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1 Introduction

The following self improving property of the reverse Hölder inequality is a
result of Gehring [3]. Assume that a non–negative locally integrable function
satisfies the inequality

(
∫

B

f pdx

)1/p

≤ c

∫

B

fdx (1.1)

for all balls B of R
n, for a constant c and 1 < p < ∞. Then there exists

ε > 0 such that
(
∫

B

f p+εdx

)1/p+ε

≤ c

∫

B

fdx (1.2)

for some other constant c. It is generally known that the theorem remains
true also in a metric space equipped with a doubling measure. However, the
proof is slightly difficult to find in the literature.

The subject has been studied for example by Fiorenza [2] as well as
D’Apuzzo and Sbordone [1], [10]. In Gianazza [4] it is shown that if a function
satisfies (1.1), then there exists ε > 0 such that

(
∫

X

f p+εdµ

)1/p+ε

≤ c

∫

X

fdµ (1.3)

for some constant c. The result is obtained in a space of homogeneous type,
provided that 0 < µ(X) < ∞. Also Kinnunen examines various minimal and
maximal inequalities and reverse Hölder inequalities in [8].

Likewise in a doubling metric measure space, Strömberg and Torchinsky
prove Gehring’s result under the additional assumption that the measure of
a ball depends continuously on its radius, see [11]. Zatorska–Goldstein [12]
proves a version of the lemma, where on the right–hand side there is a ball
with a bigger radius.

We present a proof of the Gehring lemma in a doubling metric measure
space. Our method is classical and intends to be as transparent as possi-
ble. In particular, we obtain the result for balls in the sense of (1.2) in the
metric setting instead of (1.3). The proof is based on a Calderón–Zygmund
type argument which produces a bigger ball on the right–hand side of (1.2).
However, the measure induced by a function satisfying the reverse Hölder
inequality turns out to be doubling.

As an application we study Jacobians of quasisymmetric mappings and
Muckenhoupt weights on metric spaces. As a corollary we prove higher
integrability of the volume derivative, where we follow the presentation of
Heinonen and Koskela [7]. Finally, we show that the Muckenhoupt class is
an open ended condition. The proof is classical.

2 General Assumptions

Let (X, d, µ) be a metric measure space equipped with a Borel regular mea-
sure µ such that the measure of every nonempty open set is positive and that
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the measure of every bounded set is finite.
Our notation is standard. We assume that a ball B in X comes always

with a fixed centre and radius, i.e. B = B(x, r) = {y ∈ X : d(x, y) < r} with
0 < r < ∞. We denote

uB =

∫

B

udµ =
1

µ(B)

∫

B

udµ,

and when there is no possibility for confusion we denote kB the ball B(x, kr).
We assume in addition that µ is doubling i.e. there exists a constant cd such
that

µ(B(x, 2r)) ≤ cdµ(B(x, r))

for all balls B in X. We refer to this property by calling (X, d, µ) a doubling
metric measure space. This is different from the concept of doubling space.
The latter is a property of the metric space (X, d), where all balls can be
covered by a constant number of balls with radius half of the radius of the
original ball. A doubling metric measure space is always doubling as a metric
space.

A good reference for the basic properties of a doubling metric measure
space is [6]. In particular, we will need two elementary facts. Concider a
ball containing disjoint balls such that their radii are bounded below. In
a doubling space the number of these balls is bounded. Secondly, µ being
doubling implies that for all pairs of radii 0 < r ≤ R the inequality

µ(B(x,R))

µ(B(x, r))
≤ cd

(

R

r

)Q

holds true for all x ∈ X. Here Q = log2 cd is sometimes called the doubling
dimension of (X, d, µ).

Throughout the paper, constants are generally denoted c and they may
not be the same everywhere. However, if not otherwise mentioned, they
depend only on fixed constants such as those associated with the structure
of the space, the doubling constant etc.

3 Gehring lemma

Throughout this section we suppose that (X, d, µ) is doubling and we denote
it briefly X.

Theorem 3.1 (Gehring lemma). Let 1 < p < ∞ and f ∈ L1
loc(X) be

non–negative. If there exists a constant c such that f satisfies the reverse
Hölder inequality

(
∫

B

f pdµ

)1/p

≤ c

∫

B

fdµ (3.1)

for all balls B of X, then there exists q > p such that
(
∫

B

f qdµ

)1/q

≤ cq

∫

B

fdµ (3.2)
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for all balls B of X. The constant cq as well as q depend only on the doubling
constant, p, and on the constant in (3.1).

Let us first prove that a function satisfying the reverse Hölder inequality
defines a doubling measure. This property turns out to be essential in the
proof of Theorem 3.1.

Proposition 3.2. Let f ∈ L1
loc(X) be a non–negative function that satis-

fies the reverse Hölder inequality (3.1). Then the measure induced by f is
doubling, i.e.

∫

2B

fdµ ≤ c

∫

B

fdµ

for all balls B of X. The constant c depends only on the constant in (3.1).

Proof. Define

ν(U) =

∫

U

fdµ

for U ⊂ X µ–measurable. Fix a ball B ⊂ X and let E ⊂ B be a µ–
measurable set. Then

∫

B

fχEdµ ≤

(
∫

B

f pdµ

)1/p

µ(E)1−1/p

≤

(
∫

B

fdµ

)

µ(B)1/p−1µ(E)1−1/p = cν(B)

(

µ(E)

µ(B)

)1−1/p

.

The inequalities above follow from the Hölder and the reverse Hölder inequal-
ities, respectively. This implies

ν(E)

ν(B)
≤ c

(

µ(E)

µ(B)

)1/p′

(3.3)

for all E ⊂ B and p′ the Lp–conjugate exponent of p. Since the set E in (3.3)
is arbitrary, we can replace it by B \ E. Therefore

ν(B \ E)

ν(B)
≤ c

(

µ(B \ E)

µ(B)

)1/p′

,

which is equivalent to

1 −
ν(E)

ν(B)
≤ c

(

1 −
µ(E)

µ(B)

)1/p′

(3.4)

for all E ⊂ B. If E = αB, then by choosing 0 < α < 1 small enough

c

(

1 −
µ(αB)

µ(B)

)1−1/p′

<
1

2
(3.5)

holds true. It follows from (3.4) and (3.5) that

1 −
ν(αB)

ν(B)
<

1

2
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and hence ν(B) ≥ 2ν(αB). We are now able to iterate this. There exists
k ∈ N such that αk < 1/2 and thus

ν(B) ≤ 2v(αB) ≤ 2kµ(αkB) ≤ 2kν(
1

2
B)

for all balls B of X. This proves that ν is doubling. Remark that µ being
doubling plays no role here.

The following is a standard iteration lemma, see [5].

Lemma 3.3. Let Z : [R1, R2] ⊂ R → [0,∞) be a bounded non–negative
function. Suppose that for all ρ, r such that R1 ≤ ρ < r ≤ R2

Z(ρ) ≤
(

A(r − ρ)−α + B(r − ρ)−β + C
)

+ θZ(r) (3.6)

holds true for some constants A,B,C ≥ 0, α > β > 0 and 0 ≤ θ < 1. Then

Z(R1) ≤ c(α, θ)
(

A(R2 − R1)
−α + B(R2 − R1)

−β + C
)

. (3.7)

Lemma 3.3 is needed in the proof of our first key lemma:

Lemma 3.4. Let R > 0, q > 1, k > 1 and f ∈ Lq
loc(X). If for all 0 < r ≤ R

and for an arbitrary constant c

∫

B(x,r)

f qdµ ≤ ε

∫

B(x,kr)

f qdµ + c

(
∫

B(x,kr)

fdµ

)q

(3.8)

holds, then
∫

B(x,R)

f qdµ ≤ c

(
∫

B(x,2R)

fdµ

)q

, (3.9)

if ε > 0 is small enough. The constant in (3.9) depends on the doubling
constant and on the constant in (3.8).

Proof. Fix R > 0 and choose r, ρ > 0 such that R ≤ ρ < r ≤ 2R. Set
r̃ = (r − ρ)/k. Now

B(x, ρ) ⊂
⋃

y∈B(x,ρ)

B(y, r̃/5)

and by the Vitali covering theorem there exist disjoint balls {B(xi, r̃/5)}
∞
i=1

such that xi ∈ B(x, ρ) and

B(x, ρ) ⊂
∞
⋃

i=1

B(xi, r̃).

These balls can be chosen in a way that

∞
∑

i=1

χB(xi,kr̃) ≤ M (3.10)
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for some constant M < ∞. This follows from the doubling property of the
space. Indeed, assume that y belongs to N balls B(xi, kr̃). Clearly

B(xi, kr̃) ⊂ B(y, 2kr̃) ⊂ B(y, 2R).

Remember that r̃ and R are fixed and choose K = 20R/r̃. Now there are
N disjoint balls with radius B(xi, r̃/5) ≥ 2R/K included in a fixed ball
B(y, 2R). Since the space is doubling, we must have N ≤ M(K). The
inequality (3.10) follows.

Observe then that by the doubling property and the construction of the
balls {B(xi, r̃)}i we have

∑

i

µ(B(xi, r̃)) ≤ c
∑

i

µ(B(xi, r̃/5)) = cµ(∪iB(xi, r̃/5))

≤ cµ(B(x, r)) ≤ c

(

r

ρ

)Q

µ(B(x, ρ)).

On the other hand B(x, ρ) ⊂ B(xi, 2kρ), so that

µ(B(x, ρ)) ≤ µ(B(xi, 2kρ)) ≤ c

(

2kρ

r̃

)Q

µ(B(xi, r̃))

= c

(

ρ

r − ρ

)Q

µ(B(xi, r̃)).

Combining these two inequalities implies

µ(B(x, ρ)) ≥ c

(

r

ρ

)−Q
∑

i

µ(B(xi, r̃))

≥

(

r

ρ

)−Q(
ρ

r − ρ

)−Q
∑

i

µ(B(xi, ρ)).

And as a consequence

#{B(xi, r̃)} ≤ c

(

r

ρ

)Q(
ρ

r − ρ

)Q

,

i.e. the number of balls B(xi, r̃) is at most c
(

r/(r − ρ)
)Q

, where c depends
only on the doubling constant and Q = log2 cd.

Observe that (3.8) holds true for r̃, so that

∫

B(xi,r̃)

f qdµ ≤ ε
µ(B(xi, r̃))

µ(B(xi, kr̃))

∫

B(xi,kr̃)

f qdµ

+ c
µ(B(xi, r̃))

µ(B(xi, kr̃))q

(
∫

B(xi,kr̃)

fdµ

)q

≤ ε

∫

B(xi,kr̃)

f qdµ + cµ(B(xi, r̃))
1−q

(
∫

B(xi,kr̃)

fdµ

)q

(3.11)
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because µ is doubling. We note that

µ(B(x, r))

µ(B(xi, r̃))
≤

µ(B(xi, 2r))

µ(B(xi, r))
≤ cd

(

2r

r̃

)Q

≤ c

(

r

r − ρ

)Q

,

from which it follows that

µ(B(xi, r̃))
1−q ≤ c

(

r

r − ρ

)Q(q−1)

µ(B(x, r))1−q.

Together with (3.11) this implies

∫

B(xi,r̃)

f qdµ ≤ ε

∫

B(xi,kr̃)

f qdµ

+ c

(

r

r − ρ

)Q(q−1)

µ(B(x, r))1−q

(
∫

B(xi,kr̃)

fdµ

)q

. (3.12)

Since B(x, ρ) ⊂ ∪iB(xi, r̃), summing over i in (3.12) gives
∫

B(x,ρ)

f qdµ ≤
∑

i

∫

B(xi,r̃)

f qdµ

≤ ε
∑

i

∫

B(xi,kr̃)

f qdµ

+ c

(

r

r − ρ

)Q(q−1)

µ(B(x, r))1−q
∑

i

(
∫

B(xi,kr̃)

fdµ

)q

≤ εM

∫

B(x,r)

f qdµ

+ c

(

r

r − ρ

)Q(q−1)

µ(B(x, r))1−q

(

r

r − ρ

)Q(∫

B(x,r)

fdµ

)q

= εM

∫

B(x,r)

f qdµ + c

(

r

r − ρ

)Qq

µ(B(x, r))1−q

(
∫

B(x,r)

fdµ

)q

.

Finally, remember that R ≤ ρ < r ≤ 2R, so that

∫

B(x,ρ)

f qdµ ≤ εM

∫

B(x,r)

f qdµ

+ cRQq(r − ρ)−Qqµ(B(x, r))1−q

(
∫

B(x,r)

fdµ

)q

and furthermore
∫

B(x,ρ)

f qdµ ≤ εc

∫

B(x,r)

f qdµ

+ cRQq(r − ρ)−Qqµ(B(x, r))1−q

(
∫

B(x,2R)

fdµ

)q

. (3.13)
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We are able to iterate this. In Lemma 3.3 set

Z(ρ) :=

∫

B(x,ρ)

f qdµ,

so that Z is bounded on [R, 2R]. Set also R1 = R, R2 = 2R, α = Qq and

A = cRQq

(
∫

B(x,2R)

fdµ

)q

> 0,

where c is the constant in (3.13). Putting θ = cε and choosing ε so small
that cε < 1, (3.13) satisfies the assumptions of Lemma 3.3 with B = C = 0.
This yields Z(R) ≤ cA(2R − R)−Qq, that is

∫

B(x,R)

f q ≤ cRQq(cR − R)−Qq

(
∫

B(x,2R)

fdµ

)q

= c

(
∫

B(x,2R)

fdµ

)q

.

In the following we consider the Hardy–Littlewood maximal function re-
stricted to a fixed ball 100B0, that is

Mf(x) = sup
B3x

B⊂100B0

∫

B

fdµ.

Clearly the coefficient 100 can be replaced by any other sufficiently big con-
stant. The role of this constant is setting a playground large enough to assure
that all balls we are dealing with stay inside this fixed ball. The basic tools
of analysis we use work for this maximal function as well.

Lemma 3.5. Let f be a non–negative function in L1
loc(X) and satisfy the

reverse Hölder inequality (3.1). Then for all balls B in X
∫

{x∈B : Mf(x)>λ}

f pdµ ≤ cλpµ({x ∈ 100B : Mf(x) > λ}), (3.14)

for all λ > ess infB Mf with some constant depending only on p, the doubling
constant and on the constant in 3.1.

Proof. Let us fix a ball B0 with radius r0 > 0. We denote {x ∈ X : Mf(x) >
λ} briefly by {Mf > λ}. Let λ > ess infB Mf . Now there exists x ∈ B0

so that Mf(x) ≤ λ. This implies that B0 ∩ {Mf ≤ λ} 6= ∅. For every
x ∈ B0 ∩ {Mf > λ} set

rx = dist(x, 100B0 \ {Mf > λ}),

so that B(x, rx) ⊂ 100B0. Remark that the radii rx are uniformly bounded
by 2R.
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In the consequence of the Vitali covering theorem there are disjoint balls
{B(xi, rxi

)}∞i=1 such that

B0 ∩ {Mf > λ} ⊂
∞
⋃

i=1

5Bi,

where we denote Bi = B(xi, ri). Both Bi ⊂ 100B0 and 5Bi ⊂ 100B0 for all
i = 1, 2, . . ., so they are still balls of (X, d). Furthermore, 5Bi∩{Mf ≤ λ} 6= ∅
for all i = 1, 2, . . . so that

∫

5Bi

fdµ ≤ Mf(x) ≤ λ (3.15)

for all i = 1, 2, . . .. We can now estimate the integral on the left side in
(3.14). A standard estimation shows that

∫

B0∩{Mf>λ}

f pdµ ≤

∫

∪i5Bi

f pdµ ≤
∑

i

∫

5Bi

f pdµ

=
∑

i

µ(5Bi)

∫

5Bi

f pdµ ≤ cp
∑

i

µ(5Bi)

(
∫

5Bi

fdµ

)p

≤ cpλp
∑

i

µ(5Bi),

where the last inequality follows from the reverse Hölder inequality and the
second last from (3.15). Since µ is doubling and the balls Bi disjoints we get

∑

i

µ(5Bi) ≤ c
∑

i

µ(Bi) = cµ(∪iBi).

By definition Bi ⊂ 100B0 ∩ {Mf > λ} for all i = 1, 2, . . .. Therefore

∫

B0∩{Mf>λ}

f pdµ ≤ cλpµ(∪iBi) ≤ cλpµ(100B0 ∩ {Mf > λ}

for all λ > ess infB0
Mf .

Remark. Note that ess infB0
Mf 6= ∞.

In the well known weak type estimate for locally integrable functions

µ(B0 ∩ {Mf > λ}) ≤
c

λ

∫

100B0

fdµ,

the right–hand side tends to zero when λ → ∞. The constant c depends only
on the doubling constant cd. We can thus choose 0 < λ0 < ∞ so that

c

λ0

∫

100B0

fdµ ≤
1

2
µ(B0).
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As a consequence

µ(B0 ∩ {Mf ≤ λ0}) = µ(B0) − µ(B0 ∩ {Mf > λ0})

≥ µ(B0) −
c

λ0

∫

100B0

fdµ ≥
1

2
µ(B0).

This leads to ess infB0
Mf ≤ λ0, for if ess infB0

Mf > λ0, then Mf(x) > λ0

for almost every x ∈ B0. This impossible since µ(B0∩{Mf ≤ λ0}) ≥
1
2
µ(B0).

For the reader’s convenience we present here one technical part of our
proof as a separate lemma.

Lemma 3.6. Let 1 < q < ∞ and f ∈ Lq
loc(X). Suppose in addition that f

satisfies the reverse Hölder inequality. Then for every 1 < p < q

∫

B∩{Mf>α}

f qdµ ≤ cαqµ(100B∩{Mf > α})+c
q − p

q

∫

100B

(Mf)qdµ, (3.16)

where α = ess infB Mf and c depends on p, the doubling constant and on the
constant in 3.1.

Proof. Fix a ball B0 ⊂ X. Let α = ess infB0
Mf , so that Mf ≥ α µ–a.e. on

100B0. Set dν = f pdµ. Now

∫

B0∩{Mf>α}

f qdµ =

∫

B0∩{Mf>α}

f q−pf pdµ ≤

∫

{Mf>α}

(Mf)q−pdν.

However, for every positive measure and measurable function g and set E

∫

E

gpdν = p

∫ ∞

0

λp−1ν ({x ∈ E : |g(x)| > λ}) dλ

for all 0 < p < ∞. This implies

∫

B0∩{Mf>α}

f qdµ ≤ (q − p)

∫ ∞

0

λq−p−1ν(B0 ∩ {Mf > α} ∩ {Mf > λ})dλ

= (q − p)

∫ α

0

λq−p−1ν(B0 ∩ {Mf > α})dλ

+ (q − p)

∫ ∞

α

λq−p−1ν(B0 ∩ {Mf > λ})dλ.

Replacing dν = f pdµ and integrating the first integral over λ we get

∫

B0∩{Mf>α}

f qdµ ≤

∫

B0∩{Mf>α}

αq−pf pdµ

+ (q − p)

∫ ∞

α

λq−p−1

∫

B0∩{Mf>λ}

f pdµdλ.
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We can now use Lemma 3.5 on both integrals on the right–hand side and get

∫

B0∩{Mf>α}

f qdµ ≤ cαqµ(100B0 ∩ {Mf > α})

+ c(q − p)

∫ ∞

α

λq−1µ(100B0 ∩ {Mf > λ})dλ.

Then by changing the order of integration we arrive at

∫

B0∩{Mf>α}

f qdµ ≤ cαqµ(100B0 ∩ {Mf > α})

+ c(q − p)

∫ ∞

α

λq−1

∫

100B0∩{Mf>λ}

dµdλ

= cαqµ(100B0 ∩ {Mf > α})

+ c(q − p)

∫

100B0

∫ Mf

α

λq−1dλdµ,

from which by integrating the second term over α we conclude that

∫

B0∩{Mf>α}

f qdµ ≤ cαqµ(100B0 ∩ {Mf > α})

+ c
q − p

q

∫

100B0

(

(Mf)q − α
)

dµ

≤ cαqµ(100B0 ∩ {Mf > α})

+ c
q − p

q

∫

100B0

(Mf)qdµ.

Finally, before starting the proof of our main theorem we recall the fol-
lowing property of maximal functions.

Lemma 3.7. Let f ∈ Lp
loc(X), 1 < p < ∞. Then there is a constant c

depending only on p and cd, such that

∫

B

(Mf)pdµ ≤ c

∫

B

f pdµ

for all balls B of X.

Proof of the Gehring lemma. Consider a fixed ball B0. Set α = ess infB0
Mf

and let q > p be an arbitrary real number for the moment. We divide the
integral of f q over B0 into two parts:

∫

B0

f qdµ =

∫

B0∩{Mf>α}

f qdµ +

∫

B0∩{Mf≤α}

f qdµ. (3.17)
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The second integral in (3.17) is easier to estimate, and we have

∫

B0∩{Mf≤α}

f qdµ ≤

∫

B0∩{Mf≤α}

(Mf)qdµ ≤ αqµ(100B0 ∩ {Mf ≤ α}).

It would be tempting to use Lemma 3.6 to the second integral in (3.17),
but this would require f ∈ Lq

loc(X). Unfortunately that is exactly what we
need to prove. The function f is assumed to be locally integrable and by
the reverse Hölder inequality it is also in the local Lp–space. Nevertheless,
we can replace f with the truncated function fi = min{f, i}. The reverse
Hölder inequality (3.1), Lemmas 3.5, 3.6 and Proposition 3.7 as well as the
preceeding analysis hold for fi. In addition, fi ∈ Lq

loc(X). We continue to
denote the function f but remember that from now on we mean the truncated
function.

With (3.16) we get now from (3.17)

∫

B0

f qdµ ≤ cαqµ(100B0) ∩ {Mf > α}) + c
q − p

q

∫

100B0

(Mf)qdµ

+ αqµ(100B0) ∩ {Mf ≤ α})

≤ cαqµ(100B0) + c
q − p

q

∫

100B0

(Mf)qdµ

and furthermore
∫

B0

f qdµ ≤ cαq + c
q − p

q

∫

100B0

(Mf)qdµ.

This is true for all q > p. Let ε > 0 and choose q > p such that c(q−p)/p < ε.
Then

∫

B0

f qdµ ≤ cαq + ε

∫

100B0

(Mf)qdµ. (3.18)

Now that f = fi is locally q–integrable, the equation (3.18) gives

∫

B0

f qdµ ≤ cαq + ε

∫

100B0

f qdµ (3.19)

due to Proposition 3.7. We had chosen α such that α ≤ Mf for µ–a.e. x in
B0. Hence

αp =

∫

B0

αpdµ ≤

∫

B0

(Mf)pdµ ≤ c

∫

100B0

(Mf)pdµ

≤ c

∫

100B0

f pdµ ≤ c

(
∫

100B0

fdµ

)p

,

where we use again Proposition 3.7 and the reverse Hölder inequality. More-
over

αq ≤ c

(
∫

100B0

fdµ

)q

. (3.20)
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From (3.19) and (3.20) we conclude that

∫

B0

f qdµ ≤ ε

∫

100B0

f qdµ + c

(
∫

100B0

fdµ

)q

(3.21)

for all balls B0 of X. If necessary, choose a smaller ε and thus also a q closer
to p in (3.18) to make Lemma 3.4 hold true. Set k = 100 in the lemma to
obtain

∫

B0

f qdµ ≤ c

(
∫

2B0

fdµ

)q

.

Since f satisfies the reverse Hölder inequality and the measure
∫

fdµ is dou-
bling, we have

∫

B0

f qdµ ≤ c

(

1

µ(2B0)

∫

2B0

fdµ

)q

≤ c

(

1

µ(2B0)

∫

B0

fdµ

)q

≤ c

(
∫

B0

fdµ

)q

.

It remains to pass to the limit with i → ∞ and the theorem follows.

4 Volume derivative of quasisymmetric

mappings – higher integrability

In this section we study quasisymmetric mappings between two metric spaces
X and Y . We show that the volume derivative of a quasisymmetric mapping,
i.e.

µf (x) = lim
r→0

|f(B(x, r))|

|B(x, r)|
,

is higher integrable. In the Euclidean setting µf equals to the Jacobian of
f . We follow closely the presentation of Heinonen and Koskela [7]. For the
basic properties of quasisymmetric mappings on metric spaces we also refer
to [6].

For this section we introduce a notation | · − · | = d(·, ·) for the metric on
Y .

4.1 Definitions

We begin by recalling some definitions and properties of quasisymmetric map-
pings.

Definition 4.1. Let u : X → Y be a function. A non–negative Borel mea-
surable function g : X → [0,∞] is said to be an upper gradient of u if for all
rectifiable paths γ joining points x and y we have

|u(x) − u(y)| ≤

∫

γ

gds.
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Definition 4.2. Let 1 ≤ p < ∞. We say that (X, d, µ) admits a weak
(1, p)–Poincaré inequality if there exist constants τ ≥ 1 and cp ≥ 1 such that

∫

B

|u − uB|dµ ≤ cp(diam B)

(
∫

τB

gpdµ

)1/p

for all balls B of X, for all functions u : X → [0,∞] integrable in τB and
for all upper gradients of u.

Definition 4.3. A space (X, d, µ) is Q–regular if there is a constant c ≥ 1
such that

1

c
rQ ≤ µ(B(x, r)) ≤ crQ

for all x ∈ X and 0 < r < diam X.

Definition 4.4. A homeomorphism between two metric spaces X and Y is
said to be η–quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞)
such that

|x − a| ≤ t|x − b| ⇒ |f(x) − f(a)| ≤ η(t)|f(x) − f(b)|

for all t > 0 and a, b, x ∈ X.

It turns out that η has to be increasing and η(0) = 0.

Proposition 4.5. If f : X → Y is quasisymmetric and if A1 ⊂ A2 ⊂ X are
such that 0 < diam A1 ≤ diam A2 < ∞, then diam f(A2) is finite and

1

2η
(

diam A2

diam A1

) ≤
diam f(A1)

diam f(A2)
≤ η

(

2 diam A1

diam A2

)

.

For the proof of Proposition 4.5 we refer to [6].

Proposition 4.6. Let f : X → Y be quasisymmetric. Then for all x ∈ X
and r > 0 there exist two constants 0 < rx < Rx such that

B(f(x), rx) ⊂ f(B(x, r)) ⊂ B(f(x), Rx). (4.1)

Proof. Fix B = B(x, r) in X with r > 0. Since f(B) is bounded by
quasisymmetry it is sufficient to show the existence of rx > 0 such that
B(f(x), rx) ⊂ f(B).

Let rx > 0 be arbitrary for the moment. The function f : X → Y is
η–quasisymmetric, so that f−1 : f(X) → X is η′–quasisymmetric, where
η′(t) = 1/η−1(t−1) for t > 0. This implies that

B(f(x), rx) ⊂ f(B) ⇔ f−1(B(f(x), rx)) ⊂ B.

We set A1 = B(f(x), rx) and A2 = B in Lemma 4.5 and obtain

1

2η′
(

diam f(B)
2rx

) ≤
diam f−1(B(f(x), rx))

2r
≤ η′

(

4rx

diam f(B)

)

. (4.2)
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A sufficient but not a necessary condition for f−1(B(f(x), rx)) to be contained
in B(x, r)) is that

diam f−1(B(f(x), rx)) < r. (4.3)

From (4.2) we can deduce

diam f−1(B(f(x), rx)) ≤ 2η′

(

4rx

diam f(B)

)

r.

Therefore, if we choose rx > 0 such that

η′

(

4rx

diam f(B)

)

<
1

4
,

the assertion follows.

4.2 Higher Integrability of the Volume Derivative

From now on, let X and Y be Q–regular metric measure spaces with Q > 1
that are doubling and rectifiably connected i.e. all points can be joined by a
rectifiable curve. We denote the Hausdorff Q–measure in both spaces by HQ

and write

|A| = HQ(A), dx = dHQ(x).

Proposition 4.7. In the above setting the measure

ν(E) = |f(E)|

is doubling on X, when f is quasisymmetric and E ⊂ X measurable.

Proof. Note first that the Hausdorff measure in a Q–regular space is doubling.
Indeed, for all x ∈ X and r > 0 we have

|B(x, 2r)| ≤ c(2r)Q ≤ c|B(x, r)|

by Q–regularity. Then, let us fix a ball B0. By Proposition 4.6 there exist
0 < r0 < R0 for the ball B0 and 0 < r2 < R2 for the ball 2B0 such that (4.1)
holds and especially r0 < R2 because f(B0) is included in f(2B0). Then

|f(2B0)| ≤ |B(f(x), R2)| ≤ c|B(f(x), r0)| ≤ c|f(B0)|,

where we use also the doubling property of the Hausdorff measure.

Definition 4.8. Suppose that f : X → Y is a quasisymmetric homeomor-
phism. Define the volume derivative in x ∈ X as

µf (x) = lim
r→0

|f(B(x, r))|

|B(x, r)|
.
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The spaces X and Y are Q–quasiregular, so Q is also their Hausdorff
dimension. Therefore the measures |f(·)| and | · | are finite for all compact
subset of X and Y and thus Radon measures. In addition, both measure
spaces are doubling, so that the volume derivative of f exists, is finite for a.e.
x ∈ X and and is locally integrable satisfying

∫

E

µf (x)dx ≤ |f(E)| (4.4)

for every measurable set E of X. For further discussion in the Euclidean
setting, see [9]. The analysis remains true in a doubling metric measure
space.

Definition 4.9. Suppose that f : X → Y is a quasisymmetric map. Define

Lf (x, r) = sup
y∈B(x,r)

|f(x) − f(y)| (4.5)

and the maximum derivative of f as

Lf (x) = lim sup
r→0

Lf (x, r)

r
, (4.6)

that describes the local stretching of f. Lf is a Borel regular function in X.

Proposition 4.10. For all x ∈ X and r > 0 the inequalities

Lf (x, r)Q ≤ |f(B(x, r))| (4.7)

and
c′Lf (x)Q ≤ µf (x) ≤ cLf (x)Q (4.8)

hold with constants depending only on the doubling constant, the constant
associated with Q–regularity and on η in Definition 4.4.

Proof. Let B be an arbitrary ball with radius r > 0 and center x ∈ X.
Proposition 4.6 implies that there exist 0 < rx < Rx such that

B(f(x), rx) ⊂ f(B(x, r)) ⊂ B(f(x), Rx).

The Hausdorff measure is doubling in X (see the proof of Proposition 4.7),
and hence

|B(f(x), rx)| ≥ c−1
d

(

rx

Rx

)Q

|B(f(x), Rx)|.

Set c0 = c−1
d (rx/Rx)

Q and note that now c0 depends only on η and on the
doubling constant. It follows that

|f(B(x, r))| ≥ |B(f(x), rx)| ≥ c0|B(f(x), Rx)| ≥ cRQ
x

by Q–regularity. In addition it is clear that

(2Rx)
Q ≥ (diam f(B(x, r)))Q ≥ |f(x) − f(y)|Q
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for all y ∈ B(x, r), and therefore

|f(B(x, r))| ≥ c sup
y∈B(x,r)

|f(x) − f(y)|Q.

The inequality (4.7) follows.
Q–regularity and (4.7) imply now that

(

Lf (x, r)

r

)Q

≤ c
|f(B(x, r)|

|B(x, r)|
,

from which the first inequality in (4.8) follows by letting r tend to zero.
The second inequality does not require f being quasisymmetric, only the Q–
regularity of X. Indeed, note first that diam f(B(x, r)) ≤ cLf (x, r). Then
by Q–regularity

µf (x) = lim sup
r→0

|f(B(x, r)|

|B(x, r)|
≤ c lim sup

r→0

|f(B(x, r)|

rQ

≤ c lim sup
r→0

(

Lf (x, r)

r

)Q

.

The equation (4.8) follows.

In the following, let f : X → Y be an η-quasisymmetric map. For ε > 0
define

Lε
f (x) = sup

0<r≤ε

Lf (x, r)

r
.

Now Lε
f decreases as ε decreases, and

lim
ε→0

Lε
f (x) = Lf (x)

for all x ∈ X.

Lemma 4.11. There is a constant c such that for each ε > 0, the function
cLε

f is an upper gradient of the function u(x) = |f(x) − f(x0)|.

Proof. Fix a ball B with a radius r < diam X. Fix ε > 0, and let γ be a
rectifiable curve joining two points x and y in B. Set d = diam γ. If z ∈ γ is
arbitrary, then

diam(f(γ)) ≤ 2Lf (z, d). (4.9)

The proof of (4.9) follows directly from definitions. Indeed,

diam(f(γ)) = sup
y1,y2∈γ

|f(y1) − f(y2)|

≤ sup
y1,y2∈γ

(

|f(y1) − f(z)| + |f(z) − f(y2)|
)

≤ sup
y1,y2∈B(z,d)

(

|f(y1) − f(z)| + |f(z) − f(y2)|
)

= 2Lf (z, d).
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Suppose first that d ≤ ε. Then

Lε
f (z) = sup

0<r≤ε

Lf (z, r)

r
≥

Lf (z, d)

d
≥

diam(f(γ))

2d
.

Therefore
∫

γ

Lε
fds ≥

∫

γ

Lf (z, d)

d
ds ≥ `(γ)

diam(f(γ))

2d
,

where `(γ) is the length of γ. Clearly |f(x)−f(y)| ≤ diam f(γ) and d ≤ `(γ),
and hence

∫

γ

Lε
fds ≥

`(γ)
∣

∣f(x) − f(y)
∣

∣

2d
≥

1

2

∣

∣

∣

∣

∣f(x) − f(x0)
∣

∣−
∣

∣f(x0) − f(y)
∣

∣

∣

∣

∣

=
1

2

∣

∣u(x) − u(y)
∣

∣,

i.e. 2Lε
f is an upper gradient of u.

Suppose then that d > ε. Since γ is rectifiable, l(γ) < ∞ and we can pick
successive points x0, . . . , xN from γ such that x = x0 < x1 < . . . < xN = y
and such that for each i = 1, . . . , N diam(γi) < ε, where γi is the portion of
γ between xi−1 and xi. Now we can proceed as in the first case:

∫

γ

Lε
fds =

N
∑

i=1

∫

γi

Lε
fds ≥

N
∑

i=1

1

2

∣

∣f(xi) − f(xi−1)
∣

∣

≥
1

2

∣

∣f(x) − f(y)
∣

∣ ≥
1

2

∣

∣u(x) − u(y)
∣

∣.

This finishes the proof.

Lemma 4.12. Let B be an arbitrary ball with a radius r0 in X. The function
Lε

f belongs to space weak–LQ(B) with norm independent of ε provided that ε
is small enough. More precisely, for ε < r0/10 and t > 0 we have that

|{x ∈ B : Lε
f (x) > t}| ≤ ct−Q|f(B)|,

where c ≥ 1 depends only on η and the data of X and Y . A fortiori, the
function Lf belongs to weak–LQ(B) with a norm depending only on the data.

Proof. We begin by noting that the set

Et = {x ∈ B : Lε
f (x) > t}

is open, so that

Et ⊂
⋃

x∈Et

B(x, rx).

By the Vitali covering theorem we can then find a countable collection of
disjoint balls {B(xi, ri)}

∞
i=1 such that 0 < ri ≤ ε,

Lf (xi, ri)

ri

> t (4.10)

19



and that

Et ⊂
⋃

i

5Bi ⊂ 2B

provided that ε is small enough. We denote Bi = B(xi, ri). Recall the
definition of the Hausdorff measure

|Et| = lim
δ→0

inf
B

∑

B∈B

diam(B)Q,

where the infimum is taken over all covers B of Et by balls of diameter at
most δ. Hence

|Et| ≤ c
∑

i

rQ
i ≤ ct−Q

∑

i

Lf (xi, ri)
Q ≤ ct−Q

∑

i

|f(Bi)|

by (4.7) and (4.10). The balls Bi are disjoint, so it follows that

|Et| ≤ ct−Q|f(∪iBi)| ≤ ct−Q|f(2B)| ≤ ct−Q|f(B)|.

The last inequality follows from the fact that the measure defined by f is
doubling since f is quasisymmetric. Note that the sets f(Bi) and f(Bj) are
disjoint for all pairs i 6= j for the reason that Bi and Bj are disjoint and f is
a homeomorphism. Since Lf ≤ Lε

f , the claim follows.

Theorem 4.13. Suppose that X and Y are locally compact Q–regular spaces
for some Q > 1 and that X admits a weak (1, p)–Poincaré inequality for
some p < Q. Let f be a quasisymmetric map from X to Y . Then there exist
a constant c and ε > 0 such that

(
∫

B

µ1+ε
f dx

)1/(1+ε)

≤ c

∫

B

µfdx (4.11)

for all balls B ⊂ X. The constant c depends only on the quasisymmetry
function η of f , on the constants associated with the Q–regularity of X and
Y and on the constant in the Poincaré inequality.

Proof. Let us fix a ball B = B(x0, r). The function u(x) = |f(x) − f(x0)| is
bounded and continuous in B since f is a homeomorphism. Therefore u is
integrable in B. Set B ′ = τ−1B, r′ = τ−1r and note that by Lemma 4.11 Lε

f

is an upper gradient of u. Then by the Poincaré inequality

∫

B′

|u − uB′ |dx ≤ cr

(
∫

B

(Lε
f )

pdx

)1/p

and letting ε tend to zero we get

∫

B′

|u − uB′ |dx ≤ cr

(
∫

B

(Lf )
pdx

)1/p

. (4.12)

20



On the other hand

uB′ =

∫

B′

|f(x) − f(x0)|dx

=
1

|B′|

∫

B′\ 1

2
B′

|f(x) − f(x0)|dx +
1

|B′|

∫

1

2
B′

|f(x) − f(x0)|dx

≥
1

|B|

∫

B′\ 1

2
B′

|f(x) − f(x0)|dx.

In the last inequality we are able to make the estimation

L(x0, r) ≤ c|f(x) − f(x0)|

in B′ \ 1
2
B′. Indeed, |x0 − x| ≥ r′/2, and moreover |x− y| ≤ 2r′ ≤ c0|x0 − x|

for all x ∈ B′ \ 1
2
B′ and y ∈ B. By the definition of quasisymmetry this

implies
|f(x) − f(y)| ≤ η(c0)|f(x) − f(x0)|

for all x ∈ B′ \ 1
2
B′ and y ∈ B. Here we are forced to pay more attention to

constants.

L(x0, r) = sup
y∈B

|f(x0) − f(y)| ≤ sup
y∈B

( |f(x0) − f(x)| + |f(x) − f(y)| )

≤ sup
y∈B

(

|f(x0) − f(x)| + η(c0)|f(x0) − f(x)|
)

≤ c1|f(x0) − f(x)|,

where c1 = max{1, η(c0)}. Using this in (4.13) we get

uB′ ≥ c−1
1

|B′ \ 1
2
B′|

|B′|
L(x0, r). (4.13)

Next we claim that

|f(x) − f(x0)| ≤ η(δ)Lf (x0, r) (4.14)

for all x ∈ δB′ if 0 < δ < r. To see this, let x ∈ δB ′ and y ∈ B \ B′ (if
B = B′, take for example y ∈ B \ r−δ

2
B). Then |x − x0| < δr′ ≤ δ|y − x0|,

and quasisymmetry implies

|f(x) − f(x0)| ≤ η(δ)|f(y) − f(x0)|

for all y ∈ B \ 1
2
B′. Consequently

|f(x) − f(x0)| ≤ η(δ) sup
y∈B\ 1

2
B′

|f(y) − f(x0)| ≤ η(δ)Lf (x0, r).

Remember that η is increasing and η(0) = 0, so it is possible to choose δ > 0
such that η(δ) ≤ (2c1)

−1. This leads to

u(x) ≤ η(δ)Lf (x0, r) ≤ (2c1)
−1Lf (x0, r) (4.15)
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for all x ∈ δB′. Combining (4.13) and (4.15) we get

|u(x) − uB′ | ≥ |c−1
1 Lf (x0, r) − (2c1)

−1Lf (x0, r)| = (2c1)
−1Lf (x0, r)

for all x ∈ δB′, and therefore
∫

B′

|u(x) − uB′ |dx ≥

∫

δB′

|u(x) − uB′ |dx ≥ (2c1)
−1Lf (x0, r)|δB

′|

≥ cLf (x0, r)|B
′|.

(4.16)

Now the Poincaré inequality (4.12) together with (4.16) implies

Lf (x0, r)

r
≤

c

r

∫

B′

|u(x) − uB′ |dx ≤ c

(
∫

B

Lp
fdx

)1/p

.

This estimate enables us to prove the reverse Hölder inequality for Lf with
exponents (Q, p). Indeed,

(
∫

B

LQ
f dx

)1/Q

≤ c

(
∫

B

µfdx

)1/Q

≤ c

(

|f(B)|

|B|

)1/Q

by (4.4) and (4.8). The inequality |f(B)| ≤ (diam f(B))Q follows directly
from the definition of the Hausdorff measure. Furthermore,

diam f(B) = sup
x,y∈B

|f(x) − f(y)| ≤ 2Lf (x0, r),

so that
(

|f(B)|

|B|

)1/Q

≤

(

2Lf (x0, r)
1
c
rQ

)1/Q

≤ c

(
∫

B

Lp
fdx

)1/p

by Proposition 4.10 and (4.17). This proves that

(
∫

B

LQ
f dx

)1/Q

≤ c

(
∫

B

Lp
fdx

)1/p

(4.17)

for all balls B in X.
Next we use (4.8) to prove the reverse Hölder ineequality for µf . Denote

g = Lp
f , so that gQ/p = Lq

f . The equation (4.17) can be written in this
notation as

(
∫

B

gtdx

)1/t

≤ c

∫

B

gdx,

where t = Q/p > 1. By the Gehring lemma 3.1 there exists δ > 0 such that

(
∫

B

gt+δdx

)1/(t+δ)

≤ c

∫

B

gdx (4.18)

for all balls B in X. In Proposition 4.10 we can replace Lf by g in (4.8) and
get

c′g ≤ µ
1/t
f ≤ c ⇒ c′gt+δ ≤ µ

(t+δ)/t
f ≤ cgt+δ
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since g is non–negative. We have thus found an ε = δ/t > 0 such that

∫

B

µ1+ε
f dx ≤ c

∫

B

gt+δdx ≤ c

(
∫

B

gdx

)t+δ

≤ c

(
∫

B

µ1/tdx

)t+δ

≤ c

(
∫

B

µfdx

)(t+δ)/t

by the Hölder inequality. The claim follows.

Remark that as a corollary of Theorem 4.13 we get higher integrability for
Lf . The assumption that the spaces are locally compact is actually redundant
in this theorem. However, it is a standard assumption assuring that the
spaces are somewhat reasonable.

5 Self improving property of Muckenhoupt

weights

Muckenhoupt weights form a class of functions that satisfy one type of a
reverse Hölder inequality. More precisely, if 1 < p < ∞, a locally integrable
non–negative function w is in Ap if for all balls B in X the inequality

(
∫

B

ωdµ

)(
∫

B

w1−p′

dµ

)p−1

≤ cw

holds. The constant cw is called the Ap–constant of w and 1/p + 1/p′ = 1.
Moreover, A1 is the class of locally integrable non–negative functions that
satisfy

∫

B

wdµ ≤ cw ess inf
x∈B

w(x).

for all balls B in X. In this section we show that the Ap–condition is an open
ended condition; every w ∈ Ap is also in some Ap−ε.

In the following lemma number 2 is not important and it can be replaced
by any positive constant.

Proposition 5.1. For all locally integrable non–negative functions the in-
equality

(
∫

B

f−tdµ

)−1/t

≤

(
∫

B

f 1/2dµ

)2

(5.1)

holds for all t > 0 and all balls B in X.

Proof. Setting g = f 1/2 and replacing f by it in (5.1) gives an equivalent
inequality

∫

B

g−2tdµ ≥

(
∫

B

gdµ

)−2t

.

This holds by the Jensen inequality since x 7→ x−2t is a convex function on
{x > 0}.
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Theorem 5.2. Let 1 ≤ p < ∞ and w ∈ Ap. Then there exist a constant c
and ε > 0 such that

(
∫

B

w1+εdµ

)1/(1+ε)

≤ c

∫

B

wdµ, (5.2)

where the constant depends only on the Ap–constant of w and on the constants
in the Gehring lemma.

Proof. Since A1 ⊂ Ap for all p > 1, we can assume p > 1. Take an arbitrary
ball B in X and w ∈ Ap for some p > 1. This implies

(
∫

B

wdµ

)

≤ c

(
∫

B

w1−p′

dµ

)1−p

,

where the right–hand side is well defined since either w > 0 µ–a.e. or w ≡ 0.
By Proposition 5.1 this implies

(
∫

B

wdµ

)

≤ c

(
∫

B

w1/2dµ

)2

. (5.3)

Now from the Gehring lemma it follows that

(
∫

B

w1+εdµ

)1+ε

≤ c

(
∫

B

w1/2dµ

)2

,

where we can use the Hölder inequality and get to

(
∫

B

w1+εdµ

)1+ε

≤ c

∫

B

wdµ (5.4)

for some ε > 0 and constant c. To see this, in (5.3) replace w by an auxiliarity
function g such that w = g2. Then we can rewrite (5.3) as

(
∫

B

g2dµ

)1/2

≤ c

∫

B

gdµ,

i.e. the reverse Hölder inequality for g. Gehring’s lemma provides us with
δ > 0 such that

(
∫

B

g2+δdµ

)1/(2+δ)

≤ c

∫

B

gdµ.

This leads to (5.4) with ε = δ/2.

Corollary 5.3. Let 1 < p < ∞ and w ∈ Ap. There exists p1 < p such that
w ∈ Ap1

.

Proof. Recall that w ∈ Ap if and only if w−p′/p ∈ Ap′ . It follows from
Theorem 5.2 that there are ε > 0 and a constant c such that

(
∫

B

(w−p′/p)1+εdµ

)1/(1+ε)

≤ c

∫

B

w−p′/pdµ. (5.5)
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In addition
p′

p
(1 + ε) =

1 + ε

p − 1
=

1

p1 − 1
=

p′1
p1

,

where p1 = p/(1+ ε)− 1/(1+ ε)+1. Since p > 1, p1 < p. The equation (5.5)
can now be written as

∫

B

w−p′

1
/p1dµ ≤ c

(
∫

B

w−p′/pdµ

)1+ε

. (5.6)

On the other hand −p′/p = 1 − p′ and thus the Ap condition of w implies

(
∫

B

w−p′/pdµ

)p/p′

≤ c

(
∫

B

wdµ

)−1

.

Raising this first to the power p′/p and then to 1 + ε we get

(
∫

B

w−p′/pdµ

)1+ε

≤ c

(
∫

B

wdµ

)−p′(1+ε)/p

= c

(
∫

B

wdµ

)−p′

1
/p1

.

(5.7)

From (5.6) and (5.7) we finally conclude that

∫

B

w−p′

1
/p1dµ ≤ c

(
∫

B

wdµ

)−p′

1
/p1

.

This means that w ∈ Ap1
, where p1 < p.
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