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1 Introduction

The evaluation of crack growth in quasi–brittle bodies with existing cracks is
a fundamental topic when the structural reliability related to a certain crack
length has to be studied (see [1]). In particular, the crack length extension
under a given load increment is an important variable to be analyzed during
a loading process [2]. In this context, the Griffith criterion [3, 4] still repre-
sents a strong theoretical tool for establishing the onset of crack growth in
LEFM. Furthermore, several criteria for determining the direction of crack
propagation under various mode loading can be found in the fracture me-
chanics literature (see references in [16]). Instead, as already observed in
[16, 17], a general theoretical model for automatically evaluating the incre-
ments of crack growth during a loading process does not exist yet. Nowa-
days this limit still characterizes the computer codes for simulation of crack
growth in elastic and elastic–plastic materials (e.g. FRANC2D, FRANC3D,
FRANC2D/L, ZENCRACK and, recently, ABAQUS). In the presence of fa-
tigue crack growth, the cracks are driven by the empirical Paris law [5] while,
in general cases of monotonic loading, the crack increments are usually as-
signed after the determination of the crack growth direction. This approach
is also used in the recent computational methods for LEFM like the extended
finite element method (X-FEM) [8, 9] and the meshless techniques based on
the element-free Galerkin method (EFGM) [10, 11, 12].

An attempt to define a general analysis which allows the increments
of crack growth during a given loading process to be automatically deter-
mined was done by Fortino and Bilotta in [16]. In particular, an incremental
displacement-crack growth approach for 2D problems of stable elastic crack
propagation was proposed. The theoretical analysis, originally introduced by
Nguyen et al. ([14, 15]) and written in rate terms, used the classical equa-
tions of linear elasticity, the Griffith criterion of crack growth in the form
proposed by Irwin [6] and some discontinuity conditions on the stresses and
displacements. The presence of the discontinuities was due to a description of
crack growth based on the definition of a subdomain moving with the crack
tip during crack extension. The computational method based on this theory
gave promising results for the determination of curves load vs. crack growth
in linear elastic fracture. The method can be also extended to incremental
elastoplasticity as suggested in [17] but the mentioned discontinuity condi-
tions could become difficult to handle from a computational point of view
because of the necessity to define both a plastic fracture zone and a moving
subdomain around the crack tip.

In the present work a new crack growth formulation based on the so–called
ϑ method of Destuynder and Djaoua [18] is introduced. From a theoretical
point of view, the new approach is more general than that proposed in [16]
and, since it doesn’t contain discontinuity conditions, it is also simpler to
be implemented into a computer program. The ϑ method was originally
introduced for giving a mathematical interpretation of the Griffith criterion
of crack growth in elasticity. The basic idea is to work in a fixed configuration
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by using a method of domain variation which transforms the variables of the
current equilibrium problem into the variables of the perturbed problem in
a one–to–one manner. All physical quantities of the perturbed configuration
are then rewritten in the current. This operation provides the convergence
of the solution of the perturbed equilibrium problem to the solution of the
problem in the current domain. As a direct result, the method introduces an
energetic domain parameter known in literature as the Gθ and characterized
by a smooth value vector function ϑ defined in a subdomain of the current
configuration around the crack tip ([18], [19]). The parameter coincides with
the Griffith energy release rate during quasi-static crack growth.

Note that, although the use of the Gϑ parameter in contexts where the
Rice’s J integral [7] is usually required would avoid the eventual transforma-
tion from path integrals to domain integrals as done by standard computa-
tional approaches [3], this parameter is not widely used in literature. After
Destuynder and Djaoua, some French researchers used the Gϑ for problems
of crack growth in viscoelastic materials (see [21] and relative references).
Anyway, also in these works the increments of crack extensions are assigned.
Furthermore, an extension of the Gθ parameter to incremental elastoplas-
ticity was introduced by Debruyne in [19] for studying problems of ductile
tearing [20]. Debruyne presented a fracture criterion but did not calculate
the crack increments during crack propagation. Note that a method very sim-
ilar to the Destuynder–Djaoua approach was introduced and justified from
a mathematical point of view by some Russian researchers (see [22] and rel-
ative references) in order to differentiate energy functionals with respect to
the crack length for both cases of rectilinear and curvilinear cracks. In those
works the crack growth during a loading process was not investigated.

In the present paper, successive Gϑ–based crack growth problems written
in the current configuration furnish the increments of crack growth relative
to given load increments. Furthermore, at each load step the equilibrium is
imposed in the current configuration with updated crack length. For sake of
simplicity, the method is defined for cases of stable rectilinear crack growth
but it can be extended to curvilinear crack propagation as suggested in Sec-
tion 5. The extension to elastoplasticity is also possible starting from the
results obtained in [19]. The proposed algorithm is implemented by using
the computational tools of the computer code ELMER (Scientific Comput-
ing LTD., Espoo, Finland). Remeshing and standard FEM discretization are
employed.

The paper is organized as follows. In Section 2 the Destuynder and
Djaoua ϑ method in linear elastic fracture is briefly recalled. A Gϑ–based
crack growth formulation providing the increment of crack length is described
in Section 3. Some implementation details for the case of stable rectilinear
crack growth are illustrated in Section 4. In the same section, some numerical
results show the effectiveness of the proposed ϑ method–based simulation of
crack growth in LEFM. Finally, some remarks about further developments
of the method can be found in Section 5.
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2 The ϑ method in 2D LEFM

Let us analyze the quasi–static evolution of a two-dimensional elastic cracked
body of current domain Ω ∈ R2 and unit thickness characterized by a rec-
tilinear crack of length a0. No traction is applied along the surface of the
crack and the body forces are neglected. As shown in Figure 1, the body
in the current configuration is subjected to a load f(λ) = λf̂ applied on the
boundary Sf , where λ > 0 represents a control parameter and f̂ is a fixed
load. During a crack propagation along a given direction and after a load
increment δλ f̂ , the cracked body evolves into the updated configuration Ωδa

with crack length a = a0 + δa and crack length increment δa > 0.

Sfλf (λ+ δ λ)f

δa

fS

δ a ϑ

δaF
uS uS

Figure 1: Current (Ω) and perturbed (Ωδa) cracked domains; Sf = boundary
with applied forces; Su = boundary with applied displacements; δa = crack
length increment; ϑ = vector field.

Let us introduce the displacement and stress spaces

V = {v ∈ (H1(Ω))2, v = 0 on Su} (1)

Σ = {τ ∈ (L2(Ω))4, τ
T = τ} (2)

The elastic solution (u0,σ0) ∈ V × Σ for the problem of the current cracked
body subjected to the load λf̂ is obtained from the Hellinger-Reissner integral
equations











∫

Ω σ0 : ∇v = λ
∫

Sf
f̂ · v ∀v ∈ V

∫

Ω Cσ0 : τ −
∫

Ω ∇u0 : τ = 0 ∀τ ∈ Σ

(3)

where C represents the compliance tensor and ∇ is the gradient operator.
Let us further introduce the spaces

Vδa = {v ∈ (H1(Ωδa))
2, v = 0 on Su} (4)

Σδa = {τ ∈ (L2(Ωδa))
4, τ

T = τ} (5)

The elastic solution (σ,u) ∈ Vδa×Σδa in the updated configuration Ωδa after
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a load increment δλ f̂ , is obtained from the integral equations











∫

Ωδa
σ : ∇v = (λ + δλ)

∫

Sf
f̂ · v ∀v ∈ Vδa

∫

Ωδa
Cσ : τ −

∫

Ωδa
∇u : τ = 0 ∀τ ∈ Σδa

(6)

The Destuynder–Djaoua ϑ method consists of a linear perturbation from
the current domain Ω into the updated configuration Ωδa (see Figure 1):

Fδax = x + δaϑ(x) , ∀x ∈ Ω (7)

where ϑ represents a smooth vector valued function defined in Ω such that
|ϑ| = 1 at the crack tip and ϑ = 0 on ∂Ω\Sf . Fδa permits to rewrite each
function q of the updated configuration Ωδa as an associated function qδa of
the current configuration Ω:

qδa = q ◦ Fδa (8)

Starting from (8), the following equalities hold:

∫

Ωδa

q =
∫

Ω

qδa | Jδa | (9)

Jδa = ∇Fδa = I + δa∇ϑ (10)

| Jδa |= 1 + δa (divϑ) + δa2 | ∇ϑ | (11)

∇q ◦ Fδa = ∇qδa J−1
δa (12)

J−1
δa = I − δa∇ϑ + δa2(∇ϑ)2 + ... + (−1)nδan(∇ϑ)n + ... (13)

where Jδa is the Jacobian matrix of transformation (7).
By using formulae (9 - 13), the associated solution (σδa,uδa) in the con-

figuration Ω is the unique solution in V × Σ of the problem











∫

Ω σδa : (∇v J−1
δa ) | Jδa |= (λ + δλ)

∫

Sf
f̂ · v ∀v ∈ V

∫

Ω Cσδa : τ | Jδa | −
∫

Ω(∇uδa J−1
δa ) : τ | Jδa |= 0 ∀τ ∈ Σ

(14)

As pointed out in [18], the couple (σδa,uδa) represents a calculation tool
which permits to transfer problem (6) into the current configuration.

Let we approximate the determinant of the Jacobian Jδa as

| Jδa |≈ 1 + δa (divϑ) (15)

such that
J−T

δa ≈ I − δa (∇ϑ)T (16)

By substituting these expressions into (14), the associated solution (uδa,σδa)
is read as

uδa = u0 + δu + Ru (17)

σδa = σ0 + δσ + Rσ (18)
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with (u0,σ0) solution of (3) and

δa−1(||Ru||V + ||Rσ||Σ ) → 0 as δa → 0 (19)

and where the increments (δu, δσ) are the unique solution in V × Σ of the
following problem (see proof in [18] for the case of null load increments):











∫

Ω δσ : ∇v − δa
∫

Ω s0 : ∇v = δλ
∫

Sf
f̂ · v ∀v ∈ V

∫

Ω C δσ : τ −
∫

Ω ∇δu : τ − δa
∫

Ω r0 : τ = 0 ∀τ ∈ Σ

(20)

In (20) we have posed

s0 = σ0∇ϑ
T − (divϑ)σ0 (21)

and
r0 = −

1

2

(∇u0∇ϑ + (∇u0∇ϑ)T ) (22)

2.1 The Gϑ parameter

Let the strain energy of the system in the updated configuration be:

W (Ωδa) = −
1

2

∫

Ωδa

σ : ∇u (23)

where (u,σ) is the solution of problem (6). As done in [18], let us introduce
the derivative of (23) along ϑ with respect to the current configuration Ω:

∂W

∂Ω
(Ω)ϑ = lim

δa→0

W (Ωδa) − W (Ω)

δa
(24)

Destuynder and Djaoua proved that (24) is equivalent to the following
expression:

∂W

∂Ω
(Ω)ϑ = −

1

2

∫

Ω

(divϑ) σ0 : ∇u0 +
∫

Ω

σ0 : ∇u0∇ϑ =

= −
1

2

∫

Ω

s0 : ∇u0 +
1

2

∫

Ω

r0 : σ0 (25)

which is the opposite of the so-called Gϑ parameter (see [19], [21]):

Gϑ = Gϑ(u0,σ0) =
1

2

∫

Ω

s0 : ∇u0 −
1

2

∫

Ω

r0 : σ0 (26)

The Gϑ has the same meaning as the Griffith energy release rate at the
onset of crack growth in LEFM and coincides with the Rice J integral for all
subdomains Ωϑ ∈ Ω (see [18] and [19]). The same result was found in [22].

In the present work we refer to materials that locally exhibit flat resistance
curves (or R-curves), that is, curves R versus crack size, where R represents
the crack growth resistance ([3],[2]). The constant value of R is denoted
by Gf which represents the fracture energy. The Griffith criterion for crack
growth in the form proposed by Irwin [6] can be written in terms of the Gϑ:

{

Gϑ < Gf ⇒ δa = 0 (no propagation)
Gϑ = Gf ⇒ δa ≥ 0 (propagation could start)

(27)

where Gf is also considered as the critical energy release rate.
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3 A Gϑ based incremental crack growth for-

mulation

From a theoretical point of view, the new idea of this work is to use domain
transformation (7) for solving a problem of stable crack propagation during
a loading process. In particular, the objective of the present study is to
determine the curves load multiplier vs. crack length during crack growth.
Under a given loading process, if the perturbed configuration at each load
step is in equilibrium, as it holds in the case of quasi-static crack growth,
it is possible to write the energy release rate during crack propagation. In
fact, the Gϑ(u,σ) of the perturbed domain Ωδa, taking into account (17) and
(18), can be written in the current configuration Ω as

Gϑ(u0 + δu,σ0 + δσ) ≈ Gϑ(u0,σ0) + Gϑ(δu,σ0) + (28)

+ Gϑ(u0, δσ) + Gϑ(δu, δσ) ≈

≈ Gϑ(u0,σ0) + δGϑ

which, after some manipulations, furnishes the increment δGϑ in the form:

δGϑ ≈
∫

Ω

s0 : ∇δu −
∫

Ω

r0 : δσ (29)

In the case of stable crack growth (see [2] and [3]), the following conditions
must be locally satisfied for each load increment:











Gϑ = Gf ⇒
∫

Ω s0 : ∇u0 −
∫

Ω r0 : σ0 = 2Gf

δGϑ = 0 ⇒
∫

Ω s0 : ∇δu −
∫

Ω r0 : δσ = 0
(30)

By coupling equations (20) and the second condition of (30) we obtain a
system in the unknowns (δu, δσ, δa):































∫

Ω δσ : ∇v − δa
∫

Ω s0 : ∇v = δλ
∫

Sf
f̂ · v ∀v ∈ V

∫

Ω C δσ : τ −
∫

Ω τ : ∇δu − δa
∫

Ω r0 : τ = 0 ∀τ ∈ Σ

∫

Ω s0 : ∇δu −
∫

Ω r0 : δσ = 0

(31)

It is worth to note that the increments δu and δσ, as well as the associated
functions (uδa,σδa) have to be considered as computational tools for the
definition of the crack growth problem in the current configuration. It means
that (δu, δσ) don’t correspond to physical quantities of the cracked domain
Ωδa.

For some practical problems, it can be convenient to reduce the unknowns
of system (31) to (δu, δa) by using the constitutive equations of elasticity.
We obtain:

δσ = E[ε + δa r0] (32)
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where E is the elasticity tensor and ε represents the strain tensor. After
some manipulations, we can rewrite (31) as

{

∫

Ω E ε(δu) : ε(v) − δa
∫

Ω t0 : ∇v = δλ
∫

Sf
f̂ · v

−
∫

Ω t0 : ∇ δu + δa
∫

Ω Er0 : r0 = 0
(33)

which holds ∀v ∈ V, δa > 0, and where we have posed

t0 = s0 − Er0. (34)

Therefore, system (33) provides the crack length increment δa relative to a
given load increment δλ.

4 Numerical testing

4.1 Computational framework

The proposed approach is implemented using the computational tools of the
FEM computer code ELMER (CSC–Scientific Computing Ltd., Espoo, Fin-
land). Successive linear elastic analyses are performed for calculating the
quantities required to recover the equilibrium path of the cracked body during
crack growth. Quadratic triangular FE are used. During crack propagation,
remeshing is performed. The used mesh generator is the program Easy Mesh,
available on the web site www-dinma.univ.trieste.it/nirftc/research/easymesh/.

Let us describe the framework exploited to perform the crack growth
analysis. In particular, we refer to the operator form of system (33):

[

A BT

B C

] [

δu
δa

]

= dλ
[

F

0

]

(35)

where A represents the stiffness matrix of the problem, while B and C are
respectively the vector and the scalar arising from the discretization of the
corresponding terms in (33).

Starting from a state defined by the index i = 0 where the initial crack
length of the body is a0, the proposed algorithm for crack growth is charac-
terized by successive analyses consisting of the following steps:

1. Linear elastic analysis for the cracked body of domain Ωi, i.e. solution
of equation (3) for the load factor λi. In operator form we have:

Aiui = λiF (36)

2. Evaluation of the crack increment in the updated configuration Ωδai

through the equation obtained by solving system (35):

δai =
1

BT
i A−1

i Bi − Ci

dλi

λi

BT
i ui (37)
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3. Updating of the new current configuration Ωi+1 and remeshing.

4. Updating of the load factor:

λi+1 := λi + dλi (38)

Note that equation (37) can be used either for evaluating δai in the case of
assigned dλi or, conversely, for calculating the load increment relative to a
given increment of crack growth.

The solution of equation (36) allows to compute the parameter Gϑ(ui,σi)
in the equilibrium configuration Ωi. The vector field ϑ, necessary for eval-
uating Gϑ, represents a smooth vector valued function defined in Ωi, with
values ϑ = 0 on ∂Ωi \ Sf and |ϑ| = 1 at the crack tip. If the direction of
the crack propagation is known, the crack tip moves to the new crack tip in
Ωi+1, so that the two points will be spaced of δa along the same direction.

The choice of the ϑ field has the same general meaning as that of the
path along which the J integral function is integrated. As suggested in [18],
in the implemented code the vector ϑ is treated as well as a displacement
field. In particular, it corresponds to the solution of the same (but homoge-
nous) linear elastic problem with Dirichelet boundary conditions of zero value
displacement on Sf and linear displacement distribution along the direction
of the crack length (with unitary value at the crack tip). Once the crack
increment δa is provided by equation (37), the direction of crack growth is
assumed to be the same as that defined by the initial orientation of the crack
length. Actually this approach is correct when the crack growth is rectilin-
ear. However, the method can be extended to the curvilinear case either by
describing the path as a linear piecewise curve or taking into account the real
shape of the crack growth curve as done in [22] (see Section 5).

4.2 Some results

In this section the rectilinear crack propagation in a single edge plate in
plane strain subject to a traction at the top (see Figure 2) is analyzed. The
example was also tested in [11, 12]. In those papers the authors referred to
the analytical solution given by Tada et al. in [13] which provides the mode
I Stress Intensity Factor in function of the crack length in the form

Ka
I =

√

2 w tan(β)

cos(β)

(

0.752 + 2.02 α + 0.37 (1 − sin(β))3
)

(39)

where α = a/w and β = απ/2, a and w being the crack length and the plate
width respectively.

The algorithm implemented in the present work performs the crack growth
analysis starting from a initial crack length a = 3.5. The Stress Intensity Fac-
tor KI is numerically carried out directly from Gϑ in the case of plane strain
state:

KI =
E

2(1 − ν2)
Gϑ (40)
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7.0

3 .5
14
.0

1 .0

Figure 2: Geometry of the test. Initial crack length: a= 3.5; Elasticity
modulus E = 30 × 106; Poisson ratio ν = 0.25. SI units.

As shown in Figure 3, the curve stress intensity factor vs. crack length com-
puted by equation (40) is very accurate, in comparison with the analytical
provided by equation (39). The algorithm furnishes the curves load parame-
ter vs. crack length (Figure 4) and load parameter vs. displacement norm (
Figure 5). In particular, the displacement norm corresponds to an Euclidean
measure of the nodal displacements. Finally, in Figure 6 the final configura-
tion corresponding to the last evaluated crack length (a = 6.0) is shown. For
the same crack configuration, the stress distribution in the plate is reported
in Figure 7.

5 Concluding remarks

In this paper a general approach for the evaluation of the increments of
quasi–static crack growth during a given loading process in 2D linear elastic
bodies with existing cracks is proposed. The theoretical formulation is based
on successive one-to-one domain transformations from the current into the
updated configuration and can be considered as an extension of the so-called
ϑ method. For sake of simplicity, an algorithm for the case of stable rectilinear
crack growth is performed but the formulation is very suitable to be extended
to general cases of curvilinear crack growth in nonlinear materials.
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Figure 3: Test of Figure2: comparison between stress intensity factors.

In order to directly extend the method to curvilinear crack growth, the
simplest way is to represent the curvilinear path by means of a linear piece-
wise curve. Then, the described algorithm can be used for determining the
crack growth increments along each line of the curve after calculating the
direction of crack extension by using one of the several methods existing in
literature (e.g. the maximum energy release rate criterion, the maximum
circumferential stress criterion, the minimum strain energy density criterion,
etc., see references in [16]). A more rigorous approach should take into ac-
count the real shape of the path and define the direction of crack growth like
a variable of the problem. As mentioned in the introduction, a theoretical
formulation for defining an energy release parameter in the cases of curvilin-
ear cracks was presented in [22]. Anyway, also in that work the shape of the
path has to be known before calculating the derivative of the functional with
respect to the crack length.

The proposed approach is also very suitable to be extended to elastic-
plastic materials. In fact, since the idea of the method is to impose the
equilibrium in the current configuration at each load step, a complete incre-
mental elastic-plastic analysis can be performed in the current configuration
without taking into account the previous plastic deformation history. To ob-
tain the equivalent elastic-plastic of problem (33), systems (14) and (20) have
to be modified using the classical equations of elastoplasticity. Furthermore,
an elastic-plastic condition of crack growth based on the θ method has to
be used. Note that a fracture criterion with an elastic-plastic version of the
Gϑ was already introduced in [19]. In the equivalent elastic-plastic of system
(35), matrix A will represent the tangent matrix.

Finally, with respect to the incremental displacement-crack growth ap-
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Figure 4: Test of Figure 2: curve load parameter vs. crack length.

proach introduced in [16], the present method is much simpler from a com-
putational point of view and can furnish more accurate curves load vs. crack
extension for the general case of curvilinear crack growth because of the
strong convergence of the equilibrium problem in the perturbed domain to
the equilibrium problem in the current configuration.
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