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Abstract: The X-ray tomography problem is to reconstruct a function from

its tomographic projections. This paper concerns limited-angle tomography where

images are reconstructed from incomplete projection data that are limited in view-

ing angle and number of radiographs. The limited-angle reconstruction problem is

an ill-posed inverse problem. Even if the data are noiseless obtaining an artifact-

free reconstruction is problematic without a priori information about the source

function. The reconstruction problem is formulated in terms of Bayesian statist-

ics, where all the variables included in the model are defined as random vectors

that follow the posterior probability density. In inverse problems, estimation of

the properties of the posterior density can be problematic even if the statistical

model was simple. This paper introduces a coarse-to-fine strategy, where the max-

imizing point the mean of a Gaussian posterior density is sought iteratively by

projecting the space of possible source images into a subspace of coarser resolu-

tion images through wavelet low-pass filtering during the iteration procedure. The

maximization problem is written in a preconditioned form in order to obtain better

estimates. Numerical results are presented.
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1 Introduction

The X-ray tomography problem in two dimensions is to reconstruct a source func-
tion f : R2 → R from its tomographic projections (radiographs) given by the
Radon transform

Rf(t, θ) =

∫

R2

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (1)

where f ∈ L2(R2), δ is the Dirac mass, θ ∈ [−π/2, π/2) and t ∈ R. It has been
shown by Radon in [23] that f can be perfectly recovered if Rf(t, θ) is known
for all t ∈ R and θ ∈ [−π/2, π/2), which means that there is noiseless projection
data available from all directions.

In real-life applications, the measurement space is finite dimensional and each
measured pixel value contains noise. In the discrete Radon transform, each line
integral can be approximated as a linear sum of pixel values. The discrete meas-
urement model can be written as a linear system

y = Ax + η. (2)

Through this paper A is a real m-by-n Radon matrix corresponding to the discrete
approximation of the Radon transform, x ∈ Rn is a vector corresponding to
the image and η ∈ Rm is an additive noise term. Recovery of an image from
discrete tomographic projections is known as Computerized Tomography (CT)
[3, 4, 18, 24]. The first commercial CT applications date back to 1970’s. At the
present CT is an extensively used technology in the field of medical imaging.

The fundamental difficulty in CT is the fact that the Radon transform is
a smoothing transform due to which the reconstructions are very sensitive to
the measurement noise. In computation of a CT reconstruction, regularization
techniques are needed if the measurements are contaminated by noise. The most
popular regularization procedures are the filtered back-projection (FBP) methods.
These are linear Fourier space filtering methods, in which amplification of high
frequencies is attenuated to damp out the noisy high frequency components from
the reconstruction image. For details on theory of FBP see [21].

This paper concerns limited-angle tomography where images are reconstructed
from incomplete projection data that are limited in viewing angle and number
of radiographs. The problem of reconstructing an object from noisy limited-
angle tomographic data arises in many important medical applications [25]. For
example, in intraoral dental imaging and mammography radiographs cannot be
obtained from all directions. It is also often important to minimize the radiation
dose to the patient by keeping the number of radiographs as small as possible
which leads to a sparse distribution of projection directions and arises a need for
tomographic reconstruction from sparse limited-angle data.
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The limited-angle reconstruction problem is an ill-posed inverse problem.
Even if the data are noiseless obtaining an artifact-free limited-angle reconstruc-
tion is problematic without a priori information about the source function. In
theory, a perfect limited-angle reconstruction can be obtained from an infinite
set of radiographs [26, 21], but a matrix corresponding to a limited-angle Radon
transform has a nonzero null-space N(A) = {x ∈ Rn : Ax = 0} about which no
information is provided by the measurements. The matrix can also be shown to
be ill-conditioned [5, 19, 9]; that is, the space of all possible source images Rn can
be decomposed into two orthogonal subspaces

Rn = S−
ε ⊕ S+

ε , (3)

where S−
ε = {x ∈ Rn : ||Ax||/||x|| ≤ ε}, ε > 0 is a very small number and

S−
ε \N(A) 6= ∅. It is very difficult to recover the component of the original source

image lying in S−
ε since in that subspace ||Ax|| is insensitive to variation of ||x||.

One can say that S−
ε forms the ’numerical null-space’ of A. In further discussion,

the decomposition (3) is called a sensitivity decomposition of A. The term is
adopted from [17].

In this work, the limited-angle reconstruction problem is formulated in terms
of Bayesian statistics [25, 16], where all the unknown variables are defined as
random vectors that follow the posterior probability density. A priori information
about the source function is incorporated into a prior density that together with
the likelihood of different measurement outcomes define the posterior. In the
Bayesian approach, a reconstruction of the source image is typically an estimate of
the maximizing point or the mean of the posterior. These are known as maximum

a posteriori (MAP) and conditional mean (CM) estimates.

In the present paper, the prior, likelihood and posterior densities are all as-
sumed to be Gaussian. Due to the property (3), estimation of maximizing point
(the mean) of a Gaussian posterior density can be very problematic, if the pos-
terior covariance matrix is ill-conditioned. In order to obtain reasonable estimates
based on such a posterior, the reconstruction problem should be represented in a
vector basis where the covariance is diagonal or nearly diagonal. This is proposed
by Kalifa and Mallat in [14]. This paper discusses a nearly block diagonal rep-
resentation of the posterior covariance. The concepts of diagonalization and near
diagonalization in tomographic reconstruction has been considered by Kalifa et
al in the papers [13, 15].

Based on the idea of near block diagonalization of the posterior covariance
matrix, this paper introduces a coarse-to-fine strategy, where the MAP estimate
is computed iteratively by projecting the space of possible source images into a
subspace of coarser resolution images through wavelet low-pass filtering during
the iteration procedure. The maximization problem is written in a preconditioned

form in order to obtain better estimates. The Conjugate Gradient (CG) method
is used for maximization. Numerical results are presented.
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The goal in applying wavelets and preconditioning is to represent the posterior
in such a way that the posterior covariance is nearly block diagonal and that
the maximization problem can be divided to well-conditioned and ill-conditioned
parts. This is closely related to finding an approximative sensitivity decomposi-
tion of the Radon matrix. Projective techniques in linear inverse problems have
been discussed e.g. in [22, 17]. The first paper by Piana and Bertero introduces a
projective approach to a linear inverse image processing problem. In the second
article by Liu et al wavelet representation is applied to the heat conduction prob-
lem. Preconditioning in linear inverse problems is discussed e.g. in [1, 22, 11].
The first article by Calvetti and Somersalo introduces a concept called prior-
conditioning and the third paper by Hanke concerns preconditioned Conjugate
Gradient method for image restoration problems. Discussion about tomographic
reconstruction by wavelets can be found e.g. in [7, 13, 15].

This paper is organized as follows. Section 2 briefly reviews the Bayesian
formulation of the reconstruction problem. Section 3 is devoted to Gaussian stat-
istical models. Section 4 discusses the concepts of diagonalization and precondi-
tioning of a posterior covariance matrix. Section 5 briefly reviews the definitions
of one- and two-dimensional wavelet bases. In section 6, it is shown numerically
by using wavelet low-pass filters, that the condition number of a matrix corres-
ponding to a limited-angle Radon transform can be decreased by projecting the
space of possible source images is projected into a subspace of coarser resolution
images. In section 7, the proposed coarse-to-fine strategy is described. A few
numerical examples are included. Finally, Section 8 collects the conclusions and
findings of this paper and discusses the possible directions for the future work.

2 The Bayesian model

In the Bayesian formulation of limited-angle tomography the problem to be con-
sidered is the following: given the data y, find the posterior density p(x | y). By
the Bayes’ formula the posterior density can be written in the form

p(x | y) =
p(x)p(y | x)

p(y)
, (4)

where p(x) denotes the prior probability density of the unknown vector x and
is assumed to contain all possible information of the target prior to the meas-
urements. The conditional density p(y |x) denotes the likelihood of measuring y
given the vector x and p(y) is the probability density of measuring the data y.

By assuming that x and η are independent the likelihood density can be
written as

p(y |x) = pnoise(y − Ax), (5)

that is; the likelihood density can be evaluated if it is known how the measurement
noise is distributed. Finally, assume that the measurement data y is given. Then,
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the posterior density is proportional to the product of the prior and the likelihood
densities since p(y) is constant for each given set of measurements y. The Bayes’
formula states now that the posterior density is

p(x | y) ∝ p(x)pnoise(y − Ax), (6)

where ∝ means that the distributions are equal up to a constant.

2.1 Posterior estimation

In the Bayesian approach, a reconstruction is found as an estimate of some prop-
erty of the posterior distribution. Typically, the maximum a posteriori or the
conditional mean estimate is evaluated. These are defined by

xMAP = arg max
x

p(x | y) and xCM =

∫

Rn

x p(x | y) dx. (7)

Obtaining either of these estimates can be a computationally challenging problem
that requires use of advanced optimization and numerical integration algorithms.
Difficulties arise whenever the shape of the posterior distribution is such that the
algorithms tend to proceed to wrong directions or get stuck in local minima.

In limited-angle CT, these difficulties are caused by the fact that the Radon
matrix is ill-conditioned. Under the assumption that the likelihood density (5)
is a continuous function of y, the values of p(y |x) and p(y |x + z) are hardly
distinguishable for all z ∈ S−

ε . In a case where the prior is non-informative, i.e.
the prior density is flat or nearly flat, the posterior p(x | y) is nearly flat in S−

ε

and obtaining appropriate estimates from the posterior can be difficult. In such
case, the components of xMAP and xCM lying in S−

ε are also very sensitive to
the measurement noise and it is possible that these components do not contain
relevant information about the true source image.

3 Gaussian densities

Gaussian probability distributions (normal distributions) have an important role
in Bayesian computations. Being relatively easy to handle Gaussian densities are
attractive in the computational point of view. Due to the central limit theorem
they are also often very good approximations for non-Gaussian densities.

In the present paper, an n-variate Gaussian density p(x) with mean x and
covariance matrix Γ is defined as

p(x) = (2π|Γ|)−n/2 exp
(
− 1

2
(x − x)T Γ−1(x − x)

)
, (8)

where x ∈ Rn and Γ is real symmetric and strictly positive definite n-by-n matrix
and |Γ| = det(Γ). The pair x and Γ defines a Gaussian probability distribution
N (x, Γ).
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A distribution of the form N (0, γ2I) is called a Gaussian white noise distri-
bution.

3.1 The Gaussian measurement model

In X-ray tomography, the measurement noise η is often assumed to be Gaussian
N (η, Γη). From (5) one can observe that, in such case, the likelihood is also a
Gaussian density given by

p(y | x) = (2π|Γη|)−m/2 exp
(
− 1

2
(y − Ax − η)T Γ−1

η (y − Ax − η)
)
, (9)

Typically, in numerical simulations the noise term assumes the white noise distri-
bution. In real-life applications, a Gaussian approximation for the distribution of
the measurement noise can be determined by careful analysis of the measurement
electronics [25].

3.2 Gaussian posterior densities

Suppose that the prior density of x is Gaussian with mean xpr and covariance
matrix Γpr and that the likelihood is of the form (9). Then, the posterior density
is again Gaussian p(x | y) ∝ exp(−‖b − Fx‖2

2), where

b =

[
Lη 0
0 Lpr

] [
y

xpr

]
and F =

[
Lη 0
0 Lpr

] [
A
I

]
. (10)

The matrices Lη and Lpr are the Cholesky factors of Γ−1
η and Γ−1

pr . The mean
xpost and the covariance matrix Γpost of this distribution are given by

xpost = (F T F )−1F T b = (AT Γ−1
η A + Γ−1

pr )−1(AΓ−1
η y + Γ−1

pr xpr), (11)

Γpost = (F T F )−1 = (AT Γ−1
η A + Γ−1

pr )−1. (12)

A Gaussian density has only one local maximum, which is also the global
maximum, and the maximizing point is simultaneously the mean. Therefore, a
Gaussian posterior distribution satisfies

xMAP = xCM = arg min
x

‖b − Fx‖2. (13)

If both the prior and the likelihood follow the Gaussian white noise model,
the formulas for b and F are reduced to

b =

[
y
0

]
and F = γ−1

η

[
A√
αI

]
(14)

with α = γ2
η/γ

2
pr. In this particular case, the covariance is Γpost = γ2

η(A
T A+αI)−1

and the mean coincides with the Tikhonov regularized solution of the equation
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Ax = y with regularization parameter α (A.2). Thus, the connection between
Tikhonov regularization and the Gaussian statistical model is obvious. Note that
if the white noise prior is non-informative in the sense that the prior variance γ2

pr
is really large, then α is a very small number and the covariance matrix is nearly
singular. If α tends to zero the mean tends to A†y, where A† = limα→0+(AT A +
αI)−1AT is the Moore-Penrose pseudoinverse, that can be shown to exist for any
m-by-n matrix [10].

4 Diagonalization

Computation of the MAP estimate from a Gaussian posterior density can be prob-
lematic if the posterior covariance matrix is ill-conditioned, i.e. if the posterior
is extremely flat in some directions, since flatness can cause numerical instability
of the estimation procedure. A Gaussian posterior density should, therefore, be
represented in a vector basis that distinguishes the flat parts from the other parts.
In such a basis the covariance matrix is diagonal or nearly diagonal [14]. If the
covariance is not diagonal or nearly diagonal, the posterior can be basically flat
in the direction of each basis vector. This is illustrated in Figure 1.

Figure 1: Three different vector bases that provide a diagonal (left), a nearly
diagonal (center) and a non-diagonal (right) representations of a Gaussian density.

4.1 Diagonal covariance matrices

Suppose that p(x) is a Gaussian density of the form (8). Because the covariance
matrix is symmetric and strictly positive definite it has an eigenvalue decompos-
ition of the form [10]

Γ = V ΛV T , (15)

where Λ is a strictly positive diagonal matrix containing the eigenvalues of Γ.
The orthogonal eigenvector basis that is formed by the columns of V is said to
provide a diagonalization the matrix Γ. By introducing an orthogonal change
of coordinates z = V T x the original density p(x) is transformed into another
Gaussian density with the mean z = V T x and the diagonal covariance matrix Λ.
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In the particular case, where the posterior density is given by (14), the columns
of V are formed by the eigenvectors of AT A ( i.e. the right singular vectors of
A). In the general case (12), the decomposition (15) can be obtained if the
eigenvectors of AT A and the covariances Γη and Γpr are known.

4.2 Nearly block diagonal covariance matrices

Instead of a strictly diagonal representation, it is often preferable to represent
a Gaussian density in a basis where the covariance matrix is nearly diagonal
or nearly block diagonal. This can be due to two reasons. Firstly, the matrix
to be decomposed can be so large that it is computationally too expensive to
calculate the eigenvalue decomposition. Secondly, if the matrix is ill-conditioned,
the eigenvalue decomposition is likely to be contaminated by numerical errors.
The usefulness of a nearly diagonal or nearly block diagonal representation can
be motivated by using the following result.

Let a joint density of two Gaussian random vectors be of the form

p(x1, x2) ∝ exp
(
− 1

2

[
x1 − x1

x2 − x2

]T [
Γ11 Γ12

ΓT
12 Γ22

]−1 [
x1 − x1

x2 − x2

] )
. (16)

Then, the conditional density p(x1 |x2) is Gaussian with the conditional mean
x1.2 = x1 − Γ12Γ

−1
22 (x2 − x2) and the conditional covariance matrix Γ1.2 = Γ11 −

Γ12Γ
−1
22 ΓT

12. For the proof see [12].
Suppose that the covariance of the joint density (16) is an ill-conditioned

matrix but the conditional covariance matrix Γ1.2 is well-conditioned. Then,
estimation of (x1, x2) is extremely difficult but the mean of p(x1 |x2) for a given
x2 can be estimated reasonably well. It is easy to see that the conditional mean
x1.2 tends to x1 as Γ12 tends to zero or as x2 tends to x2. Therefore, one can
estimate x1 by estimating the mean of p(x1 |x2) if x2 relatively close to x2 and
the covariance in (16) is nearly block diagonal.

Consider the Gaussian posterior density defined by (14). An above described
partition of the corresponding posterior covariance matrix can be found if an
approximation of the sensitivity decomposition (3) is available. This can be
shown as follows.

Let the matrices W1 and W2 with orthonormal columns span two orthogonal
subspaces of Rn that approximate the spaces S+

ε and S−
ε respectively. By introdu-

cing a change of coordinates (x1, x2) = (W1x,W2x) the posterior density assumes
the form (16) with the covariance matrix Γk` = γ2

ηW
T
` V (Λ−1 + αI)V T Wk, where

Λ and V contain the eigenvalues and vectors of AT A. If the subspaces spanned by
W1 and W2 provide a reasonable approximation of (3) the covariance is a nearly
block diagonal matrix in which Γ11 is a well-conditioned and Γ22 is a nearly singu-
lar block. If Γ12 is close enough to a zero matrix, then by the Hoffman-Wielandt
inequality (25) the conditional covariance Γ1.2 is also a well-conditioned matrix
and the conditional mean x1.2 is a reasonable approximation of x1.
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Note that a similar nearly block diagonal partition of the general posterior
covariance matrix (12) into well-conditioned and ill-conditioned blocks can be
obtained if an approximative sensitivity decomposition of the radon matrix and
the covariances Γη and Γpr are known.

4.3 The concept of preconditioning

Let S and M be two symmetric and strictly positive definite matrices such that
SF = FM and let p and p̃ be two Gaussian densities given by

p(x) ∝ exp(−‖b − Fx‖2) and p̃(x) ∝ exp(−‖S−1(b − Fx)‖2). (17)

Then, it is easy to see that both densities have the same mean x = (F T F )−1F T b
but different covariances. The covariance matrix of p is Γ = (F T F )−1 whereas

the covariance of p̃ is given by Γ̃ = (F T S−2F )−1 = M2(F T F )−1 and that the

same vector basis that diagonalizes Γ diagonalizes also Γ̃.
The matrix S is a so-called preconditioning matrix (preconditioner). The goal

in preconditioning is to choose the matrix S in such a way that the covariance
matrix Γ̃ is as close to diagonal as possible. Yet, one should be able to evalu-
ate S−2. If F were a well-conditioned matrix, the optimal choice for S would
yield M 2 = F T F in which case Γ̃ would be an identity matrix. Since the matrix
M actually defines a coordinate transformation, that is not necessarily ortho-
gonal, one can deduce that the idea of preconditioning is essentially to represent
the posterior in a vector basis where the posterior covariance matrix is nearly
diagonal.

Efficiency of a preconditioning matrix can be measured by comparing the
condition numbers of the covariance matrices Γ and Γ̃. Generally, if the condition
number κ(Γ̃) = λmax/λmin is smaller than κ(Γ), the matrix Γ̃ is likely to be ’closer’
to a diagonal matrix than Γ, since any matrix of the form V ΛV T tends to an
identity matrix if Λ tends to I and V is kept constant. Again, any orthogonal
basis nearly diagonalizes a covariance matrix whose condition number is close
enough to one.

5 Wavelet bases

A straightforward calculation shows that the Radon transform (1) satisfies the
so-called projection-slice formula [6]

∫

R2

f(x1, x2)e
−iλ(x1 sin θ+x2 cos θ) dx1dx2 =

∫

R
Rf(t, θ)e−iλt dt. (18)

In other words, the Radon transform of f can be obtained by applying the one-
dimensional inverse Fourier transform to the two-dimensional Fourier transform
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of f restricted to radial lines going through the origin. This means that in the
Radon transform the two-dimensional Fourier basis is mapped diagonally to the
one-dimensional Fourier basis. Unfortunately, the Fourier basis functions have an
infinite support in the spatial domain and, therefore, they are not well-suited for
representing spatially inhomogeneous data such as images with discontinuities.

For computational purposes, some multiresolution analyses, such as wavelet
bases [20] can provide a better trade-off between the spatial representation of the
data and the representation of the Radon transform than the Fourier basis. In
a multiresolution analysis, where the basis functions are relatively well-localized
both in frequency and in spatial domain, the Radon transform can be represented
in a nearly diagonal form but also the information content of images can be
analyzed efficiently.

5.1 Orthogonal wavelet representation

A multiresolution analysis is a sequence of subspaces {Vk}k∈Z of L2(R) that is
defined by the following conditions

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · .
2.

⋂
k∈Z Vk = {0} and

⋃
k∈Z V

k
is dense in L2(R).

3. f ∈ Vk if and only if f(2−k ·) ∈ V0

4. If f ∈ Vk, then f(· − `) ∈ Vk for all ` ∈ Z.

5. There exists a scaling function ϕ ∈ L2(R) such that {ϕ0`(x)}`∈Z forms a
basis of V0.

It follows from these conditions that there exists a so-called scaling vector
{h`}`∈Z such that the equation ϕ(x) =

∑
`∈Z h`ϕ(2x − `) holds. The scaling

vector is said to generate the multiresolution analysis. If additionally ϕ is such
that the family of its translates {ϕ( · − `)}`∈Z is an orthonormal system, the
scaling vector generates a family of one-dimensional orthogonal wavelets. The
corresponding wavelet basis can be constructed by translating and dilating the
scaling function ϕ. The wavelet function is defined as ψ(x) =

∑
`(−1)`h1−`ϕ(2x−

m) and the actual wavelet basis functions are obtained from ϕ and ψ as ϕk`(x) =
2k/2ϕ(2kx− `) and ψk`(x) = 2k/2ψ(2kx− `) with (k, `) ∈ Z2. The set {ϕk`(x)}`∈Z
forms an orhonormal basis of Vk and {ψk`}`∈Z forms an orthonormal basis of
Wk = V⊥

k ∩ Vk+1. By definition
⋃

k∈Z V
k

is dense in L2(R) and, therefore,
any f ∈ L2(R) can be represented in the form f =

∑
(k,`)∈Z2〈f, ϕk`〉ϕk`. The

scaling and wavelet functions generate two orthonormal bases of the subspace
Vk+1 = Vk ⊕ Wk which are {ϕk`}(k,`)∈Z2 and {ϕk`}(k,`)∈Z2 ∪ {ψk`}(k,`)∈Z2 . This
means that for all f ∈ L2(R)

∑

`∈Z
〈f, ϕk+1,`〉ϕk+1,` =

∑

`∈Z
〈f, ϕk`〉ϕk` +

∑

`∈Z
〈f, ψk`〉ψk`. (19)
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The left hand side is a orthogonal projection of f to the space Vk+1. The first
sum on the right hand side defines a low-pass filter to the the kth resolution level
and the second sum represents details that are included in Vk+1 but not in Vk.
The inner products 〈f, ϕk`〉 and 〈f, ψk`〉 are called respectively the approximation
and the detail coefficients at the kth resolution level.

5.2 Two-dimensional orthogonal wavelets

Let ϕ and ψ be the one-dimensional scaling and wavelet functions of some or-
thogonal wavelet family. The corresponding two-dimensional scaling and wave-
let functions are φ(x1, x2) = ϕ(x1)ϕ(x2), ψ1(x1, x2) = ψ(x1)ϕ(x2), ψ2(x1, x2) =
ϕ(x1)ψ(x2) and ψ3(x1, x2) = ψ(x1)ψ(x2). The corresponding wavelet basis func-
tions are obtained from these through translation and dilation: φk`j(x1, x2) =
2kφ(2kx1−`, 2kx2−j) and ψi

k`j(x) = 2kψi(2kx1−`, 2kx2−j) with (k, `, j) ∈ Z3 and
i = 1, 2, 3. The sum

∑
(`,j)∈Z2〈f, φk`j〉φk`j defines a low-pass filter to the kth res-

olution level. The approximation coefficients at the kth level are formed by the set
{〈f, φk`j〉}(`,j)∈Z2 and the corresponding detail coefficients {〈f, ψi

k`j〉}(`,j,i)∈Z2×{1,2,3}

can be subdivided to horizontal, vertical and diagonal coefficients.

6 Numerical sensitivity analysis

Because larger structures provide the image ’context’, it is natural to analyze
first the image details at a coarse resolution level and then gradually increase
the resolution [20]. In this this section, it is shown numerically by using the
wavelet representation that limited-angle Radon projections are, in general, more
sensitive to a coarse- than fine-scale fluctuations, which suggests that the coarse-
to-fine strategy can be applied in limited-angle reconstruction.

Let ϕ be a scaling function that generates a family of two-dimensional ortho-
gonal wavelets and let {Vk}k∈Z be the related multiresolution analysis. Assume
that the source image to be reconstructed lies in the n-dimensional space V0 (i.e.
the finest resolution level is indexed by zero) and denote by Pk a matrix that
defines an orthogonal projection between the coordinates of f ∈ V0 and the co-
ordinates of the low-pass filtration

∑
(`,j)∈Z2〈f, ϕ−k,`j〉ϕ−k,`j ∈ V−k. The ranges

of the matrices Pk and I − Pk decompose the space of possible source images Rn

into two orthogonal parts.

By Section 4.2, a near block diagonal representation of the posterior covariance
matrix can be obtained if an approximation of the sensitivity decomposition (3) is
available. Whether the ranges of matrices Pk and I−Pk provide approximations of
the spaces S+

ε and S−
ε respectively, is studied below by analyzing the eigenvalues

of the matrices PkA
T APk, (I − Pk)A

T A(I − Pk) and (I − Pk)A
T APk (see A.1).
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6.1 Results and discussion

Figure 2 shows how λmin(PkA
T APk), λmax((I − Pk)A

T A(I − Pk)) and λmax((I −
Pk)A

T APk) behave as a function of k = 1, . . . , 5. Also illustrated in the figure
is λrank(Pk)(A

T A), which shows what λmin(PkA
T APk) would be if Pk would be

spanned by the first rank(Pk) right singular vectors of A. Here, the original
image resolution is 64 × 64 pixels, the number of Radon projections is 15, the
angle between the projection beam and the vertical image axis obtains values
0◦,±3◦,±6◦, . . . ,±18◦ and ±21◦ and the matrix Pk is constructed by using the
Meyer wavelets which are bandlimited in the Fourier domain.

Figure 2 indicates that λmin(PkA
T APk) grows monotonically as k increases.

In other words, for each k = 0, . . . , 4 the Radon projections are more sensitive
to details at level k + 1 than details at level k. One can see also from the figure
that the gap between λmin(PkA

T APk) and λrank(Pk)(A
T A) becomes narrower as

k increases, which means that the range of Pk approximates better the most
sensitive rank(Pk) dimensional subspace at coarse than at fine scales.

Because the projection beams are basically vertical the measurements are
much more sensitive to horizontal than to vertical details in the source image at
each resolution level. This can be observed from the projection-slice formula (18)
according which vertical projections do not give any information about horizontal
spectrum of the reconstructed object. The measurements are very sensitive to
even the finest scale horizontal fluctuations and, therefore, λmax((I−Pk)A

T A(I−
Pk)) does not depend very much on k as can be seen from Figure 2.

For each k, the maximal eigenvalue of (I − Pk)A
T APk is large compared to

the other computed eigenvalues. Therefore, one cannot say that the ranges of
APk and A(I − Pk) would be close to orthogonal.

The fact that the maximal eigenvalues of the matrices (I − Pk)A
T A(I − Pk)

and (I − Pk)A
T APk are clearly above zero for each k indicates that the spaces

spanned by the columns of Pk and (I − Pk) do not provide an optimal sensit-
ivity decomposition of A. However, these spaces can still provide an excellent
approximative sensitivity decomposition in practice.

7 The coarse-to-fine strategy

In this section, it is demonstrated how the coarse-to-fine strategy discussed in
the previous section can be applied to finding the maximizing point xMAP (the
mean) of a Gaussian posterior density. A simple model is adopted, where both the
prior and the likelihood densities follow the Gaussian white noise model. With
this choice, the posterior density assumes the form p(x | y) ∝ exp(−||b − Fx||2)
where F and b are given by (14) and the related maximum a posteriori estimation
problem is given by (13). It is assumed that the prior variance γ2

pr is so large that
a direct solution of the problem, e.g. through Cholesky factorization [10], will be
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Figure 2: The base 10 logarithm of λmin(PkA
T APk) (dash-dotted line), λmax((I −

Pk)A
T A(I−Pk)) (dashed line), λmax((I−Pk)A

T APk) (solid line) and λrank(Pk)(A)
(dotted line) as a function of k.

contaminated by numerical errors.

In the coarse-to-fine strategy xMAP is estimated first at a coarse level and
then gradually refined. This is done by estimating

x∗
k = arg min

x
||S−1(b − FPkx)||2 (20)

where S is a preconditioning matrix and Pk is a projection matrix corresponding
to a Meyer wavelet low-pass filter similarly as in the previous section. During the
minimization process the index k is gradually decreased. For each k the problem
is solved numerically by applying the Conjugate Gradient method [10] to the
normal equation

(PkF
T S−2FPk)x

∗
k = S−1b. (21)

Each time when k is decreased by one the current iterate is used as an initial guess
for x∗

k−1. Note that this is not the classical Preconditioned Conjugate Gradient
(PCG) method, in which preconditioning is applied to speed up the convergence
of the iteration. Here, preconditioning is applied to obtain better reconstructions.

Finding x∗
k is equivalent to finding the mean of the conditional density p̃(x1

| x2 = 0, y), where p̃ is obtained from the posterior density p as shown in (17)
and (x1, x2) = (Pkx, (I − Pk)x). By the discussion in Section 4.2, the mean of

p̃(x1 |x2, y) is a reasonable estimate of x1 = Pkxpost, if the covariance Γ̃ of p̃ is
nearly diagonal and ||x2−x2|| is close enough to zero. In this case, one can expect

that x∗
k ≈ Pkxpost if Γ̃ is close enough to identity and ||(I − Pk)xpost|| is small

enough.

The fact that ||(I − Pk)xpost|| should be small means that the image corres-
ponding to xpost should not be dominated by fine scale fluctuations. Therefore,
the coarse-to-fine strategy (20) is experimented by using phantoms that contain
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mainly coarse-scale features. Again, since the measurement noise is likely to in-
duce a high-frequency component to xpost the noise variance γ2

η is assumed to be
small. The preconditioning matrix that is used in computations is given by

S2 =

[
AAT + αI 0

0 I

]
. (22)

It is easy to see that with this choice the preconditioned covariance matrix be-
comes Γ̃ = γ2

η(A
T (AAT + αI)−1A + αI)−1. By using the singular value decom-

position one can verify that there exists a positive definite matrix M such that
SF = FM and that the preconditioned covariance matrix has a smaller condition
number than the original posterior covariance matrix. Hence, by Section 4.3 the
equation (22) defines a feasible preconditioner. In [22] an analogous precondi-
tioning scheme is called Tikhonov preconditioning.

7.1 Results and discussion

Figure 3 illustrates the three 64× 64 binary phantoms used in the computations.
Figures 4 and 5 both contain three different reconstructions of each phantom that
were computed by

1. using the filtered back projection algorithm provided by the MATLAB
iradon function

2. directly solving xMAP through Cholesky factorization of the posterior cov-
ariance matrix

3. finding xMAP iteratively through the coarse-to-fine strategy.

In the coarse-to-fine strategy five CG iterations were performed at the coarsest
level k = 3 and after that one iteration at each level from k = 2 to k = 0. Each
reconstruction was computed by choosing α = γ2

η/γ
2
pr = 10−5 and ||η||/||y|| ≈

10−5. In Figure 4 the number of Radon projections used in the reconstructions is
15. The angle between the projection beam and the vertical image axis obtains the
values 0◦,±3◦,±6◦, . . . ,±18◦ and ±21◦. In Figure 5, the number of projections
is 22 and the directions are ±1◦,±3◦,±5◦, . . . ,±19◦ and ±21◦.

As observed in Section 6.1, the measurements are much more sensitive to ver-
tical than to horizontal fluctuations, because the projection beams are basically
vertical. Therefore, it is difficult to recover any horizontal details from the data.
From Figures 4 and 5 one can see that the coarse-scale horizontal details of the
phantoms are best recovered by applying the coarse-to-fine strategy. However,
also these reconstructions contain artifacts. In FBP reconstructions horizontal
details are completely lost.

By comparing Figures 4 and 5 one can observe that the sparseness of the
projection beams affects substantially to the quality of the MAP estimates.
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Figure 3: The three phantoms that were used in computations.

Preconditioning enhances the quality of coarse-to-fine reconstructions consid-
erably. Without preconditioning minimization of (20) yields very similar images
than direct solution of the posterior mean by using the Cholesky factorization.

Due to the relatively large prior variance used in the computations, increasing
the measurement noise level from that used easily causes high-frequency artifacts
to the MAP estimates. Removing these artifacts without changing the prior
density would necessitate decreasing the prior variance. This would again rapidly
decreases the distinguishability of the horizontal fluctuations in the reconstruction
images.

Figure 4: Reconstructions of the phantoms obtained by applying three different
methods: FBP reconstruction (top row), direct solution of xMAP (center row)
and the coarse-to-fine strategy (bottom row).
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Figure 5: Reconstructions of the phantoms obtained by applying three different
approaches: FBP reconstruction (top row), direct solution of xMAP (center row)
and the coarse-to-fine strategy (bottom row).

8 Conclusions and future work

In this paper, it was found numerically by using wavelet low-pass filters, that
the condition number of a matrix corresponding to a limited-angle Radon trans-
form can be decreased by projecting the space of possible source images into
a subspace of coarser resolution images. The numerical results concerning the
coarse-to-fine strategy show that wavelet filters can also be successfully applied
to approximatively decompose the space of possible source functions into sens-
itive and insensitive parts. It was also observed, that the results obtained by
using such an approximative decomposition in the MAP estimation process can
be substantially enhanced by preconditioning of the covariance matrix. When
preconditioning was applied the reconstructions obtained through the coarse-to-
fine strategy were superior to the reconstructions obtained from direct solution
of the posterior mean.

One possibility for the future work would be to design more sophisticated
multiresolution filters that decompose the space of sought functions to detectable
and undetectable fluctuations. In such work, multiresolution bases that analyze
spectral data in more than just horizontal, vertical and diagonal directions, such
as curvelet [2] and contourlet [8] bases, might turn out to be useful. Another

17



topic for future studies could be to develop a regularizing prior by using which
the proposed coarse-to-fine strategy would not be as sensitive to the measurement
noise as they are in the present numerical implementation.

A Appendix : The singular value decomposi-

tion and its applications

A general real m × n matrix has a singular value decomposition (SVD) [10]

A = UΣV T , (23)

where U = (u1, . . . , um) is a real m-by-m matrix and V = (v1, . . . , vn) is a real
n-by-n matrix both of which have orthogonal columns so that U T U = V T V =
I. The columns ui and vi of U and V are called the left and right singular

vectors, respectively. Σ is a real m-by-n diagonal matrix whose diagonal elements
σ1, . . . , σmin(m,n) are the singular values of A and ordered so that σ1 ≥ σ2 ≥ . . . ≥
σmin(m,n) ≥ 0. Additionally, it is defined that σk = 0 for min(m,n) < k ≤ n. The
singular values can be shown to satisfy [10]

σk(A) = max
W∈Un,k

min
06=z∈Rk

||AWz||
||z|| = min

W∈Un,n−k+1

max
06=z∈Rk

||AWz||
||z|| , (24)

where Un,k denotes a space of n-by-k matrices with orthonormal columns. This
is known as the Courant-Fischer min-max theorem. The proof is a simple applic-
ation of SVD.

Some important matrix norms can be expressed in terms of singular values.
From the Courant-Fischer theroem it follows that the Euclidean norm ||A|| =
max||x||2=1 ||Ax|| is equal to the largest singular value; that is, ||A|| = σ1(A). The
Frobenius norm is defined as ||A||2F =

∑m
k=1

∑n
`=1 |Ak`|2 and satisfies ||A||2F =∑n

k=1 σk(A)2. The Hoffman-Wielandt inequality [10] shows that the singular
values depend continuously on A:

n∑

k=1

|σk(A + E) − σk(A)|2 ≤ ‖E‖2
F . (25)

The singular value decomposition is an important tool in solving ill-conditioned
linear systems. If A is an ill-conditioned matrix, the value of ||Ax||/||x|| varies
tremendously depending on x. From (24) one sees that this is equivalent to an
extremely widespread distribution of singular values in the sense that the condi-
tion number κ(A) = σmax/σmin, i.e. the ratio between the largest and the smallest
singular value, is extremely large.

If the matrix is symmetric the singular values and vectors are similarly the
eigenvalues and vectors. Eigenvectors of the matrix AT A coincide with the right
singular vectors of A and the equation between the eigenvalues and the singular
values is λi(A

T A) = σ2
i (A) for i = 1, . . . , n.
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A.1 The sensitivity decomposition

The sensitivity decomposition (3) introduced in [17] divides the space of sought
functions into two parts where ||Ax|| is respectively sensitive and insensitive to
variation of ||x||. The subspaces S−

ε and S+
ε can be obtained from SVD. The sub-

space S+
ε is spanned by the right singular vectors v1, . . . , vk and S−

ε is spanned by
the vectors vk+1, . . . , vn, if k is such that σk > ε ≥ σk+1. Supposing that ε has a
reasonable value, the sensitivity decomposition subdivides Rn into sensitive and
insensitive parts. The subspaces S+

ε and S+
ε are orthogonal due to the orthogon-

ality of the singular vectors. The subspaces {Ax : x ∈ S−
ε } and {Ax : x ∈ S+

ε }
are also orthogonal since Avi = σiui.

Consider now an approximative sensitivity decomposition into two orthogonal
subspaces that are spanned by the matrices W1 and W2 with orthogonal columns.
Due to the min-max property (24), sensitivity of A in these subspaces can be ana-
lyzed by examining the distribution of the singular values of AW1 and AW2. A
decomposition into sensitive and insensitive parts should satisfy σmin(AW1) ≥
σmax(AW2). However, by (24) the inequality σmin(AW1) > σmax(AW2) can be
satisfied only if the columns of W1 are spanned by the first k right singular vec-
tors. Therefore, as an approximative sensitivity decomposition this is, in general,
the better the smaller is the gap between σmin(AW1) and σmax(AW2) (or the gap
between λmin(W

T
1 AT AW1) and λmax(W

T
2 AT AW2)). The quality of the decompos-

ition depends also on how close to orthogonal are the ranges of the matrices AW1

and AW2, i.e. how large is λmax(W
T
1 AT AW2). The singular value decomposition

is optimal in the sense that by choosing W1 = (v1, . . . , vk) and W2 = (vk+1, . . . , vn)
one has λmax(W

T
1 AT AW2) = 0 and the gap between σmin(AW1) and σmax(AW2)

is minimized.

A.2 The Tikhonov regularized solution of a linear system

It is easy to see that xls minimizes the least-squares norm ||y −Ax||2 if and only
if the so-called normal equation AT Axls = AT b is satisfied. If AT A is a full-
rank matrix the solution of the normal equation is unique and given by xls =∑n

k=1(y
T vk/σ

2
k)vk. If A is of full-rank but an ill-conditioned matrix the singular

values tend to zero rapidly as k increases. Then, 1/σ2
k is very large for large k,

which causes instability of the solution.
Tikhonov regularized solution xα is the minimizer of the regularized least-

squares problem arg minx ||Ax − y||2 + α||x||22 and satisfies the equation (AT A +
αI)xα = AT y. The matrix on the left hand side is of full rank for all A ∈ Rm×n,
y ∈ Rm and α > 0. The parameter α controls the level of regularization. By
using SVD this can be written as

xα = (AT A + αI)−1AT y =
n∑

k=1

σk

σ2
k + α

(yT uk)vk. (26)
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Assuming that the classical least squares solution exists xα is close to xls in the
sense that xT

αvk ≈ xT
lsvk for σk À α, since σk/(σ

2
k + α) ≈ 1/σk for small k.

Instability is, however, not a problem, if α is chosen properly, because σk/(σ
2
k +

α) → 0 when σk → 0 for all α > 0.
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Applyining mathematical finance tools to the competitive Nordic electricity mar-

ket

October 2004

A474 Mikko Lyly , Jarkko Niiranen , Rolf Stenberg

Superconvergence and postprocessing of MITC plate elements

January 2005

A473 Carlo Lovadina , Rolf Stenberg

Energy norm a posteriori error estimates for mixed finite element methods

October 2004

A472 Carlo Lovadina , Rolf Stenberg

A posteriori error analysis of the linked interpolation technique for plate bending

problems

September 2004



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are

available at http://www.math.hut.fi/reports/ .

A486 Hanna Pikkarainen

A Mathematical Model for Electrical Impedance Process Tomography

April 2005

A485 Sampsa Pursiainen

Bayesian approach to detection of anomalies in electrical impedance tomo-

graphy

April 2005

A484 Visa Latvala , Niko Marola , Mikko Pere

Harnack’s inequality for a nonlinear eigenvalue problem on metric spaces

March 2005

A482 Mikko Lyly , Jarkko Niiranen , Rolf Stenberg

A refined error analysis of MITC plate elements

April 2005

A481 Dario Gasbarra , Tommi Sottinen , Esko Valkeila

Gaussia Bridges

December 2004

ISBN 951-22-7860-X

ISSN 0784-3143


