinnunen–Shanmugalingam [47] De Giorgi’s method
was adapted to the metric setting. They proved that quasiminimizers are
locally Hölder continuous, and satisfy the strong maximum principle and
Harnack’s inequality. The space was assumed to be complete, doubling in
measure and to support a weak (1, q)-Poincaré inequality for some q with
1 < q < p.

The purpose of the papers [I] and [III] is twofold. First, we shall adapt
Moser’s iteration technique to the metric setting, and, in particular, show
that the differential equation is not needed in the background for the Moser
iteration. On the other hand, we will study quasiminimizers and show that
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certain estimates, which are interesting in themselves, extend to quasimini-
mizers as well. We have not been able to run the Moser iteration for quasimin-
imizers completely, specifically because, there is one delicate step missing in
the proof of Harnack’s inequality using Moser’s method. This is the so-called
jumping over zero in the exponents related to the weak Harnack inequal-
ity. This is usually settled using the John–Nirenberg lemma for functions of
bounded mean oscillation. More precisely, one has to show that a logarithm
of a nonnegative quasisuperminimizer is a function of bounded mean oscilla-
tion. To prove this, the logarithmic Caccioppoli inequality, which has been
obtained only for minimizers, is needed. However, for minimizers we prove
Harnack’s inequality using the Moser iteration.

We will impose slightly weaker requirements on the space than in Kin-
nunen–Shanmugalingam [47]. They assume that the space is equipped with
a doubling measure and supports a weak (1, q)-Poincaré inequality for some
q < p. We only assume that the space supports a weak (1, p)-Poincaré
inequality (doubling is still assumed). It is noteworthy that according to
the result of Keith and Zhong [42], a complete metric space equipped with
a doubling measure that supports a weak (1, p)-Poincaré inequality admits
a weak (1, q)-Poincaré inequality for some q < p. However, our approach is
independent of the deep theorem of Keith and Zhong.

2.2. A nonlinear Rayleigh quotient on metric spaces

Article [II] is a joint work with Visa Latvala (University of Joensuu) and
Mikko Pere (University of Helsinki).

We study a nonlinear eigenvalue problem, i.e., the eigenvalue problem of
the p-Laplace equation on metric spaces. The problem is to find functions
u ∈ W 1,p

0 (Ω) that satisfy the equation

−div(|∇u|p−2∇u) = λ|u|p−2u, 1 < p < ∞, (2.1)

for some λ 6= 0 in a bounded domain (an open connected set) Ω ⊂ Rn. This
problem was apparently first studied by Lieb in [50], see also de Thelin [65].
The first eigenvalue λ1 = λ1(Ω) is defined as the least real number λ for
which the equation (2.1) has a non-trivial solution u ∈ W 1,p

0
(Ω), i.e., there is

u ∈ W 1,p
0 (Ω), u 6= 0, such that for all ϕ ∈ C∞

0 (Ω)

∫

Ω

|∇u|p−2∇u · ∇ϕ dLn = λ

∫

Ω

|u|p−2uϕ dLn.

The nontrivial solution u of (2.1) with λ = λ1 is called the first eigenfunction.
By approximation we may take any ϕ ∈ W 1,p

0
(Ω) as an admissible test func-

tion above. In particular, the choice ϕ = u implies that the first eigenvalue
is obtained by minimizing the Rayleigh quotient

λ1 = inf
u

∫

Ω
|∇u|p dLn

∫

Ω
|u|p dLn

(2.2)
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with u ∈ W 1,p
0 (Ω), u 6≡ 0. It can be proved that the minimization problem

(2.2) is equivalent to the corresponding Euler-Lagrange equation (2.1) with
λ = λ1.

In [II], we consider first eigenfunctions, i.e., solutions u of the eigen-
value problem (2.2), on a metric measure space X by replacing the standard
Sobolev space W 1,p

0
(Ω) with the Newtonian space N 1,p

0
(Ω). Since differential

equations are problematic in metric measure spaces, we use the variational
approach. This has been previously studied in Pere [59], where it is proved
that first eigenfunctions always exist in our setting and they have a locally
Hölder continuous representative. The proof of the Hölder continuity in [59]
is based on De Giorgi’s method. We continue the study of [59] by proving
that first eigenfunctions are bounded and nonnegative first eigenfunctions
satisfy Harnack’s inequality. The proof of the Harnack’s inequality uses the
Moser iteration, which was adapted to the metric setting in [I]. We also give
a simple proof for the continuity of eigenfunctions by combining the weak
Harnack estimates of the two different methods by De Giorgi and Moser.

The reader who wants to study this topic on bounded domains in Rn

would do well by reading the articles by Lindqvist [51, 52, 53], for example,
and checking the references cited therein.

2.3. Some convergence results for quasiminimizers

Paper [IV] is a joint work with Juha Kinnunen (University of Oulu) and
Olli Martio (University of Helsinki) and is about stability properties of Q-
quasiminimizers of the p-Dirichlet integral with varying Q in complete met-
ric spaces equipped with a doubling measure and supporting a weak (1, p)-
Poincaré inequality.

It is known that a sequence of locally bounded p-harmonic functions (con-
tinuous weak solutions of the p-Laplace equation) on a domain in Rn has a
locally uniformly convergent subsequence that converges to a p-harmonic
function on that domain, see Heinonen et al. [34]. The result has been ex-
tended to metric measure spaces by Shanmugalingam in [64].

In [IV], we prove the Harnack principle for Q-quasiminimizers with vary-
ing Q: an increasing sequence of Qi-quasiminimizers in a domain converge
locally uniformly, provided the limit function is finite at some point in that
domain, to a Q-quasiminimizer with

Q = lim inf
i→∞

Qi.

Moreover, we show that a sequence (ui) of Qi-quasiminimizers in a domain,
the sequence (ui) is supposed to be locally uniformly bounded below, has
a locally uniformly convergent subsequence that converges either to ∞ or a
Q-quasiminimizer on that domain.

Let (fi) be a uniformly bounded sequence of functions in an appropriate
Newton–Sobolev space such that fi → f as i → ∞. Furthermore, we consider
a sequence of Qi-quasiminimizers in a bounded domain with boundary data
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fi and we study the stability of Qi-quasiminimizers when Qi tends to 1. We
show that, in this case, the quasiminimizers converge locally uniformly to
the unique minimizer of the p-Dirichlet integral with boundary values f . In
the Euclidean case with the Lebesgue measure, we obtain convergence also
in the Sobolev norm.
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Hörmander type, J. Eur. Math. Soc. 5 (2003), 1–40.

[14] Cheeger, J., Differentiability of Lipschitz functions on metric measure
spaces, Geom. Funct. Anal. 9 (1999), 428–517.

[15] Chen, Y.-Z. and Wu, L.-C., Second Order Elliptic Equations and
Elliptic Systems, American Mathematical Society, 1991.



Regularity and convergence results in the calculus of variations 11

[16] Coulhon, T., Holopainen, I. and Saloff-Coste, L., Harnack in-
equality and hyperbolicity for subelliptic p-Laplacians with applications
to Picard type theorems, Geom. Funct. Anal. 11 (2001), 1139-1191.

[17] De Giorgi, E., Sulla differenziabilità e l’analiticità delle estremali degli
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