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Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics



Jan Brandts, Sergey Korotov, and Michal Kř́ıžek: Simplicial finite elements
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Abstract: Over the past fifty years, finite element methods for the appro-
ximation of solutions of partial differential equations (PDEs) have become
a powerful and reliable tool. Theoretically, these methods are not restricted
to PDEs formulated on physical domains up to dimension three. Although
at present there does not seem to be a very high practical demand for finite
element methods that use higher dimensional simplicial partitions, there are
some advantages in studying the methods independent of the dimension. For
instance, it provides additional insights into the structure and essence of
proofs of results in one, two and three dimensions. In this paper we review
some recent progress in this direction.
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1 Motivation

The Finite Element Method (FEM) is a successful and widely applicable nu-
merical method to approximate solutions of Partial Differential Equations
(PDEs) defined on a domain Ω ⊂ R

n [8, 13, 14]. In the FEM, Ω is usually
approximated by a face-to-face partition into simplices, after which functions
that are piecewise polynomial with respect to the partition are used to ap-
proximate the solution of the PDE. One of the simplest and therefore most
commonly used approximating functions are the continuous piecewise linear
functions. Notice that a linear function on an n-simplex is uniquely defined
by its values at the (n + 1) vertices of the simplex. Therefore, specifying
function values at each vertex in a face-to-face partition defines a continuous
piecewise linear function.

1.1 A brief state of the art

The FEM for PDEs in two and three space dimensions is by now not only
well understood, but also well coded and visualized for many different ap-
plications. Day by day, commercial software is becoming more popular and
user-friendly. For instance, the software package FEMLAB [18] from COM-
SOL, now further developed as COMSOL Multiphysics Modelling [16], can
be used by people who have only basic knowledge of the mathematical theory
behind the FEM. FEMLAB can already be run on a simple PC and provides
the user with easy-to-handle graphical user interfaces. Also mathematically,
much progress has been made in recent years. Starting as an engineering
tool, finite element theory is more and more embedded in pure mathemat-
ics, like in differential geometry. Even numerically more obscure areas in
mathematics like homology theory come into play. We refer to Arnold, Falk,
and Winter [3] for a good introduction into these concepts for the numerical
analyst with a limited background in this area. Another recent breakthrough
is the paper [29] by Stevenson who proved optimality of an adaptive finite
element method for elliptic equations, which is a topic that belongs to the
area of nonlinear approximation theory. Instead of a linear space of approx-
imating functions, one employs a manifold, such as all continuous piecewise
linear functions relative to any partition of a given fixed number of simplices.

1.2 Why higher dimensional finite elements?

Because of its success in two and three space dimensions, time may have
come to look ahead towards finite element applications in four or even more
spatial dimensions. Computational resources are rapidly becoming powerful
enough to realize four-dimensional simplicial finite elements, and potential
applications range from several areas in fundamental physics to financial
mathematics (see [12]). Apart from that, most finite element theory has
been developed independently of the spatial dimension. See for instance the
papers [25, 26] which define not only the Nédélec edge- and face-elements,
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but in principle also define their counterparts in arbitrary space dimension.
Moreover, and certainly not the least interesting reason to look at higher
dimensional finite elements is that taking a bird’s eye view may give further
insight in the finite element method in two and three space dimensions. In
fact, progress has been made by the authors of this paper in the following
areas:

• Supercloseness and superconvergence

• Strengthened Cauchy-Schwarz inequalities

• Angle conditions for regularity of FEM partitions

• Assuring the discrete maximum principle

• n-section of the path-n-simplex into path-subsimplices.

The latter result, which is in the area of computational geometry, gene-
ralizes the trisection of the path-tetrahedron into three path-subtetrahedra
described by Coxeter in [17]. Recall that a path n-simplex is a simplex having
a path of n mutually orthogonal edges.
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Figure 1. Cutting the path-n-simplex into (n + 1) path-subsimplices. The
n-section is the degenerate case that results from letting α1 tend to one.

In Figure 1, the decomposition of the right triangle into three right triangles,
and of the path-tetrahedron into four path-tetrahedra is depicted. This result
can be generalized to arbitrary dimension by induction.

Theorem ([11]). Each path n-simplex can be subdivided into (n + 1)
path-subsimplices.

The dissection into only n path-subsiplices results as a degenerate case.
The latter dissection can be applied recursively towards one of the two ver-
tices that lies on the longest edge of the original simplex. This enables us to
construct local refinements of simplicial partitions.

In each of the areas mentioned above, proofs have been formulated for
statements independent of the spatial dimension. Although the correspond-
ing statements in one, two, and three space dimensions were already known,
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their proofs in most cases look completely different for the different dimen-
sions that are under consideration. We believe that presenting dimension
independent proofs contributes to a better understanding of why the state-
ments hold. In this paper, we aim to convince the reader that this is the
case and outline the above statements. For further details, we refer to the
literature.

2 The Finite Element Method

To establish notations, but also as a courtesy to the reader who is not famil-
iar with the finite element method, we will briefly review the finite element
method for elliptic partial differential equations by means of a model prob-
lem, the Poisson equation. Let Ω ⊂ R

n be a bounded polytopic domain with
Lipschitz boundary ∂Ω. Denote the space of k times continuously differen-
tiable functions on Ω by Ck(Ω). Given f ∈ C0(Ω) we aim to find u ∈ C2(Ω)
such that

−∆u = f in Ω and u = 0 on ∂Ω. (1)

This is the classical formulation of the Poisson equation. We will now refor-
mulate it such that it becomes suitable for finite element discretization.

2.1 Weak formulation

Let v ∈ C1
0 (Ω), where

C1
0 (Ω) = {v ∈ C1(Ω) | v = 0 on ∂Ω}. (2)

Multiplying the first equation of (1) by v and integrating the resulting prod-
ucts over Ω gives, after application of Green’s formula, that

(∇u,∇v) = (f, v), (3)

where (·, ·) denotes the standard inner product, with associated norm, given
by

(v, w) =

∫

Ω

v · w dx and ‖v‖0 =
√

(v, v). (4)

Here, v ·w stands for the standard inner product between vectors, such that
the same notation can be used for inner products between scalar functions
and vector fields.

Conversely, consider the problem to find u ∈ C1
0 (Ω) such that (3) holds for

all v ∈ C1
0 (Ω). The classical solution u of (1) clearly solves this problem.

Moreover, it is easy to see that if w ∈ C1
0(Ω) is another solution, then

(∇(u − w),∇v) = 0 (5)

for all v ∈ C1
0(Ω) and in particular for v = u − w, from which we conclude

that ‖∇(u − w)‖0 = 0 and hence that u = w, since there are no non-zero
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constant functions in C1
0 (Ω).

If we equip C1
0(Ω) with the norm ‖ · ‖1 defined by

‖v‖1 =
√

‖v‖2
0 + ‖∇v‖2

0, (6)

we find that
∇ : [C1

0 (Ω), ‖ · ‖1] → [[C0(Ω)]n, ‖ · ‖0] (7)

is a continuous mapping between normed spaces. Hence, it has a unique
extension to the completions H1

0 (Ω) of C1
0(Ω) and (L2(Ω))n of (C0(Ω))n with

respect to their norms, which is called the weak gradient. If we now consider
the problem to find u ∈ H1

0 (Ω) such that (3) holds for all v ∈ H1
0 (Ω), then

using the same argument as above, we see that the classical solution of (1)
is the unique solution of that problem, called the weak formulation of the
Poisson equation.

2.2 Galerkin formulation

Let Vh be a finite dimensional subspace of H1
0 (Ω) and consider the problem

to find uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) (8)

for all vh ∈ Vh. This problem can be seen as an approximation of (3).

Let v1, . . . , vm be a basis for Vh. Then uh = α1u1 + · · · + αmvm and the
coordinates α1, . . . , αm of uh with respect to the basis can be solved from the
following linear system, which can be derived from (8) using the bilinearity
of inner products,







(∇v1,∇v1) . . . (∇vm,∇v1)
...

. . .
...

(∇v1,∇vm) . . . (∇vm,∇vm)













α1
...

αm






=







(f, v1)
...

(f, vm)






. (9)

Assume that (8), or equivalently, (9) has a solution. Then using the same
arguments as above for (3), we can prove it is unique. Contrary to (3), we
do not have a candidate for a solution. However, since we can easily see that
choosing f = 0 has uh = 0 as solution, and since we just argued that it is
unique, we see that the so-called stiffness matrix in (9) is injective. Since it is
square, it is non-singular. Thus, a unique solution exists for all f ∈ C0(Ω). In
fact, a unique solution exists for each f for which the right-hand side vector
in (9) exists, which is for each f ∈ H−1(Ω), the dual space of H1

0 (Ω).

2.3 Finite element approximation

Let T be a face-to-face partition of Ω into simplices S, and write Pk(S) for
the space of polynomials of degree k on S. One of the advantages of the weak
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formulation of the Poisson problem is, that it gives a much broader choice
for the subspace Vh than the formulation (3) in C1

0(Ω), since it can be shown
that

V k
h = {v ∈ C0(Ω) : v|S ∈ Pk(S) ∀S ∈ T } (10)

is a subspace of H1(Ω). Since the continuous piecewise polynomials have a
much simpler structure than the differentiable piecewise polynomials, this is
a substantial gain. Choosing such piecewise polynomial functions leads to
the Finite Element Method.

In the following, we will mostly deal with the choice k = 1, the continuous
piecewise linear functions. A convenient basis for this space is the nodal basis,
consisting of the functions from V 1

h that have value one at exactly one vertex
of the partition, and zero at all other vertices. Two convenient properties of
this basis are:

• The basis functions have small support, resulting in a sparse system
matrix in (9),

• The coordinates of v ∈ V 1
h with respect to this basis are its values at

the vertices.

The subscript h in V 1
h refers to the diameter of the largest simplex in the

partition with respect to which the space is defined.

3 Dimension independent results

In this section we review a number of dimension independent results.

3.1 Supercloseness and superconvergence

The continuous piecewise linear finite element approximation uh ∈ V 1
h of the

solution u of the Poisson problem (1) resulting from (8) can be compared
with other approximations of u from the same space V 1

h . Obvious candidate
is the linear interpolant L1

hu, which, for u smooth enough, is the function
from V 1

h that has the same values as u at the vertices of the partition.

It was shown that, under certain conditions, the convergence to zero of the
difference ∇uh−∇L1

hu measured in the L2-norm, is of higher order than both
discrete functions converge to the exact solution u, as depicted schematically
in Fig. 2. It is said that ∇uh and ∇L1

hu are superclose. Notice that since
uh is the projection of u onto V 1

h in the so-called energy inner product, the
difference u − uh is on purpose depicted orthogonal to the space V 1

h . To be
more explicit, supercloseness refers to results of the following type.
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Figure 2. Supercloseness of ∇uh and ∇L1
hu when measured in the

L2-norm.

Theorem ([12]). Let {Th}h→0 be a family of uniform partitions having
the additional property of regularity, which means that there exists a constant
C > 0 such that for all simplices S in each of the partitions we have that
Vol(S) ≥ Chn. Then if u belongs to the Sobolev space H3(Ω) and as h tends
to zero,

‖∇(uh − L1
hu)‖0 = O(h2), (11)

whereas only
‖∇(u − uh)‖0 = O(h) = ‖∇(u − L1

hu)‖0.

The earliest reference to this result in one space dimension, in which even
equality of uh and L1

hu occurs, is the paper [30] by Tong, although we sus-
pect the result has been longer. In two space dimensions, the 1969 paper
by Oganesjan and Ruhovets [27] is by now classical. The conditions for su-
percloseness in that paper are that u is three times weakly differentiable,
and that each pair of triangles in the partition that share an edge, form a
parallelogram. In three dimensions, the corresponding result was proved in
1980 by Chen in [15], and later by Goodsell in [20].

In the above-mentioned papers, it was not explicitly stated what the factual
reason for the supercloseness was. Closer investigations of the proofs showed
that there is a central property, independent of the dimension, that explains
the supercloseness. This property is that if a function vh ∈ V 1

h is direction-
ally differentiated along an edge, its constant derivative is the same on all
simplices that share this edge. If the set of these simplices is point-symmetric
with respect to its center of gravity, this leads to vanishing integrals of odd
functions on the set. For an illustration, see Fig. 3. Thus, it could be proved
in [12] that on simplicial partitions for which each internal edge is surrounded
by such a point-symmetric patch, supercloseness occurs, provided that u is
three times weakly differentiable. As a side product of the analysis, sim-
plicial partitions of polytopes Ω ⊂ R

n were constructed having the desired
properties.
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Figure 3. Point-symmetric patches in three space dimensions.

Supercloseness can be exploited as follows. The nodal interpolant L1
hu can,

since it shares values with u, be post-processed in the sense that by means
of sampling at the correct points in Ω, a higher order approximation of u

can be constructed. Similarly, its gradient ∇L1
hu can be post-processed into

a vector field in (V 1
h )n that is a higher order approximation of ∇u, see [23].

Now, since ∇uh is closer to ∇L1
hu than a simple triangle inequality shows, it

can be proved that applying the same post-processing scheme to ∇uh instead
of to ∇L1

hu leads to a higher order finite element approximation of ∇u than
∇uh itself, at a cost that is negligible compared to setting up a higher order
finite element method in V 2

h , or refining the partition. This higher order
approximation is then said to superconverge, and it can be used to estimate
the error a posteriori. For details on superconvergence, we refer to [24] and
the about one thousand references therein.

3.2 Strengthened Cauchy Schwarz inequalities

Consider a block-partitioned positive definite symmetric matrix A and its
block diagonal preconditioner K,

A =

(

A11 A12

A21 A22

)

, and K =

(

A11 0
0 A22

)

. (12)

It is well known that if there exists a non-negative number γ < 1 such that
for all v, z of the appropriate dimensions

v∗A12z ≤ γ
√

v∗A11v
√

z∗A22z, (13)

then the condition number κ(K−1A) of the block-diagonally preconditioned
matrix K−1A satisfies

κ(K−1A) ≤ 1 − γ

1 + γ
, (14)
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and that the block-Jacobi iteration to approximate the solution of a linear
system with system matrix A converges with the right-hand side of (14) as
error reduction factor.

In the finite element method, this property is exploited as follows. Let V 1
h be

the space of continuous piecewise linear functions relative to a partition T1

of Ω ⊂ R
n that are zero on ∂Ω, and W 1

h the corresponding space relative to
a refined partition T2 of Ω, or in other words,

V 1
h ⊂ W 1

h , and W 1
h = V 1

h ⊕ Z1
h, (15)

where we implicitly defined the complement space Z1
h of V 1

h in W 1
h . As a basis

for W 1
h we choose the set B1 of nodal basis functions for V 1

h corresponding
to internal vertices of T1, together with the set B2 of nodal basis functions
for W 1

h that correspond to internal vertices in T2 that are not in T1. This
naturally induces a block-partition of the finite element system matrix in (9)
in which the top-left block A11 is the finite element matrix for the space V 1

h

only. It can be shown that inequality (13) is equivalent to the requirement

|(∇vh,∇zh)| ≤ γ‖∇vh‖0‖∇zh‖0, (16)

on the coarse grid finite element space V 1
h and its complement Z1

h in the
fine grid space. It is easy to see that in the one-dimensional setting, this
inequality holds with γ = 0.

Figure 4. Orthogonality between derivatives of coarse grid basis function
vh and fine grid basis function zh.

Indeed, as depicted in Fig. 4, the support of a nodal basis function zh that
corresponds to a fine grid vertex lies entirely in an interval I on which the
derivative v′

h of the coarse grid nodal basis function vh is constant, and thus,

(v′
h, z

′
h) = v′

h|I
∫

I

z′hdx = 0. (17)

In two space dimensions, such orthogonality does not hold, mainly because
supports of fine grid basis functions stretch over two triangles on which the
gradient of vh takes different constant values. Nonetheless, in case of uniform
refinement of a triangulation T1 into a finer triangulation T2, Axelsson proved
in [4] that (16) holds with γ = 1

2

√
2.
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In Figure 5, uniform refinement is depicted: each triangle of the bold triangu-
lation is subdivided into four by connecting the three midpoints of the edges
of the triangle. The support of the fine grid basis function corresponding
to the smaller bullet overlaps two triangles in the support of the coarse grid
nodal basis function that belongs to the larger bullet.

Figure 5. Uniform refinement of a triangulation and (∇vh,∇zh) being
non-trivial.

In [6], Blaheta generalized this result to tetrahedral partitions of three-
dimensional domains. For this, it was necessary to define uniform refinement
in three dimensions. The value for γ found there is γ = 1

2

√
3. In the mean

time, many other papers appeared on the theme of strengthened Cauchy-
Schwarz inequalities, also for other types of PDEs and other FEM, see for
instance [1, 2, 5, 7].

To generalize the above to arbitrary space dimensions, let C = [0, 1]n be the
unit n-cube. Then C can be subdivided into n! simplices S of dimension n.
These simplices can be characterized as the sets

Sσ = {x ∈ R
n | 0 ≤ xσ(1) ≤ · · · ≤ xσ(n) ≤ 1}, (18)

where σ ranges over all n! permutations of the numbers 1 to n. For n = 3
this results in the partition of the cube into six tetrahedra as depicted in
Figure 6. Now, C can be trivially subdivided into 2n identical subcubes, and
each of the subcubes can be partitioned into n! simplices using the above idea
in its scaled form, resulting in a total of n!2n simplices. It can be verified
that this partition also constitutes a partition of each of the n! simplices Sσ

from (18) in which C could have been subdivided directly; hence we have a
way of subdividing the simplices of (18) into 2n smaller ones.

By computing the singular values of certain matrices derived from the
finite element matrices that belong to the coarse grid space and the fine
grid space, we were able to conjecture the following value for γn in n space
dimensions:

γn =

√

1 −
(

1

2

)n−1

, (19)

which for n ∈ {1, 2, 3} corresponds to the values reported above. For each
larger value of n, the statement can be directly verified by showing that γn
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is the largest root of a real polynomial of which the coefficients are known in
closed form. See [9] for details.

Figure 6. Partition of the cube into six tetrahedra according to (18).

3.3 Assembly of stiffness matrices and the discrete max-
imum principle

Let P = (p1| . . . |pn) be a non-singular n×n matrix, and let S be the simplex
with the origin p0 and p1, . . . , pn as vertices. Write Q = (q1| . . . |qn) for
P−∗ = (P−1)∗, then Q∗P = I shows that q∗j pi = 0 for j 6= i. Thus, qj is
orthogonal to the facet Fj of S opposite pj. Since q∗j pj = 1, both pj and qj

lie in the same half-space showing that qj is an inward normal to Fj. Now,
for j ∈ {0, . . . , n}, let `j be the linear function that has value one at pj and
value zero at pi, i 6= j. Clearly, for j 6= 0 we have that

`j : x 7→ q∗j x and qj = ∇`j. (20)

This leads to a natural definition of the remaining inward normal q0 to the
facet F0 from the fact that `0 + · · · + `n = 1. Writing e1, . . . , en for the
canonical basis vectors of R

n, setting

q0 = ∇`0 = −(q1 + · · · + qn) = −Qe, with e = e1 + · · · + en, (21)

is consistent: since `0 vanishes on F0, its gradient, being the direction of the
strongest increase in `0, is a normal to F0 and it points inward since `0(p0) = 1
is positive. Using the complete set of normals to the facets of the simplex,
we can now study angle properties and the discrete maximum principle. For
this, let a finite element partition T of Ω ⊂ R

n into simplices S1, . . . , S` be
given. Label the internal vertices of T by 1, . . . ,m and let v1, . . . , vm be the
corresponding nodal basis functions. Then notice that the global stiffness
matrix from (9) can be constructed as the sum

A =
∑̀

k=1

Ak, where Ak =







(∇v1,∇v1)Sk
. . . (∇vm,∇v1)Sk

...
. . .

...
(∇v1,∇vm)Sk

. . . (∇vm,∇vm)Sk






, (22)

where (·, ·)Sk
means that the integration takes place over Sk only. On each

Sk, only the (n + 1) nodal basis functions that correspond to the vertices
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of Sk are not identically zero, showing that Ak has at most (n + 1)2 non-
zero entries. Those entries are at the positions (i, j) in the matrix Ak with
i, j ∈ {k1, . . . , kn}, where the kj are the labels of the vertices of Sk. Now, let

Fk be an affine invertible transform of the reference simplex Ŝ spanned by
e1, . . . , en of R

n to Sk,
Fk(x) = zk + Pkx,

where zk ∈ R
n is one of the vertices of Sk and the columns of Pk the differences

of the other vertices with zk. The (n + 1) × (n + 1) matrix Ek = (ek
ij)

ek
ij =

∫

Sk

∇`i · ∇`j dS with i, j ∈ {v1, . . . , vn+1} (23)

is called the element stiffness matrix for the linear FEM, and its entries are
equal to the entries at the positions (i, j) with i, j ∈ {k1, . . . , kn} of Ak. From
the observations above we see, with Q∗

kPk = I and qk
0 defined similar as in

(21), that Ek equals

Ek =
[

qk
0 |Qk

]∗ [
qk
0 |Qk

]

Vol(Sk) =
[

qk
0 |Qk

]∗ [
qk
0 |Qk

] | det(Pk)|
n!

. (24)

Thus, the stiffness matrix A in (22) is assembled from local information
about the angles between the facets of the simplices S1, . . . , S`. Indeed, since
qk
0 , . . . , q

k
n are inward normals to the facets of Sk, we can define the dihedral

angle between two different facets F k
i and F k

j of Sk as the number αk
ij in ]0, π[

for which
αk

ij = π − γk
ij, (25)

where γk
ij ∈]0, π[ is the angle between qk

i and qk
j . Using this, and taking the

assembly of A in (22) into consideration, it is not difficult to prove that if
all dihedral angles in the partition are non-obtuse (i.e., right or acute), the
off-diagonal entries of A are all nonpositive. This is a sufficient condition
for various discrete maximum principles to hold. See [10, 21] for details.
Now, suppressing the indices k, recall that the volume of a simplex S can be
computed as

Vol(S) =
hj

n
Vol(Fj), j = 1, . . . , n, (26)

where hj is the heigth of S above the facet Fj. This height equals the magni-
tude of the inner product between the vector pj and the unit inward normal
to Fj, and thus

hj =
p∗jqj

‖qj‖
=

1

‖qj‖
. (27)

Hence, by combining (24)–(27) we find a geometric interpretation of the inner
product q∗i qj.

Theorem ([11]). In terms of the above notations we have that

q∗i qj = ‖qi‖‖qj‖ cos γij = −Vol(Fi)Vol(Fj)

[nVol(S)]2
cos αij for i 6= j (28)
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and

q∗i qi =
[ Vol(Fi)

nVol(S)

]2

.

This result was already derived for n = 2 in [19, 28] and for n = 3 in
[22], and thus represents another example of dimension independent results.
It can be compared with the following statement which is independent of
angles.

Theorem ([14, p. 201]). In terms of the above notations we have that

∫

S

vivj dx =
n!

(n + 2)!
(1 + δij)Vol(S),

where δij is Kroneker’s symbol.

4 Conclusions

In this paper we have argued that proving dimension-independent results in
the context of the finite element method may help to gain additional insight
in the statements that are proved. Therefore, instead of different proofs
for different dimensions, one proof for all dimensions seems to be preferred.
Examples were given in the area of superconvergence and supercloseness,
strengthened Cauchy-Schwarz estimates, computation of stiffness matrices,
and the discrete maximum principle.
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[11] J.H. Brandts, S. Korotov, and M. Kř́ıžek (2007). Dissection of the path-
simplex in R

n into n path-subsimplices. Linear Algebra Appl., 421:382–
393.
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[26] J.C. Nédélec (1986). A new family of mixed finite elements in R
3. Numer.

Math., 50:57–81.

[27] L.A. Oganesjan and L.A. Ruhovets (1969). Study of the rate of conver-
gence of variational difference schemes for second-order elliptic equations
in a two-dimensional field with a smooth boundary. Ž. Vyčisl. Mat. i
Mat. Fiz., 9:1102-1120.

[28] V. Ruas Santos (1982). On the strong maximum principle for some piece-
wise linear finite element approximate problems of non-positive type. J.
Fac. Sci. Univ. Tokyo Sect. IA Math., 29:473–491.

[29] R.P. Stevenson (2005). An optimal adaptive finite element method.
SIAM J. Numer. Anal. , 42(5):2188–2217.

[30] P. Tong (1969). Exact solutions of certain problems by finite-element
method. AIAA J., 7:178–180.

16



(continued from the back cover)

A511 Carlo Lovadina , Mikko Lyly , Rolf Stenberg

A posteriori estimates for the Stokes eigenvalue problem

February 2007

A510 Janos Karatson , Sergey Korotov

Discrete maximum principles for FEM solutions of some nonlinear elliptic inter-

face problems

December 2006

A509 Jukka Tuomela , Teijo Arponen , Villesamuli Normi

On the simulation of multibody systems with holonomic constraints

September 2006

A508 Teijo Arponen , Samuli Piipponen , Jukka Tuomela

Analysing singularities of a benchmark problem

September 2006

A507 Pekka Alestalo , Dmitry A. Trotsenko

Bilipschitz extendability in the plane

August 2006

A506 Sergey Korotov

Error control in terms of linear functionals based on gradient averaging tech-

niques

July 2006

A505 Jan Brandts , Sergey Korotov , Michal Krizek

On the equivalence of regularity criteria for triangular and tetrahedral finite

element partitions

July 2006

A504 Janos Karatson , Sergey Korotov , Michal Krizek

On discrete maximum principles for nonlinear elliptic problems

July 2006

A503 Jan Brandts , Sergey Korotov , Michal Krizek , Jakub Solc

On acute and nonobtuse simplicial partitions

July 2006



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are

available at http://www.math.hut.fi/reports/ .

A516 Sergey Repin , Rolf Stenberg

Two-sided a posteriori estimates for the generalized stokes problem

December 2006

A515 Sergey Korotov

Global a posteriori error estimates for convection-reaction-diffusion problems

December 2006

A514 Yulia Mishura , Esko Valkeila

An extension of the L’evy characterization to fractional Brownian motion

December 2006

A513 Wolfgang Desch , Stig-Olof Londen

On a Stochastic Parabolic Integral Equation

October 2006
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