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1 Introduction

In this paper we study differentiability in locally compact metric spaces from a
metric geometry point of view. As it is well-known, Riemannian geometry was
introduced by G. F. B. Riemann in his 1854 inaugural lecture, and metric spaces
by M. Fréchet in his 1906 doctoral dissertation. As a starting point, we may
consider how the Riemannian metric (tangent space inner product) is classically
obtained from the distances on the manifold. Tangents on a manifold are bounded
linear functionals satisfying the Leibniz product rule for C1-functions at a point.
In a locally compact metric space, Lipschitz point derivations serve as preliminary
tangents; such derivations were studied by D. R. Sherbert [11] and L. Waelbroeck
[13] in the 1960s, discovering the structure of the closed ideals in the normed
algebra of Lipschitz functions. In generalizing the classical Riemannian obser-
vation to metric spaces, a natural restriction on the metric manifests itself. This
appears to be related to “smoothness” and curvature bounds for metric spaces, as
introduced by A. D. Aleksandrov [1], pioneering the theory in the 1950s. There
were important further developments e.g. by Yu. G. Reshetnyak in the 1960s [9].
Later, the 1980s works of M. Gromov have been influential [6]. Monographs [2]
and [3] are nice overviews on Cartan–Aleksandrov–Toponogov curvature bounds
on metric spaces. Metric space curvature is also related to variance inequalities
for probability measures, see e.g. K.T. Sturm’s paper [12]. Measure theoretic as-
pects of differentiability have been studied extensively, see for instance works by
G. David and S. W. Semmes [5], J. Cheeger [4], N. Weaver [15] and S. Keith [8].
However, the differentiability concept in this paper involves no measures in itself;
Gromov–Hausdorff tangent cones are neither involved here.

Let us describe details of the situation: Let M be a Riemannian manifold and
TxM be the tangent space at x ∈ M . A tangent a ∈ TxM is a bounded linear
functional a : C1(M) → R, satisfying the Leibniz rule at x ∈ M :

a(fg) = f(x) a(g) + a(f) g(x).

Let 〈a, b〉TxM ∈ R denote the Riemannian inner product of tangents a, b ∈ TxM .
The length of a smooth curve γ : [0, 1] → M is

∫ 1

0

‖γ′(t)‖Tγ(t)M dt,

where ‖a‖2
TxM = 〈a, a〉TxM . The Riemannian distance |xy| (metric of the metric

space) between x, y ∈ M is the infimum of the lengths of curves joining x, y.
Conversely, the Riemannian inner product can be recovered from the distance by

〈a, b〉TxM = a (y 7→ b(z 7→ xy · xz)) ,

where xy · xz = |xy| |xz| cos(∠̃yxz) = 1
2
(|xy|2 + |xz|2 − |yz|2); here ∠̃yxz is

a (Euclidean) comparison angle, a basic notion in metric geometry. Actually, we
can see that instead of xy · xz we could derivate −|yz|2/2.

Now let M be a locally compact metric space; for convenience, assume it is
even compact. We no longer have C1-smoothness on M , but the space Lip(M)
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of Lipschitz functions M → R will be our test function space. The Lipschitz
tangents (or Lipschitz point derivations) at x ∈ M are bounded linear functionals
D : Lip(M) → R satisfying

D(fg) = f(x) D(g) + D(f) g(x).

On a manifold M , the restriction to C1(M) of a Lipschitz tangent is naturally a
tangent; on the other hand, it turns out that a (non-unique) Hahn–Banach extension
Lip(M) → R of a tangent C1(M) → R is always a Lipschitz tangent. On a
(locally) compact metric space M , if D,E are Lipschitz tangents at x ∈ M , we
might be tempted to define their “Riemannian product” by

D · E := D(y 7→ E(z 7→ xy · xz));

whereas on Riemannian manifolds this is sound, we may run into trouble on met-
ric spaces where y 7→ E(z 7→ xy · xz) is not a Lipschitz function nearby x ∈ M .
To exclude this misfortune, we denote h(y, z) := xy · xz, define

y1y2 · z1z2 := [h(y2, z2) − h(y2, z1)] − [h(y1, z2) − h(y1, z1)]

=
1

2

(

|y1z2|2 + |y2z1|2 − |y1z1|2 − |y2z2|2
)

,

and demand that a Cauchy–Schwarz -like inequality

|y1y2 · z1z2| ≤ C |y1y2| |z1z2| (1)

holds nearby x ∈ M ; here C < ∞ is a constant on the neighborhood.
The structure and contents of the paper are briefly the following: Section 2

deals with the properties of the dot product wx · yz in a metric space in general,
and in Section 3 we study Cauchy–Schwarz spaces satisfying local or global in-
equalities like (1): Examples of global Cauchy–Schwarz spaces are provided by
metric spaces of global non-positive curvature (and perhaps surprisingly, several
snow-flakings), and Riemannian manifolds are locally Cauchy–Schwarz spaces.
Moreover, the Cauchy–Schwarz -like inequalities are inherited by subspaces, pre-
served in completion, also in reasonable Cartesian products and under Gromov–
Hausdorff convergence. Meanwhile, singularities on manifolds may obstruct even
the local Cauchy–Schwarz property, as well as non-unique geodesics may prevent
the global Cauchy–Schwarz inequality; we shall also note that the doubling prop-
erty of a measure does not guarantee the Cauchy–Schwarz properties at all. Fi-
nally, in Section 4 we examine infinitesimal metric geometry in Cauchy–Schwarz
spaces: there tangent spaces and differentiability are studied.

2 Dot product in metric spaces

Let (M,xy 7→ |xy|) be a metric space; here (x, y) ∈ M × M is abbreviated by
xy ∈ M 2. Let us define the dot product wx · yz ∈ R of points w, x, y, z ∈ M by

wx · yz :=
1

2

(

|wz|2 + |xy|2 − |wy|2 − |xz|2
)

. (2)
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To get a feeling of this, let h(x, y) = −|xy|2/2, and write the iterated differences

wx · yz = [h(w, y) − h(w, z)] − [h(x, y) − h(x, z)]

= [h(w, y) − h(x, y)] − [h(w, z) − h(x, z)];

the dot product seems a vague analogue of the Riemannian metric tensor. In this
section, we study properties of the dot product in a general metric space. It will
turn out that it resembles a vector space inner product, with its natural connection
to comparison angles and a Cauchy–Schwarz -like inequality.

2.1 Dot product in general metric spaces

In this subsection the metric spaces satisfy no extra conditions. As the definition
of the dot product itself is akin to the parallelogram law of inner product spaces,
it is not surprising that there are inner-product-like features:

Theorem 2.1 Let (M,xy 7→ |xy|) be a metric space. For every v, w, x, y, z ∈ M ,

xy · xy = |xy|2, (3)

wx · yz = yz · wx (4)

= −xw · yz (5)

= wv · yz + vx · yz, (6)

0 = wx · yz + wy · zx + wz · xy. (7)

A noteworthy case is xx · yz = 0. 2

A triple of points in a metric space can naturally be identified with a Euclidean
plane triangle having the side-lengths corresponding to the distances between the
points; the metric space is thereby compared to the flat Euclidean metric. Com-
parison triangles on surfaces of constant curvature are studied in the theory of
Aleksandrov spaces of bounded curvature, see e.g. [3].

Euclidean comparison triangles. Let (M,xy 7→ |xy|) be a metric space. If
x, y, z ∈ M and y 6= x 6= z, the comparison angle ∠̃yxz ∈ [0, π] is defined by

cos
(

∠̃yxz
)

:=
1

2

|xy|2 + |xz|2 − |yz|2
|xy| |xz| . (8)

There is no harm in defining ∠̃yxz := 0 if x ∈ {y, z}. The geometric interpreta-
tion is that there exist a unique-up-to-isometry triangle in the Euclidean space R2

with side-lengths |xy|, |xz|, |yz| such that ∠̃yxz is the inner angle of the triangle
at the vertex corresponding to the point x ∈ M . Consequently, for yxz ∈ M3, let
us define the comparison points ȳxz, yx̄z, yxz̄ ∈ R2 by

ȳxz := (|xy|, 0), yx̄z := (0, 0), yxz̄ := |xz| (cos(φ), sin(φ)), (9)
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where φ = ∠̃yxz. Comparison angles provide an interpretation for the dot product:

wx · wz = |wx| |wz| cos(∠̃xwz) (10)

wx · yz = wx · wz − wx · wy (11)

= |wx|
(

|wz| cos(∠̃xwz) − |wy| cos(∠̃xwy)
)

. (12)

Actually, one can define the dot product by formulas (10) and (11).

Partial Cauchy–Schwarz inequality. By (10) and (5), we get a partial Cauchy–
Schwarz inequality

|xy · yz| ≤ |xy| |yz|, (13)

which is valid for every x, y, z ∈ M . However, often in a metric space there is
no “general Cauchy–Schwarz inequality” like |wx · yz| ≤ |wx| |yz|, nor even
|wx · yz| ≤ C |wx| |yz| for a constant C < ∞; this is the starting point of the
theory of Cauchy–Schwarz spaces, studied in Section 3.

Even though no algebraic structure for M is assumed, the product space M2

has a trivial groupoid structure, which behaves well with respect to the dot product:
let us denote xy + yz := xz for x, y, z ∈ M . In this notation,

wx · yz = (wv + vx) · yz = wv · yz + vw · yz, (14)

|xz|2 = |xy + yz|2 = |xy|2 + |yz|2 + 2 xy · yz; (15)

since (|xy| − |yz|)2 ≤ |xz|2 ≤ (|xy| + |yz|)2 by the triangle inequality, we get a
more direct proof for the partial Cauchy–Schwarz inequality (13).

Triangle equalities. In a metric space,

xy · yz = |xy| |yz| ⇐⇒ |xz| = |xy| + |yz|; (16)

in this case, the intuition is that “y is located between x and z”. Accordingly,

xy · yz = −|xy| |yz| ⇐⇒ |xz| = ||xy| − |yz||; (17)

here either “z is located between x and y” or “x is located between y and z”.

Lipschitz numbers. Let (M,xy 7→ |xy|) be a metric space. A function f :
M → R is called Lipschitz, denoted by f ∈ Lip(M), if its Lipschitz seminorm

Lip(f) := sup
x,z∈M

|f(x) − f(z)|
|xz| (18)

is finite (with convention 0/0 = 0). If M is compact, the real algebra Lip(M) is
given the Banach space norm f 7→ ‖f‖Lip(M) = max{‖f‖C(M), Lip(f)}, where
the norm for continuous functions is ‖f‖C(M) = supx∈M |f(x)|. The pointwise
(or local) Lipschitz number at x ∈ M is

Lipx(f) := lim
r→0+

sup
y,z∈B(x,r)

|f(y) − f(z)|
|yz| , (19)
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where B(x, r) := {y ∈ M : |xy| < r} is the open ball of radius r > 0 centered
at x ∈ M . Notice that in some books and papers, various other (non-equivalent)
pointwise Lipschitz numbers occur. Being defined in terms of squares of dis-
tances, the dot product has some natural Lipschitz properties:

Theorem 2.2 Let diam(M) := supx,y∈M |xy| be the diameter of a metric space
(M,xy 7→ |xy|). The dot product satisfies

|wx · yz| ≤ (|wy| + |yx|) |yz| (20)

for every w, x, y, z ∈ M , and

Lip(z 7→ wx · yz) ≤ sup
v∈M

(|wv| + |vx|) ≤ 2 diam(M), (21)

Lipv(z 7→ wx · yz) ≤ |wv| + |vx|, (22)

Lipw(z 7→ wx · yz) ≤ |wx|. (23)

Proof. By the triangle inequality and by (13),

|wx · yz| = |wy · yz − xy · yz| ≤ |wy · yz| + |xy · yz| ≤ |wy| |yz| + |xy| |yz|,

yielding (20). Hence

|wx · yz1 − wx · yz2| = |wx · z2z1| ≤ (|wzj| + |zjx|) |z1z2|

for each j = 1, 2. This gives the estimates for Lipschitz numbers. 2

2.2 Dot product in normed spaces and for paths

Next we deal with the dot product in presence of linear or length structures. Let
M be a metric space and a vector space, with the origin o ∈ M . It is easy to see
that x 7→ |ox| is a norm if and only if

|o(λx)| = |λ| |ox| and |(x + z)(y + z)| = |xy|

for every x, y, z ∈ M and for every scalar λ. A natural question is whether the
dot product has something to do with inner product spaces:

Theorem 2.3 Let (M,x 7→ ‖x‖) be a normed space over R, with the origin
o ∈ M , and let |xy| := ‖y − x‖. Then xy 7→ ox · oy is an inner product if and
only if o(−x) · oy = −(ox · oy) for every x, y ∈ M .

Proof. If (x, y) 7→ 〈x, y〉 is an inner product for M then

2wx · yz = |wz|2 + |xy|2 − |wy|2 − |xz|2
= ‖w − z‖2 + ‖x − y‖2 − ‖w − y‖2 − ‖x − z‖2

= −2〈w, z〉 − 2〈x, y〉 + 2〈w, y〉 + 2〈x, z〉
= 2〈x − w, z − y〉;
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the dot product M2 ×M2 → R and the inner product M ×M → R are naturally
related. Conversely, suppose o(−x) · oy = −(ox · oy) for every x, y ∈ M . Then

‖y + x‖2 + ‖y − x‖2 = |(−x)y|2 + |xy|2
= |(−x)o|2 + |oy|2 + 2(−x)o · oy + |xo|2 + |oy|2 + 2xo · oy
= 2‖x‖2 + 2‖y‖2;

the parallelogram law holds, so that M has an inner product given by

〈x, y〉 :=
‖x‖2 + ‖y‖2 − ‖x − y‖2

2
=

|ox|2 + |oy|2 − |xy|2
2

= ox·oy. 2

Remark. If M is a normed but not an inner product space then there are points
for which (w + v)(x+ v) · yz 6= wx · yz; the reasoning goes as in the proof above.

Intrinsic metrics [3] and dot product. Let (M,xy 7→ |xy|) be a metric space.
The metric is called intrinsic (resp. strictly intrinsic) if for each x, y ∈ M the
distance |xy| is the infimum (resp. minimum) of the lengths of paths between x
and y. It well-known that the metric is intrinsic if and only if

∀ε > 0 ∀x0, x1 ∈ M ∃y ∈ M : |x0y|2 + |x1y|2 ≤ 2−1|x0x1|2 + 2ε,

i.e. (|x0x1|/2)2 ≤ x0y · yx1 + ε;

the metric is strictly intrinsic if and only if this inequality holds for ε = 0.

3 Cauchy–Schwarz spaces

The analogue |wx · yz| ≤ |wx| |yz| of the classical Cauchy–Schwarz inequality
does not hold in every metric space. In general, the best that can be said is

|wx · yz| ≤ (|wy| + |yx|) |yz| ≥ |wx| |yz|.

The Cauchy–Schwarz inequality |wx · yz| ≤ C |wx| |yz| is studied in the sequel.

3.1 Cauchy–Schwarz interpretations and first examples

Next we define the Cauchy–Schwarz constants and give them a meaning by com-
parison angles; later, dealing with the concept of differentiation, the emphasis
is naturally on the local properties of the space. Some basic examples of good
and bad spaces will be discussed: real inner product spaces, severely snow-flaked
spaces and `p-metrics. Gromov δ-hyperbolicity will be dealt with the snow-flaked
dot product. We shall see that locally Euclidean spaces, like a circle or torus, may
behave globally badly in the Cauchy–Schwarz sense; in Section 4 it will turn out
that Riemannian manifolds are still locally Cauchy–Schwarz.
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Cauchy–Schwarz space. The Cauchy–Schwarz constant CM ∈ [0,∞] of a met-
ric space (M,xy 7→ |xy|) is

CM := sup
w,x,y,z∈M

|wx · yz|
|wx| |yz| (24)

(with the convention 0/0 = 0); a metric space (M,xy 7→ |xy|) is called a Cauchy–
Schwarz space if CM < ∞, i.e.

|wx · yz| ≤ C |wx| |yz| (25)

for some C < ∞ for all w, x, y, z ∈ M . Notice that CM ≥ 1 if M contains at
least two points. A metric space is locally Cauchy–Schwarz if it has an open cover
of Cauchy–Schwarz subspaces; then the Cauchy–Schwarz constant at z ∈ M is

Cz := lim
r→0+

CB(z,r), (26)

where B(z, r) = {y ∈ M : |xy| < r} and CB(z,r) is the Cauchy–Schwarz
constant of the metric subspace (B(z, r), xy 7→ |xy|).

Comparison angles and Cauchy–Schwarz. Let w, x, y, z ∈ M . Recall the
partial Cauchy–Schwarz inequality (13); now

wx · yz = wx · wz − wx · wy

= |wx|
(

|wz| cos(∠̃xwz) − |wy| cos(∠̃xwy)
)

,

so that the Cauchy–Schwarz property becomes
∣

∣

∣
|wz| cos(∠̃xwz) − |wy| cos(∠̃xwy)

∣

∣

∣
≤ CM |yz|. (27)

In terms of the comparison points xwȳ = (y1, y2), xwz̄ = (z1, z2) ∈ R2,

|z1 − y1| ≤ CM |yz|. (28)

Loosely speaking, if the “tetrahedron” determined by the points w, x, y, z ∈ M
is “flattened” into the Euclidean plane R2 so that five of the six “edges” preserve
their lengths, then the length of the orthogonal shadow of the sixth “edge” onto
the opposite edge is not “stretched” badly, only at most by factor CM < ∞.

Proposition 3.1 A real inner product space is Cauchy–Schwarz. 2

Proof. Since 〈x − w, z − y〉 = wx · yz, we get the result by the classical inner
product Cauchy–Schwarz inequality |〈x − w, z − y〉| ≤ ‖x − w‖ ‖z − y‖. 2

Examples. Finite metric spaces are naturally Cauchy–Schwarz. A metric space
(M,xy 7→ |xy|) is Cauchy–Schwarz if each subset {w, x, y, z} ⊂ M of (at
most) four points can be isometrically embedded into the Euclidean space R3;
then CM ≤ 1; this happens e.g. for the discrete metric xy 7→ |xy| ∈ {0, 1}.
This isometric embedding condition is not necessary for a space to be Cauchy–
Schwarz: if M = {w, x, y, z} has the metric 1 = |wx| = |xy| = |yz| = |zw|
and 2 = |wy| = |xz|, it cannot be embedded isometrically into any inner product
space.
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Circle. Torus R/Z (or the circle S1) is clearly locally Cauchy–Schwarz, but it
is not Cauchy–Schwarz, when endowed with the usual metric: For v ∈ R, let
[v] := v + Z ∈ R/Z. Let 0 < ε < 1/2,

w := [0], xε := [ε], yε := [1/2 + ε], z := [1/2].

Then |xε − w| |z − yε| = ε2 and wxε · yεz = ε(1 − ε), so that

|wxε · yεz|
|wxε| |yεz|

=
1 − ε

ε
→ε→0+ ∞.

Distinct shortest paths. Let us generalize the circle example. Let M be a metric
space in which (s 7→ xs), (t 7→ yt) : [0, 1] → M are paths from x0 = y0 to x1 = y1

satisfying |xsxt| = |s− t| |x0x1| = |ysyt|. Suppose |xsy1−s| = (1− 2f(s))|x0x1|,
where 0 ≤ f(s)/s ≤ k < 1 for a constant k, as s → 0+; this can happen on
Riemannian manifolds. Then

x0xs · y1−sy1

|x0xs| |y1−sy1|
=

2f(s)2 − 2f(s) + 2s − s2

s2
≥ −1 +

2(1 − k)

s
→s→0+ ∞.

Thus sometimes non-unique geodesics may obstruct Cauchy–Schwarz property.
On the circle, there are two shortest paths between a pair of most distant points:
we may think that within the space, the antipode point is seen as a double im-
age. Similarly, on the 2-sphere S2, the south pole is “seen in every direction”
when viewed from the north pole: any longitude is a shortest path between the
north and south poles. Broadly speaking, in the physical universe, the cosmic
background radiation coming from every direction is the picture of a single point
in the space-time, the big bang; in smaller scales, gravitational lenses may cause
multiple images of distant stellar objects.

Proposition 3.2 Let 0 < α ≤ 1/2 and (M,xy 7→ |xy|) be a metric space. Then
the “snow-flaked” metric space Mα = (M,xy 7→ |xy|α) has the Cauchy–Schwarz
constant CMα

≤ 1.

Proof. Since 0 < α ≤ 1/2, also xy 7→ |xy|2α is a metric; especially, there is the
triangle inequality begetting the estimate

wx ·α yz := 2−1
(

|wz|2α + |xy|2α − |wy|2α − |xz|2α
)

≤ 2−1
(

(|wy|2α + |yz|2α) + (|xz|2α + |zy|2α) − |wy|2α − |xz|2α
)

= |yz|2α;

thereby also wx ·α yz ≤ |wx|2α, so that |wx ·α yz| ≤ |wx|α |yz|α. 2

Remark. Snow-flaking xy 7→ |xy|α with 1/2 < α < 1 may not always produce
a Cauchy–Schwarz space, as we will see later.
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Gromov product [2, 3]. Let wx ·α yz be as in the proof of Proposition 3.2. The
Gromov product of y, z ∈ M with respect to x ∈ M is

(y · z)x :=
1

2
(|yx| + |xz| − |yz|) ;

i.e. (y · z)x = xy · 12 xz. For δ ≥ 0, the space M is called δ-hyperbolic [2, 3] if

(x · y)w ≥ min {(x · z)w, (y · z)w} − δ

for every w, x, y, z ∈ M , i.e. δ ≥ min
{

wx · 12 yz, wy · 12 xz
}

.

Euclidean space distorted. Let n ≥ 2 and 1 ≤ p ≤ ∞. For p < ∞, let us
endow Rn with the `p-metric xy 7→ |xy|p := (

∑n
j=1 |xj − yj|p)1/p. Let us also

define xy 7→ |xy|∞ := max1≤j≤n |xj − yj|. For 1 ≤ p ≤ ∞, let wx ·p yz :=
2−1

(

|wz|2p + |xy|2p − |wy|2p − |xz|2p
)

. It is clear that (Rn, xy 7→ |xy|2) is Cauchy–
Schwarz as an inner product space. If 1 ≤ p < 2, ε > 0 and n = 2, let

w = (0, 0), x = (ε2, 0), y = (0, ε), z = (ε2, ε),

so that

wx ·p yz

|wx|p |yz|p
=

(ε2p + εp)2/p − ε2

ε4
=

(εp + 1)2/p − 1

ε2
≈ 2 εp

p ε2
→ε→0+ ∞;

(Rn, xy 7→ |xy|p) is not even locally Cauchy–Schwarz. If p = ∞, let

w = (0, 0), x = (ε2,−ε2), y = (ε, ε), z = (ε + ε2, ε − ε2)

(a Euclidean rectangle, sides forming angles π/4 with coordinate axes), so that

wx ·∞ yz

|wx|∞ |yz|∞
=

(ε + ε2)
2 − ε2

ε4
= 1 + 2/ε →ε→0 ∞;

thus (Rn, xy 7→ |xy|∞) is not locally Cauchy–Schwarz. For 2 < p < ∞, let
w, x, y, z ∈ R2 be as in the p = ∞ case above, so that

wx ·p yz

|wx|p |yz|p
=

((1 + ε)p + (1 − ε)p)2/p − 22/p

22/p ε2

→ε→0+ lim
ε→0+

((1 + ε)p−1 − (1 − ε)p−1)((1 + ε)p + (1 − ε)p)2/p−1

22/p ε
= p − 1,

where l’Hôpital was used; the local Cauchy–Schwarz constant is at least p−1 ≥ 1.

Conjecture: If 2 < p < ∞ then (R2, xy 7→ |xy|p) has the Cauchy–Schwarz
constant p − 1.
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Still snow-flaking. Let xy 7→ |xy|∞ be the metric on R2 as in the preceding
paragraph. Let 1/2 < α < 1, and let wx ·α∞ yz be the dot product with respect to
the metric xy 7→ |xy|α∞. If

w = (0, 0), x = (ε2,−ε2), y = (ε, ε), z = (ε + ε2, ε − ε2)

then

wx ·α∞ yz

|wx|α∞ |yz|α∞
=

(ε + ε2)2α − ε2α

ε4α
=

(1 + ε)2α − 1

ε2α
→ε→0+ lim

ε→0+

2αε

ε2α

1/2<α
= ∞.

Thus xy 7→ |xy|β∞ is a Cauchy–Schwarz metric if and only if β ≤ 1/2. This same
example shows that for every β ∈]1/2, 1[ there is a metric space (M,xy 7→ |xy|)
such that xy 7→ |xy|β is a Cauchy–Schwarz metric, while xy 7→ |xy|α is not
when α > β. Similar studies on (R2, xy 7→ |xy|αp ) show that we do not have the
Cauchy–Schwarz property if 1 ≤ p < 2α ≤ 2.

3.2 Basic properties of Cauchy–Schwarz spaces

In the sequel, we study the dot product in a Cauchy–Schwarz space as a Lipschitz
mapping z 7→ wx·yz. We note the preservation of the Cauchy–Schwarz inequality
in taking subspaces, in completion and in suitable countable Cartesian products.
We study divergence of geodesics, and learn that the Cauchy–Schwarz inequality
survives the Gromov–Hausdorff convergence of compact metric spaces.

Earlier we studied global and local Lipschitz behavior of the mapping z 7→
wx · yz on a general metric space. By the following result, the Cauchy–Schwarz
condition can be rewritten as a Lipschitz condition on the metric space:

Theorem 3.3 Let (M,xy 7→ |xy|) be a Cauchy–Schwarz space. The mapping
(z 7→ wx · yz) : M → R has Lipschitz properties

Lip(z 7→ wx · yz) ≤ min

{

CM |wx|, sup
v∈M

(|wv| + |vx|)
}

, (29)

Lipv(z 7→ wx · yz) ≤ min {CM |wx|, |wv| + |vx|} , (30)

Lipw(z 7→ wx · yz) ≤ |wx|. (31)

Conversely, a metric space (M,xy 7→ |xy|) is a Cauchy–Schwarz space if

Lip(z 7→ wx · wz) ≤ C |wx| (32)

for every w, x ∈ M ; the Cauchy–Schwarz constant is then the infimum of the
possible constants C in the inequality.

Proof. This is actually a refinement of Theorem 2.2, when we notice that in a
Cauchy–Schwarz space

|wx · yz1 − wx · yz2| = |wx · z2z1| ≤ CM |wx| |z1z2|;
the inequalities for the Cauchy–Schwarz case follow. Conversely, suppose the
metric space satisfies (32). Then

|wx · yz| = |wx ·wz −wx ·wy| ≤ Lip(v 7→ wx ·wv) |yz| ≤ C |wx| |yz|. 2
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Violating Cauchy–Schwarz. Let M be bounded non-Cauchy–Schwarz. Let
wn, xn, yn, zn ∈ M such that |wnxn · ynzn|/(|wnxn| |ynzn|) → ∞. Then

|wnxn · ynzn|
|wnxn| |ynzn|

≤ |wnxn| (|ynwn| + |wnzn|)
|wnxn| |ynzn|

≤ 2 diam(M)

|ynzn|
,

i.e. |ynzn| → 0; analogously, |wnxn| → 0. If M is moreover compact then the
violation of the Cauchy–Schwarz inequality can be isolated nearby at most two
points: there exists J ⊂ Z+ such that

lim
J3n→∞

wn = lim
J3n→∞

xn ∈ M, lim
J3n→∞

yn = lim
J3n→∞

zn ∈ M.

Subspaces, completions and products. The Cauchy–Schwarz property is nat-
urally preserved in taking subspaces, completions or Euclidean-like Cartesian
products with at most countably many coordinate spaces. Comparing the Hilbert
cube and an infinite-dimensional torus, we get an insight that a (locally) Cauchy–
Schwarz space should not be “(locally) loopy”.

Theorem 3.4 Global (resp. local) Cauchy–Schwarzness is preserved in taking
subspaces, in isometries, and in finite Cartesian products. Global Cauchy–Schwarz
property is preserved in completion, and in countable Cartesian products if the
Cauchy–Schwarz constants of the coordinate spaces are uniformly bounded.

Proof. Trivially Cauchy–Schwarz properties are inherited by subspaces, and
they are metric properties. It is evident that the global inequality (25) survives
the completion with the same Cauchy–Schwarz constant; but if we remove the tip
from a cone (see Section 3.4), we obtain a non-complete locally Cauchy–Schwarz
space with a not-even-locally-Cauchy–Schwarz completion. Let M1, . . . ,Mn be
Cauchy–Schwarz spaces. Let

|xy|2 :=
n

∑

j=1

|xjyj|2 (33)

define a metric xy 7→ |xy| for
∏n

j=1 Mj . Then it is easy to see that

wx · yz =
n

∑

j=1

wjxj · yjzj, and

|wx · yz| ≤
n

∑

j=1

CMj
|wjxj| |yjzj| ≤ C

n
∑

j=1

|wjxj| |yjzj| ≤ C |wx| |yz|,

where C = max1≤j≤n CMj
; in the last step the Hölder inequality was applied. It

is now clear that this way the local Cauchy–Schwarz property is also preserved in
finite Cartesian products. If {Mj}∞j=1 is a collection of bounded Cauchy–Schwarz
spaces such that sup{CMj

: j ∈ Z+} < ∞ then we may (after rescaling) assume
that diam(Mj) ≤ 2−j , so that |xy|2 :=

∑∞

j=1 |xjyj|2 defines a Cauchy–Schwarz
metric xy 7→ |xy| for M =

∏∞

j=1 Mj . 2
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Hilbert cube and torus. Let the Hilbert cube M :=
∏∞

j=1[0, 2
−j ] be given

the metric by |xy| := (
∑∞

j=1 |xjyj|2)1/2 (here |xjyj| = |xj − yj| is the absolute
value). This is a compact path-connected non-doubling Cauchy–Schwarz space;
recall that a metric space is called doubling if every closed ball of radius 2r has
a covering family of at most N ∈ Z+ closed balls of radius r, where N is a con-
stant. The countably infinite-dimensional torus

∏∞

j=1(R/(2−jZ)) is a compact
path-connected non-doubling not even locally Cauchy–Schwarz space, and it is
not locally isometrically embeddable in an inner product space.

Geodetic properties. Suppose we have two paths of length |xy| between points
x, y ∈ M ; we want estimate how far away from each other these two geodesics
can be. It turns out that if the Cauchy–Schwarz constant is CM = 1, such
geodesics are unique (if they exist):

Theorem 3.5 Let (M,ab 7→ |ab|) be a Cauchy–Schwarz space. Assume that
(s 7→ xs), (t 7→ yt) : [0, 1] → M are geodetic paths from x0 = y0 to x1 = y1 such
that |y0yt| = |x0xt| = t |x0x1| = |x1−tx1| = |y1−ty1| for every t ∈ [0, 1]. Then

|xtyt| ≤
√

2t(1 − t)(CM − 1) |x0x1|. (34)

Especially, if M is a complete length space and CM = 1 then between any given
two points there exists a unique shortest length path.

Remark. Trivial inequalities

|xtyt| ≤ 2t |x0x1| and |xtyt| ≤ 2(1 − t) |x0x1| (35)

provide better estimates than the one given in Theorem above in the respective
cases 0 < t < (CM − 1)/(CM + 1) and 1 − (CM − 1)/(CM + 1) < t < 1.
Consequently, if CM ≥ 3 then the estimate in Theorem is completely useless.

Proof of Theorem 3.5. Now

2 (xtx1 · x0yt) = |xtyt|2 + |x1x0|2 − |xtx0|2 − |x1yt|2
= |xtyt|2 + |x0x1|2

(

1 − t2 − (1 − t)2
)

= |xtyt|2 + 2(1 − t)t |x0x1|2,

and on the other hand

2 (xtx1 · x0yt) ≤ 2CM |xtx1| |x0yt| = 2(1 − t)tCM |x0x1|2;

therefore |xtyt|2 ≤ 2t(1 − t)(CM − 1) |x0x1|2. 2

Remark. From the proof above we see that

xtx1 · x0yt ≥ (1 − t)t |x0x1|2,

so that xtx1 · x0yt > 0 whenever x0 6= x1 and 0 < t < 1.
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Gromov–Hausdorff limits [7, 3]. Let (M,wx 7→ |wx|M) and (N, yz 7→ |yz|N)
be compact metric spaces. The Gromov–Hausdorff distance dGH(M,N) ≥ 0
between them is defined to be less than r > 0 if and only if there exists a compact
metric space (K, ab 7→ |ab|) such that there are isometric embeddings g : M → K
and h : N → K such that the Hausdorff distance between g(M), h(N) ⊂ K is
less than r. The Gromov–Hausdorff distance provides a metric on the space of
isometry classes of compact metric spaces. Let ε > 0, and let M,N be compact
metric spaces. A (possibly even discontinuous) mapping f : M → N is called an
ε-isometry if f(M) ⊂ N is an ε-net and if

sup
w,x∈M

||f(w)f(x)|N − |wx|M | ≤ ε.

It can be proven that if dGH(M,N) < r then there exists a 2r-isometry M → N ;
and if there exists an r-isometry M → N then dGH(M,N) < 2r. The Cauchy–
Schwarz property behaves well with respect to the Gromov–Hausdorff limits:

Theorem 3.6 Let ((Mk, xkyk 7→ |xkyk|k))∞k=1 be a sequence of compact metric
spaces converging to a compact metric space (M,xy 7→ |xy|) in the Gromov–
Hausdorff sense. Then the Cauchy–Schwarz constant CM of M has an estimate

CM ≤ lim sup
k→∞

CMk
,

where CMk
∈ [0,∞] is the Cauchy–Schwarz constant of Mk.

Proof. Let fk : M → Mk be an εk-isometry, where limk→∞ εk = 0. Suppose
C := supk∈Z+ CMk

< ∞. If w, x, y, z ∈ M then

fk(w)fk(x) · fk(y)fk(z)

= 2−1
(

|fk(w)fk(z)|2k + |fk(x)fk(y)|2k − |fk(w)fk(y)|2k − |fk(x)fk(z)|2k
)

→k→∞ 2−1
(

|wz|2 + |xy|2 − |wy|2 − |xz|2
)

= wx · yz,

and on the other hand

|fk(w)fk(x) · fk(y)fk(z)| ≤ CMk
|fk(w)fk(x)|k |fk(y)fk(z)|k

≤ C |fk(w)fk(x)|k |fk(y)fk(z)|k
→k→∞ C |wx| |yz|.

Hence |wx · yz| ≤ C |wx| |yz|. Generalizing this “sup-result”, the claimed
“lim sup -result” is obvious. 2

Remarks. Above, it is possible that lim supk→∞ CMk
= ∞ but yet CM < ∞;

e.g. consider a sequence of circles shrinking to a point. There are many funda-
mental properties conserved in the Gromov–Hausdorff convergence: for instance,
a complete limit of length (resp. boundedly compact, resp. boundedly compact
complete length) spaces is a length (resp. boundedly compact, resp. boundedly
compact complete length) space [2]. Notice also that a locally compact space is
boundedly compact if and only if complete [3].
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3.3 Spaces of non-positive curvature (NPC)

In an intrinsic metric space, one can try to define the angle between intersecting
geodesics in a natural way using the limits of Euclidean comparison angles; the
space is said to be of non-positive curvature (NPC spaces in sense of Aleksandrov)
if these geodetic angles exist and are less than or equal to the involved comparison
angles. Other curvature bounds require dealing with non-Euclidean surfaces of
constant curvature [3].

Global NPC spaces [3, 12]. A global NPC space (or a Hadamard space) is a
complete simply connected metric space of non-positive curvature. Alternatively,
a complete metric space (M,xy 7→ |xy|) is a global NPC space if and only if

∀x0, x1 ∈ M ∃x1/2 ∈ M ∀z ∈ M : |zx1/2|2 ≤
1

2
|zx0|2 +

1

2
|zx1|2 −

1

4
|x0x1|2;

for an equivalent definition by a variance inequality, see [12].

Global NPC and dot product. According to Proposition 2.3 in [12], in a global
NPC space M , from x0 to x1 there exists a unique geodesic (t 7→ xt) : [0, 1] → M
such that |xsxt| = |s − t| |x0x1|; moreover, for every z ∈ M ,

|zxt|2 ≤ (1 − t) |zx0|2 + t |zx1|2 − t(1 − t) |x0x1|2.

In our notation, this NPC inequality is reduced to

zx0 · x0xt ≤ t (zx0 · x0x1). (36)

Proof. We get the result, since

|zxt|2 = |zx0 + x0xt|2
= |zx0|2 + 2 (zx0 · x0xt) + |x0xt|2
= |zx0|2 + 2 (zx0 · x0xt) + t2 |x0x1|2,

and on the other hand

|zxt|2 ≤ (1 − t) |zx0|2 + t |zx1|2 − t(1 − t) |x0x1|2
= |zx0|2 + t (|zx1|2 − |zx0|2 − |x0x1|2) + t2 |x0x1|2
= |zx0|2 + 2t (zx0 · x0x1) + t2 |x0x1|2. 2

Reshetnyak’s Quadruple Comparison. In a global NPC space (M,xy 7→ |xy|),

|x1x3|2 + |x2x4|2 ≤ |x2x3|2 + |x4x1|2 + 2|x1x2| |x3x4|

for every x1, x2, x3, x4 ∈ M (see [12]), as shown originally by Reshetnyak. Using
the dot product, this reads

−x1x2 · x3x4 ≤ |x1x2| |x3x4|,

meaning the Cauchy–Schwarz inequality with CM = 1.
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Riemannian manifolds. A Riemannian manifold M is a global NPC space
if and only if it is complete, simply connected and has non-positive sectional
curvature; then by Reshetnyak’s Quadruple Comparison, the Cauchy–Schwarz
constant CM = 1. For the circle S1, we already saw that a manifold is not ne-
cessarily a Cauchy–Schwarz space. In Section 4, we show that a Riemannian
manifold M is always locally Cauchy–Schwarz, even that Cx = 1 for any x ∈ M .

Geodesic comparison. Let (M,ab 7→ |ab|) be a global NPC space. In [12] it is
shown that

|xtyt| ≤ (1 − t) |x0y0| + t |x1y1|, (37)

where t 7→ xt, t 7→ yt are geodesics satisfying |xsxt| = |s− t| |x0x1| and |ysyt| =
|s − t| |y0y1|; the Cauchy–Schwarz inequality and (36) clarify the proof:

|xtyt|2 = |xtx0|2 + |x0yt|2 + 2 (xtx0 · x0yt)

≤ |xtx0|2 + |x0yt|2 + 2t (x1x0 · x0yt)

= (1 − t) |x0yt|2 + t |x1yt|2 − (1 − t)t |x0x1|2
= (1 − t)

(

|x0y0|2 + |y0yt|2 + 2 (x0y0 · y0yt)
)

+t
(

|x1y1|2 + |y1yt|2 + 2 (x1y1 · y1yt)
)

−(1 − t)t |x0x1|2
≤ (1 − t)

(

|x0y0|2 + |y0yt|2 + 2t (x0y0 · y0y1)
)

+t
(

|x1y1|2 + |y1yt|2 + 2(1 − t) (x1y1 · y1y0)
)

−(1 − t)t |x0x1|2
= (1 − t)2 |x0y0|2 + t2 |x1y1|2 + 2(1 − t)t (x0y0 · x1y1)

≤ [(1 − t) |x0y0| + t |x1y1|]2 . 2

3.4 Singularities of spaces

We shall show that conical singularities (not to speak of sharper cusps) violate
the Cauchy–Schwarz property; however, a rather standard doubling condition on
measures may exclude only “infinitely sharp” cusps. The minimal doubling con-
stant for the volume form of a compact smooth manifold reveals the precise di-
mension of the manifold, while the restriction of the Lebesgue measure to a com-
pact submanifold of a Euclidean space can be non-doubling: doubling tells more
about “sharpness” of singularities of the space than about the topological dimen-
sion. Cusps on two-dimensional surfaces exemplify these phenomena.

Doubling measure. A Borel measure µ on a metric space (M,xy 7→ |xy|) is
called doubling if

0 < µ(B(x, 2r)) ≤ Cµ µ(B(x, r)) < ∞

for every x ∈ M and r > 0, where Cµ < ∞ is a constant. Then

µ(B(x,R))

µ(B(x, r))
≤ Cµ (R/r)log2 Cµ ,
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when 0 < r < R; in a sense, the “µ-dimension” of M at x cannot exceed log2 Cµ.
For instance, the Lebesgue measure µ of Rn with the Euclidean metric is doubling
as µ(B(x, r)) = c(n)rn. Moreover, a complete metric vector space may carry a
doubling measure if and only if the space is finite-dimensional [10]. The measure
given by the volume form of a compact C∞-smooth manifold is doubling; thus let
us study some non-smooth manifolds:

Surfaces of rotation. Let f : R+ → R+ be non-decreasing and C1-smooth such
that f(t) → 0 as t → 0+. Let M be the surface obtained by rotating the curve
x2(x1) = f(x1) around the x1-axis, with the origin 0 ∈ R3 included. Then M
is a two-dimensional submanifold of R3, C1-smooth except possibly at 0 ∈ M ,
and we endow M with the minimal arc length metric d. The surface area is our
choice for the measure µ. Let 0 6= x = (x1, x2, x3) ∈ M , i.e. x1 > 0 and
f(x1)

2 = x2
2 + x2

3. Then

rx := d(0, x) =

∫ x1

0

√

1 + f ′(t)2 dt,

A(rx) := µ(B(0, rx)) =

∫ x1

0

2πf(t)
√

1 + f ′(t)2 dt.

Non-doubling cusp. Let f(t) = e−1/t; let M be defined by f as above. The
cusp at 0 ∈ M is “infinitely sharp”: f (k)(t) →t→0+ 0 for every k ∈ N. Now

rx =

∫ x1

0

√

1 + t−4e−2/t dt ≈ x1

for x ≈ 0, because
√

1 + t−4e−2/t ≈ 1 for t ≈ 0+. Hence for r ≈ 0+,

A(2r)

A(r)
≈

∫ 2r

0
2πe−1/t

√
1 + t−4e−2/t dt

∫ r

0
2πe−1/t

√
1 + t−4e−2/t dt

≈
∫ 2r

0
f(t) dt

∫ r

0
f(t) dt

≥
1
2
f(2r)2/f ′(2r)

rf(r)
= 2re1/(2r) →r→0+ ∞.

Thus µ is not doubling on M .

Doubling cusps. Let M be the surface of rotation corresponding to f(t) = tα,
where α > 0. Let x ≈ 0. Now

rx =

∫ x1

0

√
1 + α2t2α−2 dt ≈











x1, α > 1,√
2x1, α = 1,

xα
1 , α < 1,

A(rx) = 2π

∫ x1

0

√
t2α + α2t4α−2 dt ≈











2π
α+1

xα+1
1 , α > 1,√

2πx2
1, α = 1,

πx2α
1 , α < 1,
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so that for r ≈ 0+,

A(r) ≈











2π
α+1

rα+1, α > 1,

πr2/
√

2, α = 1,

πr2, α < 1.

The topological dimension of M is 2 for each α, but the µ-dimension at 0 ∈ M
appears to be α + 1 for α > 1.

Cone is not Cauchy–Schwarz. Let 0 < 2α < 2π. Let us design a cone K by
removing a slice of angle 2π − 2α from the Euclidean plane R2, with the tip at
the origin o ∈ R2; then identify the edges with each other in the natural way. The
metric is the usual geodetic metric on the cone, i.e. the one obtained from the
Euclidean plane (with taking in mind the removal of the slice). Let ε > 0. Choose
points wε, xε, yε, zε ∈ K so that

|owε| = |oxε| = |oyε| = |ozε| = ε, |wεzε| = 2ε sin(α/2) = |xεyε|,
|wεxε| = 2ε sin(εα/2) = |yεzε|, |xεzε| = 2ε sin((1 − ε)α/2) = |wεyε|.

Then using l’Hôpital’s rule, we calculate

wεxε · yεzε

|wεxε| |yεzε|
=

sin2(α/2) − sin2((1 − ε)α/2)

sin2(εα/2)
→ε→0+ ∞;

hence the cone K is not a Cauchy–Schwarz space, due to the singularity at the tip.
Similarly, it can be proven that sharper cusps fail the Cauchy–Schwarz property.

4 Infinitesimal metric geometry

In the sequel, we deal with compact metric spaces, but many of the results hold in
locally compact metric spaces. First, we review earlier theory of Lipschitz point
derivations, and then combine it to the Cauchy–Schwarz property.

4.1 Lipschitz tangent space

Intuitively, given “an algebra F of test functions” M → R, a tangent at a point
x ∈ M is a linear functional D : F → R satisfying the Leibniz rule at x:

D(fg) = f(x) D(g) + D(f)g(x).

On a metric space M , the local Lipschitz property is the natural smoothness con-
dition. So we choose the algebra of Lipschitz functions to be our “test function
space”. Then it is natural to require the tangents to be also bounded functionals.
But even then, the resulting Lipschitz tangent space can be quite huge, as in the
case of M = ([0, 1], xy 7→ |x − y|); we will address to this problem later via
the Cauchy–Schwarz property. In any case, Lipschitz tangents have been proven
useful in characterizing closed ideals of the Lipschitz function algebra, see [13].
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Lipschitz ideals

For a compact Hausdorff space X , there is the charming correspondence between
the closed subsets of X and the closed ideals of C(X): the ideal of the zero set of a
closed ideal J ⊂ C(X) is J , and the zero set of the ideal of a closed set C ⊂ X is
C. This is a well-known part of Gelfand theory. For the algebra Lip(M) ⊂ C(M)
on a compact metric space M , the spectral synthesis is far more complicated.

Ideals. Let K ⊂ M be a non-empty set. Obviously,

I(K) := {f ∈ Lip(M) | ∀x ∈ K : f(x) = 0} (38)

is a closed ideal of Lip(M). We denote I(x) := I({x}). The zero set of an ideal
J ⊂ Lip(M) is

Z(J ) := {x ∈ M | ∀f ∈ J : f(x) = 0}; (39)

this is a closed subset of M , and Z(I(K)) is the closure of K ⊂ M . Let K ⊂ M
be a non-empty set. Then

J(K) := {f ∈ I(K) | ∀x ∈ K : Lipx(f) = 0} (40)

is a closed ideal of Lip(M). We denote J(x) := J({x}). We may think that J(K)
consists of “test functions” vanishing on K and having “zero gradient” on K. It
is easy to prove that fg ∈ J(x) if f, g ∈ I(x). Moreover, Z(J(K)) = Z(I(K)),
and if J ⊂ Lip(M) is a closed ideal then J(Z(J )) ⊂ J ⊂ I(Z(J )).

Lipschitz tangents

There are at least three essentially different but in effect the same definitions for
Lipschitz tangents. We are going to define them as bounded linear functionals
satisfying the Leibniz rule at a point, but equivalently they are bounded linear
functionals annihilating those functions that are locally constant at the reference
point, or equivalently they can be approximated by “linear combinations of limits
of difference quotients”, as stated below precisely; these results have been collec-
ted from [14] (p. 128–130).

Lipschitz tangents [14]. A bounded linear functional D : Lip(M) → R is
called a Lipschitz tangent at x ∈ M (or a point derivation at x ∈ M ), denoted by
D ∈ LipTxM , if

D(fg) = f(x) D(g) + D(f) g(x) (41)

for all f, g ∈ Lip(M). If N ⊂ M is a compact subspace then LipTx(N) has
a natural embedding D 7→ D̃ into LipTxM , given by D̃(f) := D(f |N), where
f |N ∈ Lip(N) is the restriction of f ∈ Lip(M).
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Example [14]. Let M̃ := {xy | x, y ∈ M, x 6= y}. Let

βM̃ := Spec(Cb(M̃)) = Hom(Cb(M̃), C), (42)

i.e. the maximal ideal space of the commutative C∗-algebra of bounded continu-
ous complex-valued functions on M̃ ; to put this otherwise, βM̃ is the Stone–Cech
compactification of M̃ . Then there is a natural interpretation M̃ ⊂ βM , and if
(xjyj)j∈J ⊂ M̃ is a net in βM̃ converging to ξ ∈ βM̃ then this net converges in
M × M to a unique point xx; in this case ξ is said to lie above x. Moreover,

Dξf := lim
j

f(xj) − f(yj)

|xjyj|
(43)

defines a Lipschitz tangent Dξ at x ∈ M .

Theorem 4.1 Let D : Lip(M) → R be a bounded linear functional. Then the
following conditions are equivalent:

1. D is a Lipschitz tangent at x ∈ M ,

2. Df = 0 if f is locally constant at x,

3. D is a weak∗-limit of linear combinations of some point derivations Dξj
,

where the points ξj lie above x.

Remarks. If D is a Lipschitz tangent at both x and y then either x = y or
D = 0. If D ∈ LipTxM then actually

‖D‖ = sup
f∈Lip(M)

|Df |
‖f‖Lip(M)

= sup
f∈Lip(M)

|Df |
Lipx(f)

. (44)

Finally,
J(x) = {f ∈ I(x) | ∀D ∈ LipTxM : Df = 0}. (45)

4.2 Differentiability in Cauchy–Schwarz spaces

In the following, we mainly study differentiability in compact Cauchy–Schwarz
spaces, but due to the locality of the concepts, one can provide analogous theory
for locally compact locally Cauchy–Schwarz spaces.

Tangent space in Cauchy–Schwarz space

As it has been pointed out, the Lipschitz tangent space LipTxM can be awfully
huge. This is due to that the test function space Lip(M) is quite large itself: e.g.
C1([0, 1]) ⊂ Lip([0, 1]) is a proper closed subspace, and C1-functions “do not see
as many tangents” as Lipschitz functions do. The problem is that in a general met-
ric space the best smoothness we can deal with is Lipschitz. However, using the
metric space dot product, we are going to define a dot product between Lipschitz
tangents in a Cauchy–Schwarz space. It turns out that this dot product may not
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distinguish between all the Lipschitz tangents, giving us the opportunity to col-
lapse the Lipschitz tangent space LipTxM modulo a dot equivalence to obtain a
reasonable tangent space TxM . Later, we will be able to grasp the concepts of
differentiability and gradients in a Cauchy–Schwarz space.

Dot product xy ·D. By Theorem (2.2), in any metric space, the dot product has
the Lipschitz property Lipx(z 7→ xy · xz) ≤ |xy|. Thereby, if D ∈ LipTxM then

xy · D := D(z 7→ xy · xz) ∈ R (46)

is well-defined and satisfies

|xy · D| ≤ |xy| ‖D‖. (47)

Notice that if (xjzj)j∈J ⊂ M̃ converges to η ∈ βM̃ lying above x ∈ M then

xy · Dη = lim
j

xy · zjxj

|xjzj|
. (48)

Lemma 4.2 If D ∈ LipTxM in a compact locally Cauchy–Schwarz space then

Lipx(y 7→ xy · D) ≤ Cx ‖D‖. (49)

Proof. Let r > 0 and y1, y2 ∈ B(x, r). Now

|xy1 · D − xy2 · D| = |D(z 7→ y2y1 · xz)|
≤ ‖D‖ Lipx(z 7→ y2y1 · xz)

≤ ‖D‖ CB(x,r) |y2y1|,

where CB(x,r) is the Cauchy–Schwarz constant of the ball B(x, r) ⊂ M ; in the
last inequality, we applied Theorem 3.3. 2

Dot product E ·D. Let (M,xy 7→ |xy|) be a compact locally Cauchy–Schwarz
space. If D,E ∈ LipTxM then we can define

E · D := E(y 7→ xy · D) = E(y 7→ D(z 7→ xy · xz)) (50)

by Lemma 4.2; this is called the dot product of E and D. Notice that

|E · D| ≤ Cx ‖E‖ ‖D‖, (51)

where Cx is the Cauchy–Schwarz constant at x ∈ M . If (wixi)i∈I , (yjzj)j∈J ⊂ M̃
converge to respective points ξ, η ∈ βM̃ lying above x ∈ M then

Dξ · Dη = lim
i

lim
j

wixi · yjzj

|wixi| |yjzj|
. (52)

The Riemannian situation is well-behaved in this respect:

Theorem 4.3 Let M be a Riemannian manifold of non-zero dimension. The
Cauchy–Schwarz constant at x ∈ M is Cx = 1.
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Proof. Since x ∈ M is not isolated, Cx ≥ 1. For each n ∈ Z+, choose
wn, xn, yn, zn ∈ B(x, 1/n) such that wnxn · ynzn/(|wnxn| |ynzn|) →n→∞ Cx.
Choose a subsequence (wnxn)n∈J ⊂ (wnxn)∞n=1 converging to ξ ∈ βM̃ . Choose a
subsequence (ynzn)n∈K ⊂ (ynzn)n∈J converging to η ∈ βM̃ . We get point deriv-
ations Dξ, Dη ∈ LipTxM , and we define corresponding tangents aξ, aη ∈ TxM
by restriction C1(M) ⊂ Lip(M). Let h(y, z) := −|yz|2/2. Then

1 ≥ ‖aξ‖TxM ‖aη‖TxM ≥ 〈aξ, aη〉TxM = aξ (y 7→ aη (z 7→ h(y, z)))

= lim
K3n→∞

∫ 1

0

∫ 1

0

∂

∂s

∂

∂t
fn(s, t) ds dt,

where function fn is defined in the Riemann normal coordinates (at x ∈ M ) by
fn(s, t) = h(wn + s(xn − wn), yn + t(zn − yn))/(|wnxn| |ynzn|). Hence

1 ≥ lim
K3n

([fn(1, 1) − fn(1, 0)] − [fn(0, 1) − fn(0, 0)]) = lim
K3n→∞

wnxn · ynzn

|wnxn| |ynzn|
,

yielding 1 ≥ Cx. Thus Cx = 1. 2

Remark. Let M be a compact Riemannian manifold, D,E ∈ LipTxM , and let
a = D|C1(M), b = E|C1(M) ∈ TxM . Then D · E = 〈a, b〉TxM . Hence let us
generalize the notion of the tangent space to (locally) compact locally Cauchy–
Schwarz spaces:

Tangent space. Let (M,xy 7→ |xy|) be a compact locally Cauchy–Schwarz
space. Let us define an equivalence relation on LipTxM by

D ∼ E ⇐⇒ ∀F ∈ LipTxM : F · D = F · E. (53)

Let us call TxM := (LipTxM)/ ∼ the tangent space of M at x. To simplify
notation, let D ∈ TxM still denote the equivalence class of D ∈ LipTxM .

Proposition 4.4 E · D = D · E for every D,E ∈ LipTxM .

Proof. It is enough to show that Dξ · Dη = Dη · Dξ where ξ, η ∈ βM̃ lie
above x ∈ M , because every Lipschitz tangent can be weak∗-approximated by
linear combinations of the Lipschitz tangents of the form given by the limits
of formal difference quotients. Let ξ = limi wixi and η = limj yjzj , where
(wixi)i∈I , (yjzj)j∈J ⊂ M̃ . We have to show that

lim
i

lim
j

wixi · yjzj

|wixi| |yjzj|
= lim

j
lim

i

wixi · yjzj

|wixi| |yjzj|
.

The mapping f : M̃×M̃ → R, f(ab, cd) := (ab·cd)/(|ab| |cd|), is continuous and
bounded, and it is symmetric: f(ab, cd) = f(cd, ab). Then there is a unique F ∈
C(X) on the Stone–Cech compactification X := β(M̃ × M̃) ∼= β(M̃) × β(M̃)
extending f ; moreover, F is symmetric, so that

Dξ ·Dη = F (ξ, η) = F (η, ξ) = Dη ·Dξ. 2

Corollary 4.5 If F · F ≥ 0 for all F ∈ LipTxM then for all D,E ∈ LipTxM

(D · E)2 ≤ (D · D)(E · E).
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Proof. The case D · E = 0 is trivial, so suppose D · E 6= 0. If λ ∈ R then

0 ≤ (D + λE) · (D + λE) = D · D + 2λ D · E + λ2 E · E;

hence D · E = 0 if E · E = 0. Otherwise, fixing λ := −(D · E)/(E · E), we get

0 ≤ D·D−2
D · E
E · E D·E+

(

D · E
E · E

)2

E ·E. 2

Questions: When does (E,D) 7→ E · D provide an inner product for TxM?
Especially, if E 6∼ 0, is E · E > 0?

Differentiability and Cauchy–Schwarz

Next we define differentiability and gradients in (locally) compact locally Cauchy–
Schwarz spaces: the gradient of a function is a “vector field on M” or a “section of
the tangent bundle TM”, differentiability being a pointwise directional derivative
property. In Euclidean spaces, these concepts coincide with the traditional ones.
Locally constant functions will be differentiable and have zero gradients. On a
Cauchy–Schwarz space, differentiable functions form an algebra, but in general
it is not clear whether there are non-trivial differentiable functions. Nevertheless,
there are plenty of not-locally-constant functions that are differentiable at a given
single point, and there are “first order Taylor expansions” for such functions, as
well as gradient rule for a product of functions, and a chain rule for the composi-
tion of a Cauchy–Schwarz differentiable function and a smooth function R → R.

Differentiability. A mapping f : M → R is differentiable at x ∈ M if Lipx(f) <
∞ and if there exists (necessarily unique) ∇f(x) ∈ TxM such that

Df = D · ∇f(x) (54)

for every D ∈ LipTxM ; here ∇f(x) is called the gradient of f at x. Notice
that the requirement Lipx(f) < ∞ is for the operation f 7→ Df to be legal. A
mapping f : M → R is called differentiable, denoted by f ∈ Diff(M), if it is
differentiable at every x ∈ M .

Remarks. If M is compact then Diff(M) ⊂ Lip(M). In Euclidean space
(Rn, xy 7→ |xy|2), the definition above is equivalent to the traditional differen-
tiability. If (TxM, (D,E) 7→ D · E) is a Hilbert space, (Ej)j∈J its orthonormal
basis and f : M → R is differentiable at x then ∇f(x) =

∑

j∈J(Ejf) Ej:

D ·∇f(x) = Df =

(

∑

j∈J

(D · Ej) Ej

)

f =
∑

j∈J

(D ·Ej) Ejf = D ·
∑

j∈J

(Ejf) Ej.

Theorem 4.6 A mapping f : M → R is differentiable at x ∈ M if and only if

f(y) = f(x) + xy · E + R(x, y), (55)
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where E ∈ LipTxM and (y 7→ R(x, y)) ∈ J(x), i.e. R(x, x) = 0 and

inf
r>0

sup
y,z∈B(x,r)

|R(x, y) − R(x, z)|
|yz| = 0. (56)

Proof. If f(y) = f(x) + xy · E + R(x, y) as above and D ∈ LipTxM then

Df = D(y 7→ f(x)) + D(y 7→ xy · E) + D(y 7→ R(x, y)) = D · E,

so that E ∈ ∇f(x). Conversely, suppose f is differentiable at x ∈ M . Let
E ∈ ∇f(x), and let us define g : M → R by g(y) := f(y) − (f(x) + xy · E).
Then g(x) = f(x) − f(x) − xx · E = 0. Let D ∈ LipTxM . Then

Dg = Df − D(y 7→ f(x)) − D(y 7→ xy · E) = D · ∇f(x) − 0 − D · E = 0;

thereby g ∈ J(x). By setting R(x, y) := g(y), the proof is complete. 2

Example. Let c ∈ R, E ∈ LipTxM and R ∈ J(x). If f : M → R is defined by

f(y) := c + xy · E + R(y),

then it is differentiable at x ∈ M , f(x) = c, and E ∈ ∇f(x).

Examples. If f is locally constant at x then it is differentiable at x with zero
gradient. Locally compact subsets of (Rn, xy 7→ |xy|2) carry plenty of differ-
entiable functions. Moreover, the earlier example of the Hilbert cube also has
separating sets of differentiable functions.

Snow-flaking. Let (M,xy 7→ |xy|) be a metric space and 0 < α ≤ 1/2. Then
(M,xy 7→ |xy|α) is Cauchy–Schwarz, without non-trivial rectifiable paths. If
f ∈ Lip(M,xy 7→ |xy|) then f ∈ Diff(M,xy 7→ |xy|α) with zero gradient:
original Lipschitz functions are differentiable in the snow-flaked metric.

Theorem 4.7 Let λ ∈ R and f, g : M → R be differentiable at x ∈ M . Then
(y 7→ λ), λf, f + g, fg : M → R are differentiable at x, and the gradients satisfy

∇(y 7→ λ)(x) = 0, (57)

∇(λf)(x) = λ∇f(x), (58)

∇(f + g)(x) = ∇f(x) + ∇g(x), (59)

∇(fg)(x) = f(x) ∇g(x) + (∇f(x)) g(x). (60)

Consequently, Diff(M) is a subalgebra of Lip(M).
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Proof. Inclusion Diff(M) ⊂ Lip(M) follows from Theorem 4.6. Let D ∈
LipTxM . Constant functions are differentiable, because D(y 7→ λ) = 0 = D · 0.
Next, D(λf) = λDf = λ(D · ∇f(x)) = D · (λ∇f(x)), and D(f + g) =
Df + Dg = D · ∇f(x) + D · ∇g(x) = D · (∇f(x) + ∇g(x)); everything goes
fine thanks to the linear structure. Recall that I(x)I(x) ⊂ J(x) and that J(x) is
an ideal; now we can see that fg ∈ Diff(M):

D(fg) = D(f)g(x) + f(x)D(g) = (D · ∇f(x))g(x) + f(x)(D · ∇g(x))

= D · [f(x)∇g(x) + (∇f(x))g(x)]. 2

Corollary 4.8 If Diff(M) separates the points of M then it is dense in C(M), the
space of continuous functions M → R.

Proof. This follows by the Stone–Weierstrass Theorem. 2

Example. Coordinate projections of the Hilbert cube example are differentiable,
so that there the differentiable functions approximate continuous functions. More
generally, if (Mj)

∞
j=1 is a sequence of compact Cauchy–Schwarz spaces with sep-

arating sets of differentiable functions then
∏∞

j=1 Mj can be endowed with a met-
ric (as in the Hilbert cube case) such that coordinate projections are differentiable.

Lemma 4.9 (Pointwise Lipschitz chain inequality.) Let K, L and M be metric
spaces, x ∈ M and f : M → L and g : L → K be Lipschitz mappings. Then

Lipx(g ◦ f) ≤ Lipf(x)(g) Lipx(f). (61)

Proof. If Ar := B(x, r) and Br := B(f(x), Lip(f)r) then

lim
r→0

Lip(g ◦ f |Ar
) ≤ lim

r→0
[Lip(g|Br

) Lip(f |Ar
)] = Lipf(x)(g) Lipx(f). 2

Theorem 4.10 (Chain rule.) If f : M → R is differentiable at x ∈ M and
g : R → R is differentiable at f(x) ∈ R then g ◦ f : M → R is differentiable at
x ∈ M and

∇(g ◦ f)(x) = g′(f(x)) ∇f(x). (62)

Proof. Now f(y) = f(x)+xy ·D+R(x, y), where s = f(x) and D ∈ ∇f(x) ∈
TxM , and g(t) = g(s) + (t − s)g′(s) + Rg(s, t), so that

(g ◦ f)(y) = g(f(x)) + [f(y) − f(x)]g′(f(x)) + Rg(f(x), f(y))

= g(f(x)) + [xy · D + R(x, y)]g′(f(x)) + Rg(f(x), f(y))

= g(f(x)) + xy · g′(f(x))D

+g′(f(x))R(x, y) + Rg(f(x), f(y)).

Let Rg◦f (x, y) := g′(f(x))R(x, y) + Rg(f(x), f(y)). Clearly Rg◦f (x, x) = 0 and
(y 7→ g′(f(x))R(x, y)) ∈ J(x). By Lemma 4.9, we get

Lipx(y 7→ Rg(f(x), f(y))) ≤ Lipf(x)(t 7→ Rg(f(x), t)) Lipx(f) = 0.

Hence x 7→ Rg◦f (x, y) ∈ J(x), and consequently g′(f(x))D ∈ ∇(g ◦ f)(x). 2
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Corollary 4.11 Let M be a compact Cauchy–Schwarz space. Suppose fz :=
(y 7→ |yz|2) : M → R is differentiable in a neighborhood of w ∈ M for every
z ∈ M . Then Diff(M) ⊂ C(M) is dense.

Proof. Let g : R → R be differentiable such that g(0) 6= 0 and g(t) = 0 when
t > 1. Suppose fz = (y 7→ |yz|2) is differentiable in B(z, rz) ⊂ M . Then the
family {y 7→ g(fz(y)/r2) | 0 < r < rz} ⊂ Diff(M) separates the point z from
the set M \ {z}. Thus Diff(M) separates the points of M . 2

Acknowledments. The work was initiated during the financial support by the
Academy of Finland. Professors B. Zegarlinski and M. Ruzhansky at Imperial
College, London, deserve gratitude for valuable advice. And thanks for the dis-
cussions and pleasant atmosphere created by the folks at Helsinki University of
Technology, Institute of Mathematics.

References

[1] A. D. Aleksandrov: A theorem on triangles in a metric space and some of its
applications. Trudy Mat. Inst. Steklov 38 (1951), 5–23 (in Russian).

[2] M. R. Bridson, A. Haefliger: Metric Spaces of Non-Positive Curvature.
Springer-Verlag. 1999.

[3] D. Burago, Y. Burago, S. Ivanov: A Course in Metric Geometry. American
Mathematical Society. Graduate Studies in Mathematics, Vol. 33. 2001.

[4] J. Cheeger: Differentiability of Lipschitz functions on metric measure spaces.
Geom. Funct. Anal. 9 (1999), 428–517.

[5] G. David, S. W. Semmes: Fractured Fractals and Broken Dreams. Self-similar
geometry through metric and measure. The Clarendon Press, Oxford Univ.
Press. 1997.

[6] M. Gromov: Metric structures for Riemannian manifolds (in French). J. La-
fontaine and P. Pansu (eds.). Textes Mathématiques 1. Cedic. 1981.

[7] M. Gromov: Groups of polynomial growth and expanding maps. Inst. Hautes
Études Sci. Publ. Math. 53 (1981), 53–78.

[8] S. Keith: A differentiable structure for metric measure spaces. Adv. Math.
183 (2004), 271–315.

[9] Yu. G. Reshetnyak: Non-expansive maps in a space of curvature no greater
than K. Sibirsk. Mat. Zh. 9 (1968), 918–927 (in Russian; English translation
in Siberian Math. J. 9 (1968), 683–689).

[10] M. Ruzhansky: On uniform properties of doubling measures. Proc. Amer.
Math. Soc. 129 (2001), 3413–3416.

27



[11] D. R. Sherbert: The structure of ideals and point derivations in Banach al-
gebras of Lipschitz functions. Trans. Amer. Math. Soc. 111 (1964), 240–272.

[12] K.T. Sturm: Probability measures on metric spaces of nonpositive curvature.
Contemp. Math. 338, 357–390. Amer. Math. Soc. 2003.

[13] L. Waelbroeck: Closed ideals of Lipschitz functions. In Function Algebras,
Scott-Foresman, 1966, 322–325.

[14] N. Weaver: Lipschitz Algebras. World Scientific. 1999.

[15] N. Weaver: Lipschitz algebras and derivations. II. Exterior differentiation.
J. Funct. Anal. 178 (2000), 64–112.

28



(continued from the back cover)

A480 Ville Havu , Jarmo Malinen

Approximation of the Laplace transform by the Cayley transform

December 2004

A479 Jarmo Malinen

Conservativity of Time-Flow Invertible and Boundary Control Systems

December 2004

A478 Niko Marola

Moser’s Method for minimizers on metric measure spaces

October 2004

A477 Tuomo T. Kuusi

Moser’s Method for a Nonlinear Parabolic Equation

October 2004

A476 Dario Gasbarra , Esko Valkeila , Lioudmila Vostrikova

Enlargement of filtration and additional information in pricing models: a

Bayesian approach

October 2004

A475 Iivo Vehviläinen

Applyining mathematical finance tools to the competitive Nordic electricity mar-

ket

October 2004

A474 Mikko Lyly , Jarkko Niiranen , Rolf Stenberg

Superconvergence and postprocessing of MITC plate elements

January 2005

A473 Carlo Lovadina , Rolf Stenberg

Energy norm a posteriori error estimates for mixed finite element methods

October 2004

A472 Carlo Lovadina , Rolf Stenberg

A posteriori error analysis of the linked interpolation technique for plate bending

problems

September 2004



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are

available at http://www.math.hut.fi/reports/ .

A486 Hanna Pikkarainen

A Mathematical Model for Electrical Impedance Process Tomography

April 2005

A485 Sampsa Pursiainen

Bayesian approach to detection of anomalies in electrical impedance tomo-

graphy

April 2005

A484 Visa Latvala , Niko Marola , Mikko Pere

Harnack’s inequality for a nonlinear eigenvalue problem on metric spaces

March 2005

A482 Mikko Lyly , Jarkko Niiranen , Rolf Stenberg

A refined error analysis of MITC plate elements

April 2005

A481 Dario Gasbarra , Tommi Sottinen , Esko Valkeila

Gaussia Bridges

December 2004

ISBN 951-22-7683-6

ISSN 0784-3143


