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1 Introduction

We consider the classical Kirchhoff plate bending problem. The natural
variational space for this biharmonic problem is the second order Sobolev
space. Thus, a conforming finite element approximation requires globally
C1-continuous elements which imply a high polynomial order. As a conse-
quence, nonconforming elements are a widely adopted choice. A well known
finite element for the Kirchhoff problem is the Morley element which uses
just second order piecewise polynomial functions (see for example [12, 8]).

In the present paper, we derive a reliable and efficient a posteriori error
estimator for the Morley element. Our analysis initially takes the steps from
the pioneering work on a posteriori estimates for nonconforming elements
[10]. In particular, the error is divided into a regular and irregular part using
a new Helmholtz type decomposition.

On the other hand, as underlined for example in [5, 11], a key property
in this approach is the existence of a discrete space Ṽh, such that:

1. Ṽh is contained in the adopted finite element space,
2. Ṽh is contained in the variational space of the continuous formulation,
3. Ṽh satisfies some minimal approximation properties.

In the case of the Morley element, the previous conditions do not hold. In
the present work, this difficulty is dealt with simply making a different use
of the exact and discrete variational identities.

The paper is organized as follows. In Section 2 we briefly review the
Kirchhoff plate bending problem and its Morley finite element approxima-
tion. The following, and the main, section is divided into three parts: In
the first part we introduce some preliminaries, namely, two interpolation
operators and a Helmholtz type decomposition, while in the following two
subsections we prove, respectively, upper and lower error bounds for our local
error indicator.

We finally observe that the principle applied here is general; it could be
applied for example to obtain a posteriori error estimates for nonconforming
elements without relying on the aforementioned space Ṽh (see Remark 3.1).

For the convenience of the reader, a set of differential operators and the
corresponding formula for integration by parts, widely used throughout the
text, are recalled in the Appendix.

2 The Kirchhoff plate bending problem

We consider the bending problem of an isotropic linearly elastic plate. Let
the undeformed plate midsurface be described by a given convex polygonal
domain Ω ⊂ R

2. For simplicity, the plate is considered to be clamped on its
boundary Γ. A transverse load F = Gt3f is applied, where t is the thickness
of the plate and G the shear modulus for the material.
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2.1 The continuous variational formulation

Let the Sobolev space for the deflection be

W = H2
0 (Ω) . (2.1)

Let also the bilinear form for the problem be

a(u, v) = (E ε(∇u), ε(∇v))Ω ∀u, v ∈W , (2.2)

where the parentheses (·, ·)Ω above indicate the L2(Ω) scalar product, and
the fourth order positive definite elasticity tensor E is defined by

E σ =
E

12(1 + ν)

(

σ +
ν

1 − ν
tr(σ)I

)

∀σ ∈ R
2×2 , (2.3)

with E, ν the Young modulus and the Poisson ratio for the material.
Then, following the Kirchhoff plate bending model, the deflection w of

the plate can be found as the solution of the following variational problem:
Find w ∈ W such that

a(w, v) = (f, v) ∀v ∈ W . (2.4)

2.2 The Morley finite element formulation

Let a regular family of triangular meshes {Ch}h on Ω be given. In the sequel,
we will indicate by hK the diameter of each element K, while h will indicate
the maximum size of all the elements in the mesh. Also, we will indicate with
Eh the set of all the edges and with E ′

h its subset comprising only the internal
edges. Given any e ∈ Eh, the scalar he will represent its length. Finally,
to each edge e ∈ Eh we associate a normal unit vector ne and a tangent
unit vector se, the latter given by a counter clockwise 900 rotation of ne; the
choice of the particular normal is arbitrary, but is considered to be fixed once
and for all.

In the sequel, we will also need the definition of jumps: Let K+ and
K− be any two triangles with an edge e in common, such that the unit
outward normal toK− at e corresponds to ne. Furthermore, given a piecewise
continuous scalar function v on Ω, call v+ (respectively v−) the trace v|K+

(respectively v|K−
) on e. Then, the jump of v across e is a scalar function

living on e, given by
JvK = v+ − v− . (2.5)

For a vector valued function also the jump is vector valued, defined as above
component by component. Finally, the jump on boundary edges is simply
given by the trace of the function on each edge.

We can now introduce the discrete Morley space

Wh =
{

v ∈M2,h |

∫

e

J∇v · neK = 0 ∀e ∈ Eh

}

, (2.6)
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where M2,h is the space of the second order piecewise polynomial functions
on Ch which are continuous at the vertices of all the internal triangles and
zero at all the triangle vertices on the boundary.

A set of degrees of freedom for this finite element space is given by the
nodal values at the internal vertices of the triangulation plus the value of
∇v · ne at the midpoints of the internal edges.

The finite element approximation of the problem (2.4) with the Morley
element reads:

Method 2.1. Find wh ∈ Wh such that

ah(wh, vh) = (f, vh) ∀vh ∈ Wh , (2.7)

where

ah(uh, vh) =
∑

K∈Ch

(E ε(∇uh), ε(∇vh))K ∀uh, vh ∈Wh . (2.8)

The bilinear form ah is definite positive on the space Wh, therefore there
is a unique solution to the problem (2.7).

Let, here and in the sequel, C indicate a generic positive constant inde-
pendent of h, possibly different at each occurrence. Introducing the discrete
norm

|||v|||2h =
∑

K∈Ch

|v|2H2(K) +
∑

e∈Eh

h−3
e ‖JvK‖2

L2(e) +
∑

e∈Eh

h−1
e ‖J∇v · neK‖

2
L2(e) (2.9)

on Wh +H2, the following a priori error estimate holds (see [14]).

Proposition 2.1. Let w be the solution of the problem (2.4) and wh the

solution of the problem (2.7). Then it holds

|||w − wh|||h ≤ Ch
(

|w|H3(Ω) + h‖f‖L2(Ω)

)

. (2.10)

3 A posteriori error estimates

In this section we derive reliable and efficient a posteriori error estimates for
the Morley element. After some preliminaries, we will show the reliability
and efficiency, up to a higher order load approximation term, of the error
estimator

η =
(

∑

K∈Ch

η2
K

)1/2

, (3.1)

where

η2
K = h4

K‖fh‖
2
L2(K) +

∑

e∈∂K

ceh
−3
e ‖JwhK‖

2
L2(e)

+
∑

e∈∂K

ceh
−1
e ‖J∇wh · neK‖

2
L2(e) (3.2)

and fh is some approximation of f , while ce = 1/2 if e ∈ E ′
h and 1 otherwise.

Other a posteriori error estimates for Kirchhoff finite elements can be
found for instance in [2, 7].
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Remark 3.1. As noted in the Introduction, the following a posteriori anal-
ysis does not rely on the existence of a subspace Ṽh ⊂ W ∩Wh having some
minimal approximation properties. The same idea can be generalized to other
elements as well. One example is the nonparametric nonconforming quadri-
lateral element of [13] which does not satisfy such a property. In [11], the
authors develop an a posteriori analysis for the element of [13], but are forced
to add artificial bulb functions to the method in order to recover the exis-
tence of a space Ṽh. As the authors underline, a different proving technique
should be found. Following the same path that follows, it is easy to check
that reliable and efficient a posteriori error estimates can be obtained for the
nonparametric element of [13] in a straightforward manner, and without the
additional bulb functions.

3.1 Preliminaries

We start by introducing the following interpolant:

Definition 3.1. Given any v ∈ H2(Ω), we indicate with vI the only function
in Wh such that

vI(p) = v(p) for every vertex p of the mesh Ch (3.3)
∫

e

(∇v −∇vI) · ne = 0 ∀e ∈ Eh . (3.4)

We note that it holds

‖v − vI‖L2(K) ≤ Ch2
K |v|H2(K) ∀K ∈ Ch , v ∈ H2(Ω) . (3.5)

Moreover, a simple integration by parts along the edges gives

∫

e

(∇v −∇vI) · se = 0 ∀e ∈ Eh , (3.6)

which will be also needed in the sequel.
Let now ΠC indicate the classical Clément interpolation operator from

H1(Ω) to the space of continuous piecewise linear functions (see for instance
[9, 3, 4]). Given any v ∈ H1(Ω), the following properties are well known:

‖v − ΠC(v)‖Hm(K) ≤ Ch1−m
K ‖v‖H1(K̃) ∀K ∈ Ch ,m = 0, 1 (3.7)

‖v − ΠC(v)‖L2(e) ≤ Ch
1/2
K ‖v‖H1(K̃) ∀e ∈ ∂K ,K ∈ Ch , (3.8)

where K̃ indicates the set of all the triangles of Ch with a nonempty inter-
section with K ∈ Ch.

We also introduce the following operator: Given any edge e ∈ Eh, let Be

indicate the globally continuous, piecewise second order polynomial function
which is equal to 1 at the midpoint of e and zero at all the other vertices and
edge midpoints of the mesh. Moreover, let VB indicate the discrete space
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given by the span of all Be, e ∈ Eh. We then introduce the operator ΠB

defined by

ΠB : H1(Ω) → VB ,

∫

e

(v − ΠB(v)) = 0 ∀e ∈ Eh . (3.9)

Using the definition (3.9), inverse inequalities and the Agmon inequality (see
[1]), it is easy to check that ΠB satisfies the following property for all v ∈
H1(Ω)

‖ΠB(v)‖Hm(K) ≤ Ch1−m
K

(

h−1
K ‖v‖L2(K) + |v|H1(K)

)

∀K ∈ Ch . (3.10)

We are now able to introduce our second interpolant:

Definition 3.2. Given any v ∈ H1(Ω), we indicate with vII the continuous
piecewise polynomial function of second order given by

vII = ΠC(v) + ΠB(v − ΠC(v)) . (3.11)

Using the properties (3.7), (3.8) and (3.10) we easily get

‖v − vII‖Hm(K) ≤ Ch1−m
K ‖v‖H1(K̃) ∀K ∈ Ch ,m = 0, 1 (3.12)

for all v ∈ H1(Ω).
Moreover, directly from (3.9) and Definition 3.2, it follows

∫

e

(v − vII) = 0 ∀e ∈ Eh , v ∈ H1(Ω) . (3.13)

We finally need the following Helmholtz decomposition for second order
tensors with components in L2(Ω). Let in the sequel the space H̃m(Ω),
m ∈ N, indicate the quotient space of Hm(Ω) where the seminorm | · |Hm(Ω)

is null. The differential operators used below are defined in the Appendix.

Lemma 3.1. Let σ be a second order tensor field in L2(Ω; R2×2). Then,

there exist ψ ∈ H2
0 (Ω), ρ ∈ H̃2(Ω) and φ ∈ [H̃1(Ω)]2 such that

σ = E ε(∇ψ) + ∇(curl ρ) + Curlφ . (3.14)

Moreover,

‖ψ‖H2(Ω) + ‖ρ‖H2(Ω) + ‖φ‖H1(Ω) ≤ C‖σ‖L2(Ω) . (3.15)

Proof. The proof will be shown briefly. Let ψ be the solution of the following
problem:
Find ψ ∈ H2

0 (Ω) such that

(E ε(∇ψ), ε(∇v)) = (σ, ε(∇v)) ∀v ∈ H2
0 (Ω) . (3.16)

Moreover, let ρ be the solution of another auxiliary problem:
Find ρ ∈ H̃2(Ω) such that

(∇(curl ρ),∇(curl v)) = (σ − E ε(∇ψ),∇(curl v)) ∀v ∈ H̃2(Ω) .
(3.17)
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We note that both problems have a unique solution due to the coercivity of
the considered bilinear forms on the respective spaces. Observing that

div div ∇(curl ρ) = 0 , (3.18)

from (3.16) and (3.17) it follows, respectively, that

div div (σ − E ε(∇ψ) − ∇(curl ρ)) = 0 (3.19)

rotdiv (σ − E ε(∇ψ) − ∇(curl ρ)) = 0 . (3.20)

As an immediate consequence of (3.19) and (3.20), it holds

div (σ − E ε(∇ψ) − ∇(curl ρ)) = c ∈ R
2 . (3.21)

Moreover, substituting (3.21) in (3.17) and integrating by parts (see the
Appendix), we easily get c = 0.

Therefore, the identity (3.21) with c = 0 implies the existence of a vector
function φ ∈ [H̃1(Ω)]2 such that

σ − E ε(∇ψ) − ∇(curl ρ) = Curlφ (3.22)

‖φ‖H1(Ω) ≤ C‖σ − E ε(∇ψ) − ∇(curl ρ)‖L2(Ω) . (3.23)

The second part of the proposition follows from the stability of the problems
(3.16), (3.17) and the bound (3.23).

Remark 3.2. We note that, due to the boundary conditions required on
ψ, in order to derive Lemma 3.1 it is not sufficient to combine the result of
Lemma 3.1 in [6] with the classical Helmholtz decomposition.

3.2 Reliability

We have the following lower bound for the error estimator:

Theorem 3.1. Let w be the solution of the problem (2.4) and wh the solution

of the problem (2.7). Then it holds

|||w − wh|||h ≤ C
(

∑

K∈Ch

η2
K +

∑

K∈Ch

h4
K‖f − fh‖

2
L2(K)

)1/2

. (3.24)

Proof. Recalling that w ∈ H2
0 (Ω), it immediately follows

|||w − wh|||
2
h =

∑

K∈Ch

|w − wh|
2
H2(K) +

∑

e∈Eh

h−3
e ‖JwhK‖

2
L2(e)

+
∑

e∈Eh

h−1
e ‖J∇wh · neK‖

2
L2(e) . (3.25)

Therefore, due to the definition of ηK in (3.2) and the norm (2.9), what needs
to be proved is

∑

K∈Ch

|w − wh|
2
H2(K) ≤ C

(

∑

K∈Ch

η2
K +

∑

K∈Ch

h4
K‖f − fh‖

2
L2(K)

)

. (3.26)
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For convenience, we divide the proof of (3.26) into three steps.
Step 1. Let in the sequel eh represent the error w−wh. First due to the pos-
itive definiteness and symmetry of the fourth order tensor E , then applying
Lemma 3.1 to the tensor field E ε(∇eh), we have

∑

K∈Ch

|eh|
2
H2(K) ≤ Cah(eh, eh)

=
∑

K∈Ch

(ε(∇eh),E ε(∇eh))K = T1 + T2 + T3 , (3.27)

where

T1 =
∑

K∈Ch

(ε(∇eh),E ε(∇ψ))K , (3.28)

T2 =
∑

K∈Ch

(ε(∇eh),∇(curl ρ))K , (3.29)

T3 =
∑

K∈Ch

(ε(∇eh),Curlφ)K . (3.30)

We note that, recalling (3.15), it holds

‖ψ‖2
H2(Ω) + ‖ρ‖2

H2(Ω) + ‖φ‖2
H1(Ω) ≤ C

∑

K∈Ch

|eh|
2
H2(K) . (3.31)

Step 2. We now bound the three terms T1, T2, T3 above. Due to the symmetry
of E , from (2.4) we get

T1 = (f, ψ)Ω −
∑

K∈Ch

(E ε(∇wh), ε(∇ψ)))K . (3.32)

Let now ψI ∈ Wh be the approximation of ψ defined in Definition 3.1. Re-
calling (2.7) and integrating by parts on each triangle, from (3.32) it follows

T1 = (f, ψ − ψI)Ω −
∑

K∈Ch

(E ε(∇wh), ε(∇(ψ − ψI)))K

= (f, ψ − ψI)Ω −
∑

K∈Ch

∑

e∈∂K

(E ε(∇wh)nK ,∇(ψ − ψI)))e , (3.33)

where, here and in the sequel, nK indicates the outward unit normal to each
edge of K ∈ Ch.

Observing that E ε(∇wh)nK is constant on each edge, then the properties
(3.4) and (3.6) applied to (3.33) imply

T1 = (f, ψ − ψI)Ω = (f − fh, ψ − ψI)Ω + (fh, ψ − ψI)Ω . (3.34)

Two Hölder inequalities and the interpolation property (3.5) therefore give

T1 ≤ C

(

∑

K∈Ch

h4
K‖f − fh‖

2
L2(K) +

∑

K∈Ch

h4
K‖fh‖

2
L2(K)

)1/2

‖ψ‖H2(Ω) . (3.35)
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We now bound the term in (3.29). Recalling that w ∈ H2
0 (Ω) and the

fact div div ∇(curl ρ) = 0, integration by parts (see the Appendix) for the
w part in T2 gives

T2 =
∑

K∈Ch

(ε(∇wh),∇(curl ρ))K . (3.36)

From the definition of curl and gradient, it follows

(Ξ,∇(curl ρ))Ω = (Ξ,Curl (∇ρ))Ω , (3.37)

for all symmetric tensor fields Ξ in L2(Ω; R2×2).

As a consequence,

T2 =
∑

K∈Ch

(ε(∇wh),Curl (∇ρ))K

=
∑

K∈Ch

(ε(∇wh),Curl (∇ρ− (∇ρ)II))K

+
∑

K∈Ch

(ε(∇wh),Curl (∇ρ)II)K , (3.38)

where (∇ρ)II is the approximation of ∇ρ, component by component, intro-
duced in Definition 3.2. Integrating by parts triangle by triangle and recalling
(3.13), we have

∑

K∈Ch

(ε(∇wh),Curl (∇ρ− (∇ρ)II))K

=
∑

K∈Ch

∑

e∈∂K

(ε(∇wh)sK ,∇ρ− (∇ρ)II)e = 0 , (3.39)

where sK represents the unit vector which is the counter clockwise rotation
of nK at each edge of K ∈ Ch.

Again integrating by parts and observing that

Curl (∇ρ)IInK = −∇(∇ρ)IIsK (3.40)

is continuous across edges, it follows

∑

K∈Ch

(ε(∇wh),Curl (∇ρ)II)K = −
∑

K∈Ch

∑

e∈∂K

(∇wh,∇(∇ρ)IIsK)e

= −
∑

e∈Eh

(J∇whK,∇(∇ρ)IIsK)e . (3.41)

First Hölder inequalities, then the Agmon and the inverse inequality, and
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finally the property (3.12) with m = 1 give

∑

e∈Eh

(J∇whK,∇(∇ρ)IIsK)e

≤

(

∑

e∈Eh

h−1
e ‖J∇whK‖

2
L2(e)

)1/2(
∑

e∈Eh

he‖∇(∇ρ)IIsK‖2
L2(e)

)1/2

≤ C

(

∑

e∈Eh

h−1
e ‖J∇whK‖

2
L2(e)

)1/2(
∑

K∈Kh

‖(∇ρ)II‖
2
H1(K)

)1/2

≤ C

(

∑

e∈Eh

h−1
e ‖J∇whK‖

2
L2(e)

)1/2

‖∇ρ‖H1(Ω) . (3.42)

Combining the bound (3.42) with the identities (3.38), (3.39) and (3.41)
grants

T2 ≤ C

(

∑

e∈Eh

h−1
e ‖J∇whK‖

2
L2(e)

)1/2

‖ρ‖H2(Ω)

≤ C

(

∑

e∈Eh

h−1
e ‖J∇wh · neK‖

2
L2(e) +

∑

e∈Eh

h−1
e ‖J∇wh · seK‖

2
L2(e)

)1/2

‖ρ‖H2(Ω) .

(3.43)

Observing that

J∇wh · seK =
∂

∂s
JwhK ∀e ∈ Eh , (3.44)

where s represents the coordinate along the edge e, standard scaling argu-
ments give

∑

e∈Eh

h−1
e ‖J∇whK · se‖

2
L2(e) ≤ C

∑

e∈Eh

h−3
e ‖JwhK‖

2
L2(e) . (3.45)

Combining (3.43) with (3.45) finally gives

T2 ≤ C

(

∑

e∈Eh

h−1
e ‖J∇wh · neK‖

2
L2(e) +

∑

e∈Eh

h−3
e ‖JwhK‖

2
L2(e)

)1/2

‖ρ‖H2(Ω) .

(3.46)

We now bound the term in (3.30). Recalling that w ∈ H2
0 (Ω) and the

fact div divCurlφ = 0, integration by parts (see the Appendix) for the w
part in T3 gives

T3 =
∑

K∈Ch

(ε(∇wh),Curlφ)K , (3.47)
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which is bounded exactly in the same way as the term T2 in (3.38); simply,
repeating the same process but substituting ∇ρ with φ. One therefore gets

T3 ≤ C

(

∑

e∈Eh

h−1
e ‖J∇wh · neK‖

2
L2(e) +

∑

e∈Eh

h−3
e ‖JwhK‖

2
L2(e)

)1/2

‖φ‖H1(Ω) .

(3.48)
Step 3. Combining (3.27) with (3.35), (3.46), (3.48) and recalling (3.31), it
follows

∑

K∈Ch

|eh|
2
H2(K)

≤ C

(

∑

K∈Ch

h4
K‖f − fh‖

2
L2(K) +

∑

K∈Ch

η2
K

)1/2(
∑

K∈Ch

|eh|H2(K)

)1/2

,

(3.49)

which implies (3.26).

3.3 Efficiency

We have the following upper bound for the error estimator:

Theorem 3.2. Let w be the solution of the problem (2.4) and wh the solution

of the problem (2.7). Then it holds

ηK ≤ |||w − wh|||h,K + h2
K‖f − fh‖L2(K) , (3.50)

where ||| · |||h,K represents the local restriction of the norm ||| · |||h to the

triangle K:

|||v|||2h,K = |v|2H2(K) +
∑

e∈∂K

ceh
−3
e ‖JvK‖2

L2(e)

+
∑

e∈∂K

ceh
−1
e ‖J∇v · neK‖

2
L2(e) . (3.51)

Proof. As already observed, it holds

|||eh|||
2
h,K = |eh|

2
H2(K) +

∑

e∈∂K

ceh
−3
e ‖JwhK‖

2
L2(e)

+
∑

e∈∂K

ceh
−1
e ‖J∇wh · neK‖

2
L2(e) , (3.52)

where we recall that eh = w − wh.
Therefore, due to the definition of ηK in (3.2), it is sufficient to prove that

h2
K‖fh‖L2(K) ≤ C

(

|||eh|||h,K + h2
K‖f − fh‖L2(K)

)

. (3.53)
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Let nowK be any fixed triangle in Ch. We indicate with bK the standard third
order polynomial bubble on K, scaled such that ‖bK‖L∞(K) = 1. Moreover,
let ϕK ∈ H2

0 (K) be defined as

ϕK = fhb
2
K . (3.54)

Standard scaling arguments then easily show that

‖fh‖
2
L2(K) ≤ C(fh, ϕK)K , (3.55)

‖ϕK‖L2(K) ≤ C‖fh‖L2(K) . (3.56)

Furthermore, noting that ϕK ∈ H2
0 (K) and E ε(∇wh) is constant on K,

integration by parts gives

(E ε(∇wh), ε(∇ϕK))K = 0 . (3.57)

Applying the bound (3.55) and using (2.4), we get

h2
K‖fh‖

2
L2(K) ≤ Ch2

K(fh, ϕK)K

= Ch2
K ((f, ϕK)K + (fh − f, ϕK)K)

= Ch2
K ((E ε(∇w), ε(∇ϕK))K + (fh − f, ϕK)K) . (3.58)

First applying the identity (3.57), then the Hölder and inverse inequalities,
and finally using the bound (3.56), it follows

h2
K(E ε(∇w), ε(∇ϕK))K = h2

K(E ε(∇eh), ε(∇ϕK))K

≤ C|eh|H2(K)h
2
K‖ε(∇ϕK)‖L2(K) ≤ C|eh|H2(K)‖ϕK‖L2(K)

≤ C|eh|H2(K)‖fh‖L2(K) . (3.59)

For the second term in (3.58), the Hölder inequality and the bound (3.56)
give

h2
K(fh − f, ϕK)K ≤ Ch2

K‖f − fh‖L2(K)‖fh‖L2(K) . (3.60)

Combining (3.58) with (3.59) and (3.60) we get (3.53), and the proposition
is proved.

Appendix

Let v indicate a sufficiently regular scalar field Ω → R. Analogously, let
φ and σ represent, respectively, a vector field Ω → R

2 and a second order
tensor field Ω → R

2×2, both sufficiently regular. Finally, a subindex i after a
comma will indicate a derivative with respect to the coordinate xi, i = 1, 2.

13



We then have the following definitions for the differential operators:

∇v =

(

v,1

v,2

)

, curl v =

(

−v,2

v,1

)

,

∇φ =

(

φ1,1 φ1,2

φ2,1 φ2,2

)

, Curlφ =

(

−φ1,2 φ1,1

−φ2,2 φ2,1

)

,

div φ = φ1,1 + φ2,2 , rot φ = φ2,1 − φ1,2 ,

div σ =

(

σ11,1 + σ12,2

σ21,1 + σ22,2

)

, rotσ =

(

σ12,1 − σ11,2

σ22,1 − σ21,2

)

.

Finally, the strain tensor is defined as the symmetric gradient,

ε(φ) =







φ1,1

φ1,2 + φ2,1

2
φ1,2 + φ2,1

2
φ2,2






.

The corresponding formula for integration by parts are, for a scalar v and
a vector φ,

(∇v,φ)Ω = −(v, div φ)Ω + (v,φ · n)∂Ω ,

(curl v,φ)Ω = −(v, rot φ)Ω + (v,φ · s)∂Ω ,

and for a vector φ and a tensor σ,

(∇φ,σ)Ω = −(φ,div σ)Ω + (φ,σn)∂Ω ,

(Curlφ,σ)Ω = −(φ, rotσ)Ω + (φ,σs)∂Ω .
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Errata

Lourenço Beirão da Veiga, Jarkko Niiranen, Rolf Stenberg:

A posteriori error estimates for the plate bending Morley element

Research Report A492

Helsinki University of Technology, Institute of Mathematics

October 11, 2006

The following errors have been found in the report: The first error is in
Lemma 3.1 and its proof on the pages 7–8. As a consequence, a part of the
proof of Theorem 3.1 on the pages 10–11 becomes more straightforward than
before.

Lemma 3.1 should be stated as follows:
Lemma 3.1 Let σ be a second order tensor field in L2(Ω; R2×2). Then,

there exist ψ ∈ H2
0 (Ω), ρ ∈ L2

0(Ω) and φ ∈ [H̃1(Ω)]2 such that

σ = E ε(∇ψ) + ρ + Curlφ , (E.1)

where the second order tensor

ρ =

(

0 −ρ
ρ 0

)

. (E.2)

Moreover,

‖ψ‖H2(Ω) + ‖ρ‖L2(Ω) + ‖φ‖H1(Ω) ≤ C‖σ‖L2(Ω) . (E.3)

Proof. The proof will be shown briefly. Let ψ be the solution of the following
problem: Find ψ ∈ H2

0 (Ω) such that

(E ε(∇ψ), ε(∇v)) = (σ, ε(∇v)) ∀v ∈ H2
0 (Ω) . (E.4)

Note that the problem above has a unique solution due to the coercivity of the
considered bilinear forms on the respective spaces. From (E.4) it immediately
follows

div div (σ − E ε(∇ψ)) = 0 (E.5)

in the distributional sense. As a consequence of (E.5), there exists a scalar
function ρ ∈ L2

0(Ω) such that

div (σ − E ε(∇ψ)) = curl ρ , (E.6)

‖ρ‖L2(Ω) ≤ C‖σ‖L2(Ω) + ‖ψ‖H2(Ω) . (E.7)

Now we observe that, by definition,

curl ρ = div ρ , (E.8)
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which, recalling (E.6), implies

div (σ − E ε(∇ψ) − ρ) = 0 . (E.9)

Identity (E.9) implies the existence of a vector function φ ∈ [H̃1(Ω)]2 such
that

σ − E ε(∇ψ) − ρ = Curlφ , (E.10)

‖φ‖H1(Ω) ≤ C‖σ − E ε(∇ψ) − ρ‖L2(Ω) . (E.11)

The second part of the proposition follows from the stability of the problem
(E.4), and the bounds (E.7), (E.11).

This corrected result essentially simplifies the Step 2 in the proof of The-
orem 3.1. The part of the proof that concerns the term T2 on the pages 10–11
can now be written simply as follows:

Regarding the term T2, it is sufficient to observe that, due to the symmetry
of ε(∇eh) and the definition of ρ in (E.2), it immediately follows

T2 =
∑

K∈Ch

(ε(∇eh),ρ)K = 0 . (E.12)
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