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1 Introduction

The main difficulty with the design and analysis of the finite element methods
for the Reissner–Mindlin plate model is the locking phenomena. This can be
understood as an incorrect numerical capturing of the plate asymptotics. In
the limit when the plate thickness approaches zero, the Reissner–Mindlin
model approaches the Kirchhoff model for which the vertical deflection w
and the rotation β satisfy the constraint

∇w − β = 0. (1.1)

In the basic finite element method the exact fulfilment of (1.1) for the
discrete solution (wh,βh) leads to the locking. In the MITC elements this is
overcome by introducing a reduction operator Rh on the shear deformation
and in the limit the discrete constraint is

Rh(∇wh − βh) = 0. (1.2)

In order that the method is stable the rotation has also to be augmented
by bubble degrees of freedom. Otherwise, equal order basis functions for
both the deflection and the rotation are used. That this can be done with
an optimal order of convergence might look surprising as in the limit the
rotation is the gradient of the deflection.

The purpose of this paper is to show that since the optimal order of con-
vergence is obtained for equal order approximation the approximate solution
contains sufficient information so that one can, by an element by element
postprocessing, construct an new approximation for the deflection which is
a piecewise polynomial one degree higher than the original one and with an
improved convergence rate. For the construction of the postprocessing a su-
perconvergence result of the original method is used. A part of this result is,
roughly speaking, that the vertex values obtained with the MITC methods
are superconvergent. (This may also be an explanation why these methods
have become so popular.)

The plan of this paper is the following. In the next two sections the
Reissner–Mindlin plate model and the MITC methods are recalled. Then, in
Sections 4 and 5, the superconvergence result is proved and the postprocess-
ing is introduced for which the improved estimate is derived. In Section 6
the postprocessing is verified by benchmark computations.

In the paper we use standard notation in connection with finite element
methods.

2 The Reissner–Mindlin plate model

We consider a linearly elastic and isotropic plate with the shear modulus G
and the Poisson ratio ν. The midsurface of the undeformed plate is Ω ⊂ R2

and the plate thickness is constant and denoted by t.
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It is supposed that the boundary of the plate is divided into hard clamped,
hard simply supported and free parts: ∂Ω = ΓC∪ΓSS∪ΓF. (The soft clamped
and soft simply supported cases would be possible as well.) The spaces of
kinematically admissible deflections and rotations are then

W = {v ∈ H1(Ω) | v|ΓC
= 0, v|ΓSS

= 0} (2.1)

and

V = {η ∈ [H1(Ω)]2 | η|ΓC
= 0, (η · τ )|ΓSS

= 0}. (2.2)

where τ is the unit tangent to the boundary. We define the following bilinear
form

B(z,φ; v,η) = a(φ,η) + t−2(∇z − φ,∇v − η), (2.3)

with

a(φ,η) =
1

6
{(ε(φ), ε(η)) +

ν

1 − ν
(div φ, div η)}, (2.4)

where the linear strain tensor is

ε(η) =
1

2
(∇η + (∇η)T ). (2.5)

The transverse loading f we assume to be given as f = Gt3g, where g ∈
H−1(Ω) is independent of t. This is done in order to get a non-trivial solution
to the problem in the limit t → 0 (i.e. to the Kirchhoff–Love model) [11], [5,
Theorem 3.1, p. 300].

With these assumptions and notation the variational formulation for the
Reissner–Mindlin plate model can be written in the following form [5], [11]:

Variational formulation 2.1. Find the deflection w ∈ W and the rotation

β ∈ V such that

B(w,β; v,η) = (g, v) ∀(v,η) ∈ W × V . (2.6)

For the analysis we will also need to write the problem in mixed form in
which the shear force

q =
1

t2
(∇w − β) (2.7)

is taken as an independent unknown in the space Q = [L2(Ω)]2 (cf. [5] and
[11]) and we get the

Variational formulation 2.2. Find (w,β, q) ∈ W × V × Q such that

a(β,η) + (q,∇v − η) = (g, v) ∀(v,η) ∈ W × V , (2.8)

(∇w − β, r) − t2(q, r) = 0 ∀r ∈ Q. (2.9)
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3 The MITC Finite Elements

In this section we will recall the so called MITC plate bending elements
[4, 5, 6]. For simplicity we consider the triangular family but we emphasize
that all the results are valid for quadrilateral families as well. By Ch we
denote the triangulation of Ω. As usual we denote h = maxK∈Ch

hK , where
hK is the diameter of K. The space of polynomials of degree k on K is
denoted by Pk(K). By C and Ci we denote positive constants independent
of the thickness t and the mesh size h.

In the MITC method the finite element subspaces Wh ⊂ W and V h ⊂ V

are defined for the polynomial degree k ≥ 2 as follows

Wh = {w ∈ W | w|K ∈ Pk(K) ∀K ∈ Ch}, (3.1)

V h = {η ∈ V | η|K ∈ [Pk(K)]2 ⊕ [Bk+1(K)]2 ∀K ∈ Ch}, (3.2)

with the ”bubble space”

Bk+1(K) = {b = b3p | p ∈ P̃k−2(K), b3 ∈ P3(K), b3|E = 0 ∀E ⊂ ∂K},
(3.3)

where P̃k−2(K) is the space of homogeneous polynomials of degree k − 2 on
the element K.

We denote the rotated Raviart–Thomas space of order k − 1 by

Qh = { r ∈ H(rot : Ω) | r|K ∈ [Pk−1(K)]2 ⊕ (y,−x)P̃k−1(K) ∀K ∈ Ch }.
(3.4)

Note that the requirement Qh ⊂ H(rot : Ω) implies that the tangential
components of functions in Qh are continuous along inter element boundaries.
Next, we define the reduction operator Rh : [H1(Ω)]2 → Qh through the
conditions, with RK = Rh|K ,

〈(RKη − η) · τE, p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ ∂K,

(RKη − η,p)K = 0 ∀p ∈ [Pk−2(K)]2, (3.5)

where E denotes an edge to K and τ E is the unit tangent to E. (·, ·)K and
〈·, ·〉E are the L2 inner products.

The method is now defined as

Method 3.1. Find the deflection wh ∈ Wh and the rotation βh ∈ V h such

that

Bh(wh,βh; v,η) = (g, v) ∀(v,η) ∈ Wh × V h, (3.6)

with the modified bilinear form

Bh(z,φ; v,η) = a(φ,η) +
1

t2
(Rh(∇z − φ),Rh(∇v − η)). (3.7)

The discrete shear force qh ∈ Qh is

qh =
1

t2
Rh(∇wh − βh). (3.8)
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Now, the mixed variant of Method 3.1 is of the following form [6]:

Method 3.2. Find (wh,βh, qh) ∈ Wh × V h × Qh ⊂ W × V × Q such that

a(βh,η) + (qh,Rh(∇v − η)) = (g, v) ∀(v,η) ∈ Wh × V h, (3.9)

(Rh(∇wh − βh), r) − t2(qh, r) = 0 ∀r ∈ Qh. (3.10)

An error analysis of the method has been performed in [6, 10]. In these
works the estimates were given assuming a smooth solution. This assumption
is, however, unrealistic since in general the solution has boundary layers,
cf. [2] and [3]. For a polygonal domain the solution also contains corner
singularities and a complete characterization of the behavior of the solution
does not seem to be available.

The only error analyses known to us in which the boundary layers are
taken into account are references [12, 7]. In these works the case of a free
boundary is considered. It is shown that due to the strong boundary layer
the error contains a term which is of the order O(h1/2).

In [9] we have performed a refined error analysis, in the spirit of [12],
for the clamped plate and a convex domain. We first prove the following
regularity estimate. Here, we write w = w0+wr, where w0 is the deflection for
the limiting Kirchhoff problem. By Ωi ⊂⊂ Ω we denote a region compactly
embedded in Ω.

Theorem 3.1. Let Ω ⊂ R2 be a convex polygon and Ωi ⊂⊂ Ω. Let (w,β, q)
be the solution to problem 2.2 with clamped boundaries and let w = w0 + wr,

where w0 is the solution in the limit t → 0. Then with g ∈ Hs−2(Ω) and

tg ∈ Hs−1(Ω), s ≥ 1,

‖w0‖3 +
1

t
‖wr‖2 + ‖β‖2 + ‖q‖0 + t‖q‖1 ≤ C(‖g‖−1 + t‖g‖0), (3.11)

‖w0‖s+2,Ωi
+

1

t
‖wr‖s+1,Ωi

+ ‖β‖s+1,Ωi
+ ‖q‖s−1,Ωi

+ t‖q‖s,Ωi

≤ C(‖g‖s−2 + t‖g‖s−1).
(3.12)

When denoting the mesh size in the interior by hi = maxK⊂Ωi
hK and

near the boundary by hb = maxK⊂/Ωi
hK we can state the error estimate as

follows [9].

Theorem 3.2. Let Ω be a convex polygon and suppose that the plate is

clamped. For g ∈ Hk−2(Ω), tg ∈ Hk−1(Ω) it then holds

‖w − wh‖1 + ‖β − βh‖1 + t‖q − qh‖0 + ‖q − qh‖−1

≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}

(3.13)

and

‖w − wh‖0 + ‖β − βh‖0

≤ Ch{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}.

(3.14)
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4 Superconvergence of the deflection

In this section we prove a superconvergence result for the deflection. For this
we need a classical interpolation operator (cf. [8, Lemmas A.3, A.4, p. 100,
101]) that we now recall.

Definition 4.1. Let a and E be a vertex and an edge of the triangle K.
The interpolation operator Ih : Hs(Ω) → Wh, s > 1, is defined through the
conditions

(v − IKv)(a) = 0 ∀a ∈ K,

〈v − IKv, p〉E = 0 ∀p ∈ Pk−2(E) ∀E ⊂ K, (4.1)

(v − IKv, p)K = 0 ∀p ∈ Pk−3(K),

for IK = Ih|K ∀K ∈ Ch.

The interpolation operator is quasi-optimal [8].

Lemma 4.1. There exists a constant C > 0 such that

‖IKv − v‖1,K ≤ Chm−1
K ‖v‖m,K ∀v ∈ Hm(K), (4.2)

where 2 ≤ m ≤ k + 1.

This interpolation estimate gives the following result.

Lemma 4.2. There is a positive constant C such that

‖w − Ihw‖1 ≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}. (4.3)

Proof. Applying the above result with m = k + 1 for K ⊂ Ωi and m = 2 for
K ⊂ Ωb gives

‖w − Ihw‖1 ≤ ‖w − Ihw‖1,Ωi
+ ‖w − Ihw‖1,Ωb

(4.4)

≤ C
(
hk

i ‖w‖k+1,Ωi
+ hb‖w‖2,Ωb

)
.

Theorem 3.1 gives

‖w‖k+1,Ωi
≤ C(‖g‖k−2 + t‖g‖k−1) (4.5)

and
‖w‖2 ≤ C(‖g‖−1 + t‖g‖0), (4.6)

which proves the asserted estimate.

For the proof of the superconvergence result we further need the following
approximation property of the reduction operator.

Lemma 4.3. [13] There is a positive constant C > 0 such that

‖η − RKη‖0,K ≤ Chm
K‖η‖m,K ∀η ∈ [Hm(K)]2, (4.7)

where 1 ≤ m ≤ k.
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From this we get the following estimate.

Lemma 4.4. There is a positive constant C such that

t‖q − Rhq‖0 ≤ C{hk
i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}. (4.8)

Proof. We use the previous estimate with m = k and m = 1:

‖q − Rhq‖0 ≤ ‖q − Rhq‖0,Ωi
+ ‖q − Rhq‖0,Ωb

(4.9)

≤ C
(
hk

i ‖q‖k,Ωi
+ hb‖q‖1,Ωb

)
. (4.10)

By Theorem 3.1 we get

t‖q‖k,Ωi
≤ C(‖g‖k−2 + t‖g‖k−1) (4.11)

t‖q‖1 ≤ C(‖g‖−1 + t‖g‖0), (4.12)

and the assertion is proved.

Next we show that there is a close connection between the interpolation
and reduction operators.

Lemma 4.5. It holds

Rh∇v = ∇Ihv ∀v ∈ Hs(Ω), s ≥ 2. (4.13)

Proof. Using the first two conditions of (4.1) we have

〈(∇IKv −∇v) · τE, p〉E =

∫

E

∂(IKv − v)

∂τE

p (4.14)

=
∣∣∣
∂E

(IKv − v) p −
∫

E

(IKv − v)
∂p

∂τE

= 0 ∀p ∈ Pk−1(E).

Using the second and the third condition of (4.1) we get

(∇IKv −∇v,p)K = −(IKv − v, div p)K = 0 ∀p ∈ [Pk−2(K)]2. (4.15)

Hence, ∇IKv fulfills the conditions (3.5) for RK∇v. Since ∇IKv ⊂ Qh|K and
the reduction operator RK is uniquely defined, the assertion is proved.

We now have the following result.

Theorem 4.1. It holds

‖∇(Ihw − wh)‖0,K ≤ ChK‖β − βh‖1,K + ‖β − βh‖0,K

+ t2‖q − qh‖0,K + t2‖q − Rhq‖0,K .
(4.16)
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Proof. Denote v = Ihw − wh ∈ Wh. Using Lemma 4.5, the equations (2.7),
(3.8) for q and qh, respectively, we get

‖∇(Ihw − wh)‖2
0,K

= (∇(Ihw − wh),∇v)K

= (Rh∇w −∇wh,∇v)K

= (Rh(t
2q + β) − (t2qh + Rhβh),∇v)K

= (t2Rh(q − qh) + Rh(β − βh),∇v)K

≤
(
t2‖Rhq − qh‖0,K + ‖Rh(β − βh)‖0,K

)
‖∇v‖0,K .

(4.17)

By the triangle inequality we have

‖Rhq − qh‖0,K ≤ ‖q − qh‖0,K + ‖q − Rhq‖0,K . (4.18)

Lemma 4.3 gives

‖Rh(β − βh)‖0,K ≤ ‖(Rh − I)(β − βh)‖0,K + ‖β − βh‖0,K

≤ ChK‖β − βh‖1,K + ‖β − βh‖0,K .
(4.19)

The assertion now follows from the estimates (4.17)–(4.19).

Let us close this section by briefly discussing this result. From above we
get the global estimate

‖∇(Ihw − wh)‖0 ≤ C
(
‖β − βh‖0 + t2‖q − Rhq‖0

+ (h + t)(‖β − βh‖1 + t‖q − qh‖0)
)
.

(4.20)

For the case of convex domain and clamped boundary conditions Theorem
3.2 gives the convergence rates

‖w − wh‖1 + ‖β − βh‖1 + t‖q − qh‖0 = O(hk
i + hb) (4.21)

and
‖β − βh‖0 = O

(
h(hk

i + hb)
)
. (4.22)

Lemma 4.4 gives
t‖q − Rhq‖0 = O

(
hk

i + hb). (4.23)

Hence, we obtain

‖wh − Ihw‖1 = O
(
(h + t)(hk

i + hb)
)
. (4.24)

and we see that the convergence rate for ‖wh − Ihw‖1 is by the factor h +
t better than the rate for both ‖w − wh‖1 (see Theorem 3.2) and ‖w −
Ihw‖1 (Lemma 4.2). Since Ihw interpolates w at the vertices (cf. (4.1)) this
also gives an indication that the vertex values of wh are converging with an
improved speed. The numerical results in Section 6 verify this. Let us also
remark that in practice we are interested in the case when t < h since for
a finer mesh the error in the model (with respect to the three dimensional
structure) is greater than the discretization error.
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5 The postprocessing method

In the postprocessing we construct an improved approximation for the de-
flection in the space

W ∗
h = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Ch}. (5.1)

To define the postprocessing we first introduce the corresponding interpola-
tion operator I∗

h : Hs(Ω) → W ∗
h , s > 1:

(v − I∗
Kv)(a) = 0 for every vertex a ∈ K,

〈v − I∗
Kv, p〉E = 0 ∀p ∈ Pk−1(E) ∀E ⊂ K, (5.2)

(v − I∗
Kv, p)K = 0 ∀p ∈ Pk−2(K),

for I∗
K = I∗

h|K ∀K ∈ Ch.

Lemma 5.1. There is a positive constant C such that

‖w − I∗
hw‖1 ≤ C(h + t){hk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)}. (5.3)

Proof. In contrast to the proof of Lemma 4.2 we now have to split w =
w0 + wr. We write

‖w − I∗
hw‖1 = ‖w0 − I∗

hw0 + wr − I∗
hwr‖1 (5.4)

≤ ‖w0 − I∗
hw0‖1 + ‖wr − I∗

hwr‖1.

For the first term we get, using Lemma 4.1 with k replaced with k + 1 and
Theorem 3.1,

‖w0 − I∗
hw0‖1 ≤ ‖w0 − I∗

hw0‖1,Ωi
+ ‖w0 − I∗

hw0‖1,Ωb
(5.5)

≤ C
(
hk+1

i ‖w0‖k+2,Ωi
+ h2

b‖w0‖3,Ωb

)

≤ Ch
(
hk

i ‖w0‖k+2,Ωi
+ hb‖w0‖3,Ωb

)

≤ Ch
(
hk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)
)
.

For the second term we get

‖wr − I∗
hwr‖1 ≤ ‖wr − I∗

hwr‖1,Ωi
+ ‖wr − I∗

hwr‖1,Ωb
(5.6)

≤ C
(
hk

i ‖wr‖k+1,Ωi
+ hb‖wr‖2,Ωb

)

≤ Ct
(
hk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)
)
.

Combining the above two estimates gives the assertion.

Next, we note that the interpolation operators I∗
h and Ih are hierarchical,

i.e. I∗
K is obtained from IK by adding the degrees of freedom

〈v − I∗
Kv, p〉E = 0 ∀p ∈ P̃k−1(E) ∀E ⊂ K, (5.7)

(v − I∗
Kv, p)K = 0 ∀p ∈ P̃k−2(K), (5.8)
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where as before the tilde denotes homogeneous polynomials. This motivates
the following notation

Ŵ (K) = {v ∈ Pk+1(K) | IKv = 0, (v, p)K = 0 ∀p ∈ P̃k−2(K)} (5.9)

W (K) = {v ∈ Pk+1(K) | IKv = 0, 〈v, p〉E = 0 (5.10)

∀p ∈ P̃k−1(E) ∀E ⊂ K}

and the splitting

Pk+1(K) = Pk(K) ⊕ Ŵ (K) ⊕ W (K). (5.11)

We then define the

Postprocessing scheme 5.1. For all triangles K ∈ Ch find the local post-

processed finite element deflection w∗
h|K ∈ Pk+1(K) = Pk(K)⊕Ŵ (K)⊕W (K)

such that

Ihw
∗
h|K = wh|K , (5.12)

〈∇w∗
h · τE,∇v̂ · τE〉E = 〈(βh + t2qh) · τE,∇v̂ · τE〉E (5.13)

∀E ⊂ ∂K, ∀v̂ ∈ Ŵ (K),

(∇w∗
h,∇v̄)K = (βh + t2qh,∇v̄)K ∀v̄ ∈ W (K). (5.14)

Here it should be pointed out that the postprocessed deflection is con-
forming since (βh + t2qh) · τ is continuous along inter element boundaries.

Remark 5.1. If we write w∗
h = wh + wd

h, the improvement wd
h is computed

from the equations

〈∇wd
h · τE,∇v̂ · τE〉E = 〈(βh + t2qh −∇wh) · τE,∇v̂ · τE〉E

∀E ⊂ ∂K, ∀v̂ ∈ Ŵ (K),

(∇wd
h,∇v̄)K = (βh + t2qh −∇wh,∇v̄)K ∀v̄ ∈ W (K). (5.15)

It holds

Lemma 5.2. The system (5.15) has a unique solution.

Proof. By linearity we have to show that if 〈∇zh · τE,∇v̂ · τE〉E = 0 and

(∇zh,∇v̄)K = 0, then zh = 0. To this end we first choose v̂ ∈ Ŵ (K) such
that v̂|∂K = zh|∂K and the first relation implies that zh|∂K = 0. Hence,
zh ∈ W (K) and we can choose v̄ = zh in the second condition which then
implies the assertion.

To derive the error estimate for the postprocessing we need the following
stability result.

Lemma 5.3. For every v ∈ Ŵ (K) ⊕ W (K) there exist v̂ ∈ Ŵ (K) and

v̄ ∈ W (K), with

(
h

1/2
K

∑

E⊂∂K

‖∇v̂ · τE‖0,E + ‖∇v̄‖0,K

)
≤ C,
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such that

‖∇v‖0,K ≤ hK

∑

E⊂∂K

〈∇v · τE,∇v̂ · τE〉E + (∇v,∇v̄)K .

Proof. By Lemma 5.2

sup
v̂∈Ŵ (K), v̄∈W (K)

hK

∑
E⊂∂K〈∇v · τE,∇v̂ · τE〉E + (∇v,∇v̄)K

h
1/2
K

∑
E⊂∂K ‖∇v̂ · τE‖0,E + ‖∇v̄‖0,K

(5.16)

defines a norm in Ŵ (K) ⊕ W (K). By local scaling this is equivalent to
‖∇v‖0,K and the assertion is simply a reformulation of this.

We will also need the following result which is easily proved by scaling.

Lemma 5.4. Let E be an edge of K. Then there exists a constant C > 0
such that

h
1/2
K ‖p · τE‖0,E ≤ C‖p‖0,K ∀p ∈ [Pk(K)]2 ⊕ [Bk+1(K)]2, (5.17)

where k ≥ 0.

Further, let us define the reduction operator R∗
h for the index k + 1 to

the space

Q∗
h = { r ∈ H(rot : Ω) | r|K ∈ [Pk(K)]2 ⊕ (y,−x)P̃k(K) ∀K ∈ Ch }. (5.18)

It is defined through the conditions

〈(R∗
Kη − η) · τE, p〉E = 0 ∀p ∈ Pk(E) ∀E ⊂ ∂K, (5.19)

(R∗
Kη − η,p)K = 0 ∀p ∈ [Pk−1(K)]2, (5.20)

which have to be satisfied by the local operator R∗
K = R∗

h|K ∀K ∈ Ch.
We are now ready to prove the error estimate for the postprocessing. Here

we will use the relationship

R∗
h∇v = ∇I∗

hv ∀v ∈ Hs(Ω), s ≥ 2. (5.21)

Lemma 5.5. There is a positive constant C such that

‖∇(w − w∗
h)‖0,K ≤ C{‖∇(Ihw − wh)‖0,K + ‖∇(w − I∗

hw)‖0,K

+ ‖β − βh‖0,K + t2‖q − qh‖0,K

+ ‖β − R∗
hβ‖0,K + t2‖q − R∗

hq‖0,K}.
(5.22)

Proof. We write I∗
hw = Ihw + Id

hw and by the triangle inequality we get

‖∇(I∗
hw − w∗

h)‖0,K = ‖∇(Ihw − wh + Id
hw − wd

h)‖0,K (5.23)

≤ ‖∇(Ihw − wh)‖0,K + ‖∇(Id
hw − wd

h)‖0,K .
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Since Id
hw − wd

h ∈ Ŵ (K) ⊕ W (K) Lemma 5.3 implies that there exist v̂ ∈
Ŵ (K) and v̄ ∈ W (K), with

(
h

1/2
K

∑

E⊂∂K

‖∇v̂ · τE‖0,E + ‖∇v̄‖0,K

)
≤ C, (5.24)

such that

‖∇(Id
hw−wd

h)‖0,K ≤ hK

∑

E⊂∂K

〈∇(Id
hw−wd

h)·τE,∇v̂·τE〉E+(∇(Id
hw−wd

h),∇v̄)K .

(5.25)
Next, we write

hK

∑

E⊂∂K

〈∇(Id
hw − wd

h) · τE,∇v̂ · τE〉E + (∇(Id
hw − wd

h),∇v̄)K (5.26)

= hK

∑

E⊂∂K

〈∇(I∗
hw − w∗

h) · τE,∇v̂ · τE〉E + (∇(I∗
hw − w∗

h),∇v̄)K

−hK

∑

E⊂∂K

〈∇(Ihw − wh) · τE,∇v̂ · τE〉E − (∇(Ihw − wh),∇v̄)K .

Using (5.24) and Lemma 5.4 the second term is readily estimated
∣∣∣hK

∑

E⊂∂K

〈∇(Ihw−wh) · τE,∇v̂ · τE〉E + (∇(Ihw − wh),∇v̄)K

∣∣∣

≤C‖∇(Ihw − wh)‖0,K . (5.27)

Next, using (5.21), (2.7), (5.13), (5.14), (5.24) and Lemma 5.4 we have

hK

∑

E⊂∂K

〈∇(I∗
hw − w∗

h) · τE,∇v̂ · τE〉E + (∇(I∗
hw − w∗

h),∇v̄)K

= hK

∑

E⊂∂K

〈(R∗
h(β + t2q) − (βh + t2qh)) · τE,∇v̂ · τE〉E

+(R∗
h(β + t2q) − (βh + t2qh),∇v̄)K (5.28)

= hK

∑

E⊂∂K

〈(R∗
hβ − βh + t2(R∗

hq − qh)) · τE,∇v̂ · τE〉E

+(R∗
hβ − βh + t2(R∗

hq − qh),∇v̄)K

≤ hK

∑

E⊂∂K

‖(R∗
hβ − βh + t2(R∗

hq − qh)) · τE‖0,E‖∇v̂ · τE‖0,E

+‖R∗
hβ − βh + t2(R∗

hq − qh)‖0,K‖∇v̄‖0,K

≤ Ch
1/2
K

∑

E⊂∂K

‖(R∗
hβ − βh + t2(R∗

hq − qh)) · τE‖0,E

+‖R∗
hβ − βh + t2(R∗

hq − qh)‖0,K

≤ C‖R∗
hβ − βh + t2(R∗

hq − qh)‖0,K .

Finally, we use the triangle inequality to obtain

‖R∗
hβ−βh + t2(R∗

hq − qh)‖0,K (5.29)

≤‖β − βh‖0,K + ‖β − R∗
hβ‖0,K

+t2‖q − R∗
hq‖0,K + t2‖q − qh‖0,K .
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The assertion now follows by collecting the above estimates and using the
triangle inequality.

By combining Lemma 5.5 and Theorem 4.1 we get the following estimate.

Theorem 5.1. There is a positive constant C such that

‖∇(w − w∗
h)‖0,K

≤ C{hK‖β − βh‖1,K + ‖β − βh‖0,K + t2‖q − qh‖0,K

+ ‖∇(w − I∗
hw)‖0,K + ‖β − R∗

hβ‖0,K

+ t2‖q − R∗
hq‖0,K + t2‖q − Rhq‖0,K}.

(5.30)

¤

We point out that this results is local for one element. It is made up of
two parts. The first term hK‖β − βh‖1,K + ‖β − βh‖0,K + t2‖q − qh‖0,K is
related to the error of the original method. We note that the natural norm
of the local error is ‖β − βh‖1,K + t‖q − qh‖0,K . Hence we for this get an
improvement with the factor hK + t. Also, the term ‖β−βh‖0,K is in general
smaller than ‖β − βh‖1,K .

The second term consists of interpolation estimates which all are a factor
hK +t better that the interpolation estimates needed for the a-priori analysis,
see the proof below.

For the case of a clamped plate and a convex domain we get the result:

Theorem 5.2. Let Ω be a convex polygon and suppose that the plate is

clamped. For g ∈ Hk−2(Ω), tg ∈ Hk−1(Ω) it then holds

‖w − w∗
h‖1 ≤ C(h + t){hk

i (‖g‖k−2 + t‖g‖k−1) + hb(‖g‖−1 + t‖g‖0)} (5.31)

Proof. From the preceding theorem we have

‖∇(w − w∗
h)‖1 ≤ C

(
h‖β − βh‖1 + ‖β − βh‖0 + t2‖q − qh‖0

)

+ C
(
‖∇(w − I∗

hw)‖0 + ‖β − R∗
hβ‖0

+ t2‖q − R∗
hq‖0 + t2‖q − Rhq‖0

)
.

(5.32)

The first four terms are estimated by Theorem 3.2 and Lemma 5.1 giving the
improvement by the factor h + t. For the next two terms we use Lemma 4.3
with k replaced with k + 1. We obtain

‖β−R∗
hβ‖0,K ≤ Chk+1

K ‖β‖k+1,K , t2‖q−R∗
hq‖0,K ≤ t2Chk

K‖q‖k,K , (5.33)

for K ⊂ Ωi, and

‖β − R∗
hβ‖0,K ≤ Ch2

K‖β‖2,K , t2‖q − R∗
hq‖0,K ≤ t2ChK‖q‖1,K , (5.34)

for K ⊂ Ωb. For the last term we also use Lemma 4.3. The assertion follows
from the regularity estimates of Theorem 3.1.
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6 Numerical Results

Our numerical computations are performed for a test problem for which an
analytical solution has been obtained by Arnold and Falk [1]. The domain
is the semi-infinite region Ω = {(x, y) ∈ R2 | y > 0} and the loading is
g = 1

G
cos x. The solution of the problem is

w = {1/A + λ−1t2 + ae−y + b(2Aλ−1t2 + y)e−y − cλ−1t2e−y} cos x,

βx = {−1/A − ae−y − bye−y + cλ−1t2e−y − dγλ−1te−γy/t} sin x,

βy = {−ae−y + b(1 − y)e−y + cλ−1t2e−y − dλ−1t2e−γy/t} cos x,

(6.1)

where A = G/(6(1 − ν)), γ =
√

12κ + t2 with the shear corrector factor κ.
The coefficients a, b, c, d (which depend on G, ν and t) are given in reference
[1] for five different types of boundary conditions on Γ = {(x, y) ∈ R2 | y =
0}.

In our computations we have chosen ν = 0.3, G = 1/(2(1 + ν)), κ = 1,
t = 0.01, and we consider three different boundary conditions: hard clamped,
hard simply supported and free.

In references [2] and [3] the boundary layer behavior is studied by using
asymptotic expansions in powers of the plate thickness. The edge effects
are shown to be of different order for different boundary conditions; the
weakest layer appears in the soft clamped case whereas the free and soft
simply supported cases have the strongest layers.

In the computations we use the domain D = (0, π/2) × (0, 3π/2). Along
the boundaries x = 0, x = π/2 and y = 3π/2, we impose the Dirichlet
boundary conditions obtained from the exact solution (6.1).

Most of the results are calculated by using uniform meshes, but in the
end of the paper we also give some results for general, non-uniform, meshes.

The number of elements in the x-direction of the discretized domain is
N = 2, 4, 6 or 8, see Figures 1 and 2. The mesh size is h ≈ 1/N and the
degree of the elements used is k = 2 (quadratic) or k = 3 (cubic).

In order to study the accuracy in the interior of the domain and near
the boundary we give the relative errors, measured in the H 1-norm and in
the L2-norm, in the subdomains Di = {(x, y) ∈ D | y ∈ (π, 5π/4)} and
Db = {(x, y) ∈ D | y ∈ (0, π/4)}; yellow and magenta, respectively, in Figure
1.

The results for the interior region are shown in Figures 3–5, and the
results for the boundary region in Figures 6–11, respectively. The relative
errors of the original finite element deflection (the dashed red lines) and
the postprocessed finite element deflection (the solid black lines) are on the
logarithmic scale with respect to N .

To study the convergence rate function of the form CN−r ≈ Chr is fitted
to the results using least squares. The fitted lines with the slopes r and r∗,
for the original and for the postprocessed deflections, are also shown in the
figures, and listed in Table 1.
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Figure 1: The uniform meshes with N = 2, 4, 6, 8; Interior region Di; Bound-
ary region Db.

Figure 2: The non-uniform meshes with N = 2, 4, 6, 8.
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6.1 The accuracy in the interior region

In the interior region for the clamped boundary the numerical results in
Figure 3 are clearly in accordance with the theory: In the H 1-norm the
convergence rate of the original finite element deflection is r ≈ k and the
convergence rate of the postprocessed finite element deflection is r∗ ≈ k +
1 ≈ r + 1 – there is a slope change when comparing the solid line and the
corresponding dashed line. This means that the desired one additional power
of the mesh size h (or h+t) is reached. For the simply supported and the free
boundaries the situation is almost identical, see Figures 4 and 5 and Table 1.

The behavior in the L2-norm is almost similar: For the clamped edge
r ≈ k + 1 and r∗ ≈ k + 2 ≈ r + 1. For the simply supported and the
free edge the convergence rates of the postprocessed deflection are closer to
r∗ ≈ k + 3/2 ≈ r + 1/2.

We remark that to rigorously prove an increased accuracy in the L2-norm
seems to be difficult due to the t-dependency of the solution and the boundary
layers.

Table 1: Interior region; Uniform mesh; Convergence rates in Figures 3, 4 and
5 (hr for the original , hr∗ for the postprocessed deflection; C for clamped,
SS for simly supported, F for free edge).

Boundary condition C C SS SS F F
Norm H1 L2 H1 L2 H1 L2

k = 2
r 2.0 3.1 2.0 3.0 2.0 3.0
r∗ 3.1 4.1 3.1 4.1 3.0 4.0
k = 3
r 3.0 4.0 3.0 4.0 3.0 4.0
r∗ 4.1 4.8 4.1 4.7 4.1 4.6

6.2 The accuracy in the boundary region

In the boundary region the numerical results in Figures 6, 7, and 8 reflect
the strength of the edge effect: For the clamped and simply supported edges
the convergence – especially in the H1-norm – is almost as good as in the
interior region, and the effect of the boundary layer is only slightly seen, see
Figures 6 and 7.

For the free edge the rate of convergence rapidly slows down for both the
original and the postprocessed deflection, which is clearly seen in Figure 8.
The convergence rate seems to be of order O(h1/2) – for both the original and
the postprocessed deflection. In [12, 7] the rate for the original deflection in
the H1-norm is shown to be of that order and now it seems that the same
rate is valid also for the L2-norm. Furthermore, the same rate appears to be
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valid also for the original finite element rotation in the L2-norm, see Figure
9. Actually, this seem to be the reason why also the convergence rate for
the postprocessed deflection is the same; the L2-norm of the finite element
rotation appears in the error estimates for the postprocessed deflection, see
Theorem 5.1.

Although the convergence of the relative errors in the H 1-norm and the
L2-norm slows down near the free boundary, we see that an improvement is
obtained for coarse meshes. (For quadratic elements this is significant.) This
is also seen in Figures 10 and 11 in which the distributions of the pointwise
errors of the original (dashed red line) and the postprocessed finite element
deflections (solid black line) are plotted.

For quadratic elements with the mesh size N = 4 the pointwise errors
are plotted in the y-direction along the line x = π/4 and in the x-direction
along the line y = π/4 in Figure 10. For cubic elements with the mesh size
N = 2 the corresponding errors are plotted in Figure 11. In the figures the
superconvergence of the vertex values (marked with triangles) is clearly seen
in the both cases.

6.3 The accuracy for non-uniform meshes

The non-uniform meshes we have used are shown in Figure 2. For these
meshes our results are for the clamped case with quadratic elements (k =
2). Here the relative errors, measured in the H1-norm and in the L2-norm,
are calculated in the whole discretized domain. There was no significant
difference between the interior and the boundary region in the corresponding
case for the uniform meshes, but in principle, the results should follow the
behavior in the boundary region that is the dominating region for the errors.

The numerical results in Figure 12 are very similar to those for the uniform
meshes in the boundary region, see Figure 6. So, in the errors for the original
and the postprocessed deflection there is no essential dependence on the mesh
distortion of reasonable order.
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Figure 3: Clamped edge; Interior region; Uniform mesh; Convergence of the
relative H1- and L2-errors with k = 2, 3 (red dashed line for the original,
black solid line for the postprocessed deflection).
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Figure 4: Simply supported edge; Interior region; Uniform mesh; Conver-
gence of the relative H1- and L2-errors with k = 2, 3 (red dashed line for the
original, black solid line for the postprocessed deflection).
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Figure 5: Free edge; Interior region; Uniform mesh; Convergence of the rela-
tive H1- and L2-errors with k = 2, 3 (red dashed line for the original, black
solid line for the postprocessed deflection).
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Figure 6: Clamped edge; Boundary region; Uniform mesh; Convergence of
the relative H1- and L2-errors with k = 2, 3 (red dashed line for the original,
black solid line for the postprocessed deflection).
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Figure 7: Simply supported edge; Boundary region; Uniform mesh; Conver-
gence of the relative H1- and L2-errors with k = 2, 3 (red dashed line for the
original, black solid line for the postprocessed deflection).
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Figure 8: Free edge; Boundary region; Uniform mesh; Convergence of the
relative H1- and L2-errors with k = 2, 3 (red dashed line for the original,
black solid line for the postprocessed deflection).
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Figure 9: Free edge; Boundary region; Uniform mesh; Convergence of the
relative L2-error for the rotation with k = 2, 3.
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Figure 10: Free edge; Boundary region; Uniform mesh; Pointwise error along
the lines x = π/4 and y = π/4 for N = 4 and k = 2 (red dashed line for the
original, black solid line for the postprocessed deflection, triangles for vertex
values).
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Figure 11: Free edge; Boundary region; Uniform mesh; Pointwise error along
the lines x = π/4 and y = π/4 for N = 2 and k = 3 (red dashed line for the
original, black solid line for the postprocessed deflection, triangles for vertex
values).
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Figure 12: Clamped edge; Non–uniform mesh; Convergence of the relative
H1- and L2-errors with k = 2 (red dashed line for the original, black solid
line for the postprocessed deflection).
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