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1 Introduction

We consider the mixed finite element approximation of second order elliptic
equations with the Poisson problem as a model:

−∆u = f in Ω ⊂ Rn, (1.1)

u = 0 on ∂Ω. (1.2)

The problem is written as the system

σ −∇u = 0, (1.3)

div σ + f = 0, (1.4)

which is approximated with the

Mixed method. Find (σh, uh) ∈ Sh × Vh ⊂ H(div :Ω) × L2(Ω) such that

(σh, τ ) + (div τ , uh) = 0 ∀τ ∈ Sh, (1.5)

(div σh, v) + (f, v) = 0 ∀v ∈ Vh. (1.6)

In the method the polynomial used for approximating the flux σ is of higher
degree than that used for the displacement u, which is counterintuitive in view
of (1.3). As a consequence, the mixed method has to be carefully designed
in order to satisfy the Babuška-Brezzi conditions, c.f. e.g. [7]. There are two
ways of posing these conditions, both yielding the same a priori estimates.
The more common one is to use the H(div : Ω) norm for the flux and the
L2(Ω) norm for the displacement. The other one is to use so called mesh
dependent norms [2] which are close to the energy norm of the continuous
problem.

The a posteriori error analysis of mixed methods has been performed in
[9] and [4]. In [9] the estimate is for the H(div : Ω)-norm. This is in a
way unsatisfactory since the ”div” part of the norm is trivially computable
and also may dominate the error, see Remark 3.3 below. In [4] an estimate
for the L2-norm of the flux is derived but it is, however, not optimal. The
reason for this is that the estimator includes the element residual in the
constitutive relation (1.3). As the polynomial degree of approximation for
the displacement is lower than that for the flux, it is clear that this residual
is large.

The purpose of this paper is to point out a simple remedy to this. Since
the work of Arnold and Brezzi [1] it is known that the mixed finite element
solution can be locally postprocessed in order to obtain an improved dis-
placement. Later other postprocessing has been proposed [5, 8, 6, 16, 15].
On each element the postprocessed displacement is of one degree higher than
the flux, which is in accordance with (1.3). Hence, it is natural to use it in
the a posteriori estimate. In this paper, we will focus on the postprocessing
introduced in [16, 15]. In Section 2 we develop an a-priori error analysis
by recognizing that the postprocessed output can be viewed as the direct
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4 C. LOVADINA AND R. STENBERG

solution of a suitable modified method. In Section 3 we introduce our esti-
mator based on the postprocessed solution, and we prove its efficiency and
reliability.

Throughout the paper we will use standard notations for Sobolev norms
and seminorms. Moreover, we will denote with C a generic constant indepen-
dent of the mesh parameter h, which may take different values in different
occurrences.

2 A-priori estimates and postprocessing

In this section we will consider the mixed methods, their postprocessing and
error analysis. We will also give the stability and error analysis by treating
the method and the postprocessing as one method. This will be useful for
the a posteriori analysis.

We will use standard notation used in connection with (mixed) FE meth-
ods. By Ch we denote the finite element partitioning and by Γh the collection
of edges or faces of Ch. The subspaces (σh, uh) ∈ Sh×Vh ⊂ H(div :Ω)×L2(Ω)
are piecewise polynomial spaces defined on Ch. As examples we will consider
the following families of elements.

• RTN elements – the triangular elements of Raviart-Thomas [14] and
their tetrahedral counterparts of Nedelec [13];

• BDM elements – the triangular elements of Brezzi-Douglas-Marini [8]
and their tetrahedral counterparts of Brezzi-Douglas-Duran-Fortin [6].

Accordingly, given an integer k ≥ 1, we define:

SRTN
h = { τ ∈ H(div :Ω) | τ |K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) ∀K ∈ Ch } (2.1)

SBDM
h = { τ ∈ H(div :Ω) | τ |K ∈ [Pk(K)]n ∀K ∈ Ch } (2.2)

V RTN
h = V BDM

h = { v ∈ L2(Ω) | v|K ∈ Pk−1(K) ∀K ∈ Ch }, (2.3)

where P̃k−1(K) denotes the homogeneous polynomials of degree k − 1. For
quadrilateral and hexahedral meshes there exist a wide choice of different
alternatives, c.f. [7].

By defining the following bilinear form

B(ϕ, w; τ , v) = (ϕ, τ ) + (div τ , w) + (div ϕ, v) (2.4)

the mixed method can compactly be defined as:
Find (σh, uh) ∈ Sh × Vh such that

B(σh, uh; τ , v) + (f, v) = 0 ∀(τ , v) ∈ Sh × Vh. (2.5)

For the displacement and the flux we will use the following norms:

‖v‖2
1,h =

∑

K∈Ch

‖∇v‖2
0,K +

∑

E∈Γh

h−1
E ‖[[v]]‖2

0,E, (2.6)
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and
‖τ‖2

0,h = ‖τ‖2
0 +

∑

E∈Γh

hE‖τ · n‖2
0,E, (2.7)

where n is the unit normal to E ∈ Γh and [[v]] is the jump in v along interior
edges and v on edges on ∂Ω. By an element by element partial integration
we have

|(div τ , v)| ≤ ‖τ‖0,h‖v‖1,h ∀(τ , v) ∈ Sh × Vh. (2.8)

In the FE subspace the norm for the flux is equivalent to the L2 norm:

C1‖τ‖0,h ≤ ‖τ‖0 ≤ C2‖τ‖0,h ∀τ ∈ Sh. (2.9)

Hence, it also holds

|(div τ , v)| ≤ C‖τ‖0‖v‖1,h ∀(τ , v) ∈ Sh × Vh. (2.10)

With this choice of norms the Babuška-Brezzi stability condition is

sup
τ∈Sh

(div τ , v)

‖τ‖0

≥ C‖v‖1,h ∀v ∈ Vh. (2.11)

When dealing with the spaces H(div : Ω) and L2(Ω), the corresponding
Babuška-Brezzi condition is typically proved by means of a suitable interpo-
lation operator Rh : H(div :Ω) ∩ Ls(Ω) → Sh, with s > 2, such that

(div (τ − Rhτ ), v) = 0 ∀v ∈ Vh, (2.12)

which can be constructed by a careful choice of degrees of freedom for Sh,
cf. [14, 13, 8, 6]. The same techniques can, however, be used to prove the
condition with our choice of norms. We should also point out that since
V RTN

h = V BDM
h and SRTN

h ⊂ SBDM
h the stability estimate for BDM is a

consequence of that for RTN.
In the sequel, we will assume that the method under consideration satisfies

(2.11). As a consequence, the following full stability result holds.

Lemma 2.1 There is a positive constant C such that

sup
(τ ,v)∈Sh×Vh

B(ϕ, w; τ , v)

‖τ‖0 + ‖v‖1,h

≥ C
(

‖ϕ‖0 + ‖w‖1,h

)

∀(ϕ, w) ∈ Sh × Vh. (2.13)

This implies the uniqueness of the solution. In order to have an optimal
estimate the additional equilibrium property

div Sh ⊂ Vh (2.14)

is needed. When denoting by Ph : L2(Ω) → Vh the L2-projection, this implies
that

(div τ , u − Phu) = 0 ∀τ ∈ Sh. (2.15)

The projection and interploation operators satisify the following commuting
property:

div Rh = Phdiv . (2.16)
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Theorem 2.2 There is a positive constant C such that

‖σ − σh‖0 + ‖Phu − uh‖1,h ≤ C‖σ − Rhσ‖0. (2.17)

Proof By Lemma 2.1 there is a pair (τ , v) ∈ Sh×Vh, with ‖τ‖0 +‖v‖1,h ≤ C,
such that

‖σh − Rhσ‖0 + ‖uh − Phu‖1,h ≤ B(σh − Rhσ, uh − Phu; τ , v). (2.18)

Next, (2.12), (2.15) and (2.16) give

B(σh − Rhσ, uh − Phu; τ , v)

= (σh − Rhσ, τ ) + (div τ , uh − Phu) + (div (σh − Rhσ), v) (2.19)

= (σ − Rhσ, τ ) ≤ ‖σ − Rhσ‖0‖τ‖0 ≤ C‖σ − Rhσ‖0.

The assertion then follows from the triangle inequality. ¤

For the two examples of spaces this gives (assuming full regularity):

‖σ − σh‖0 + ‖Phu − uh‖1,h ≤ Chk+1|σ|k+1 for BDM, (2.20)

‖σ − σh‖0 + ‖Phu − uh‖1,h ≤ Chk|σ|k for RTN. (2.21)

We note that these estimates contain a superconvergence result for ‖Phu −
uh‖1,h. This, together with the fact that σh is a good approximation of
∇u, implies that an improved approximation for the displacement can be
constructed by local postprocessing. Below we will consider the method in-
troduced in [16, 15]. The postprocessed displacement is sought in a FE space
V ∗

h ⊃ Vh. For the two examples the spaces are

V ∗BDM
h = { v ∈ L2(Ω) | v|K ∈ Pk+1(K) ∀K ∈ Ch }, (2.22)

V ∗RTN
h = { v ∈ L2(Ω) | v|K ∈ Pk(K) ∀K ∈ Ch }. (2.23)

Postprocessing method. Find u∗
h ∈ V ∗

h such that

Phu
∗
h = uh (2.24)

and
(∇u∗

h,∇v)K = (σh,∇v)K ∀v ∈ (I − Ph)V
∗
h |K . (2.25)

The error analysis of this postprocessing is done in [16, 15]. Here we proceed
in a slightly different way by considering the method and the postprocessing
as one method. To this end we define the bilinear form

Bh(ϕ, w∗; τ , v∗) = (ϕ, τ ) + (div τ , w∗) + (div ϕ, v∗) (2.26)

+
∑

K∈Ch

(∇w∗ − ϕ,∇(I − Ph)v
∗)K .

Then we have the following equivalence to the original problem.
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Lemma 2.3 Let (σh, u
∗
h) ∈ Sh × V ∗

h be the solution to the problem

Bh(σh, u
∗
h; τ , v∗) + (Phf, v∗) = 0 ∀(τ , v∗) ∈ Sh × V ∗

h , (2.27)

and set uh = Phu
∗
h ∈ Vh. Then (σh, uh) ∈ Sh × Vh coincides with the

solution of (1.5)–(1.6). Conversely, let (σh, uh) ∈ Sh × Vh be the solution
of (1.5)–(1.6), and let u∗

h ∈ V ∗
h be the postprocessed displacement defined by

(2.24)–(2.25). Then (σh, u
∗
h) ∈ Sh × V ∗

h is the solution to (2.27).

Proof Testing by (τ , 0) ∈ Sh × V ∗
h in (2.27) gives

(σh, τ ) + (div τ , u∗
h) = 0 ∀τ ∈ Sh. (2.28)

The equilibrium property (2.14) implies

(div τ , u∗
h) = (div τ , uh). (2.29)

Hence, (1.5) is satisfied. Next, for a generic v∗ ∈ V ∗
h set v = Phv

∗ ∈ Vh and
observe that Vh = Ph(V

∗
h ). Testing in (2.27) with (0, v), and using the fact

that (Phf, v) = (f, v), we obtain

(div σh, v) + (f, v) = 0 ∀v ∈ Vh, (2.30)

i.e. the equation (1.6). Conversely, let (σh, uh) ∈ Sh × Vh be the solution of
(1.5)–(1.6), and let u∗

h ∈ V ∗
h be defined by (2.24)–(2.25). Splitting a generic

v∗ ∈ V ∗
h as v∗ = Phv

∗ + (I − Ph)v
∗ we have

Bh(σh, u
∗
h; τ , v∗) = Bh(σh, u

∗
h; τ , Phv

∗) + Bh(σh, u
∗
h; τ , (I − Ph)v

∗)

= (σh, τ ) + (div τ , u∗
h) + (div σh, Phv

∗) +
∑

K∈Ch

(∇u∗
h − σh,∇(I − Ph)Phv

∗)K

+ (div σh, (I − Ph)v
∗) +

∑

K∈Ch

(∇u∗
h − σh,∇(I − Ph)(I − Ph)v

∗)K

= (σh, τ ) + (div τ , uh) − (Phf, Phv
∗) = −(Phf, v∗) ∀(τ , v∗) ∈ Sh × V ∗

h .
(2.31)

Therefore, (σh, u
∗
h) ∈ Sh × V ∗

h solves (2.27). ¤

Next, we prove the stability.

Lemma 2.4 There is a positive constant constant C such that

sup
(τ ,v∗)∈Sh×V ∗

h

Bh(ϕ, w∗; τ , v∗)

‖τ‖0 + ‖v∗‖1,h

≥ C
(

‖ϕ‖0 + ‖w∗‖1,h

)

∀(ϕ, w∗) ∈ Sh × V ∗
h .

(2.32)

ProofLet (ϕ, w∗) ∈ Sh×V ∗
h be arbitrary. By choosing v∗ = v ∈ Vh and using

the equilibrium condition (2.14) we then get

Bh(ϕ, w∗; τ , v) = (ϕ, τ ) + (div τ , w∗) + (div ϕ, v) (2.33)

= (ϕ, τ ) + (div τ , Phw
∗) + (div ϕ, v)

= B(ϕ, Phw
∗; τ , v),
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Hence, the stability of Lemma 2.1 implies that we can choose (τ , v) such that

Bh(ϕ, w∗; τ , v) ≥
(

‖ϕ‖2
0 + ‖Phw

∗‖2
1,h

)

(2.34)

and
‖τ‖0 + ‖v‖1,h ≤ C1

(

‖ϕ‖0 + ‖Phw
∗‖1,h

)

. (2.35)

Next, (2.10) and Young’s inequality give

Bh(ϕ, w∗;0, (I − Ph)w
∗) (2.36)

= (div ϕ, (I − Ph)w
∗) +

∑

K∈Ch

(∇w∗ − ϕ,∇(I − Ph)w
∗)K

≥ −C2‖ϕ‖0‖(I − Ph)w
∗‖1,h − ‖(I − Ph)w

∗‖1,h‖Phw
∗‖1,h

+
∑

K∈Ch

‖∇(I − Ph)w
∗‖2

0,K

≥ −C2
2‖ϕ‖2

0 − ‖Phw
∗‖2

1,h +
1

2

∑

K∈Ch

‖∇(I − Ph)w
∗‖2

0,K .

Combining (2.34) and (2.36), with δ = 1/2(C2
2 + 1), we get

Bh(ϕ, w∗; τ , v + δ(I − Ph)w
∗) (2.37)

≥
1

2

(

‖ϕ‖2
0 + ‖Phw

∗‖2
1,h + δ

∑

K∈Ch

‖∇(I − Ph)w
∗‖2

0,K

)

.

By scaling we have

‖Phw
∗‖2

1,h + δ
∑

K∈Ch

‖∇(I − Ph)w
∗‖2

0,K ≥ C3‖w
∗‖2

1,h. (2.38)

From (2.35) and (2.38) we have

‖τ‖0 + ‖v + δ(I − Ph)w
∗‖1,h ≤ C4

(

‖ϕ‖0 + ‖w∗‖1,h

)

(2.39)

and the asserted estimate is proved. ¤

Theorem 2.5 The following a priori error estimate holds

‖σ − σh‖0 + ‖u − u∗
h‖1,h ≤ C

(

‖σ − Rhσ‖0 + inf
v∗∈V ∗

h

‖u − v∗‖1,h

)

.

Proof From Lemma 2.4 it follows that there is (ϕ, w∗) ∈ Sh × V ∗
h , with

‖ϕ‖0 + ‖w∗‖1,h ≤ C, such that

(

‖σh − Rhσ‖0 + ‖u∗
h − v∗‖1,h

)

≤ Bh(σh − Rhσ, u∗
h − v∗; ϕ, w∗). (2.41)

Next, from the definition of Bh and the equations (1.3)–(1.4) it follows that

Bh(σ, u; ϕ, w∗) + (f, w∗) = 0. (2.42)



ENERGY NORM A POSTERIORI ESTIMATES FOR MIXED METHODS9

Hence it holds

Bh(σh − Rhσ, u∗
h − v∗; ϕ, w∗) (2.43)

= Bh(σ − Rhσ, u − v∗; ϕ, w∗) + (f − Phf, w∗).

Writing out the right hand side we have

Bh(σ − Rhσ, u − v∗; ϕ, w∗) + (f − Phf, w∗) (2.44)

= (σ − Rhσ,ϕ) + (div ϕ, u − v∗) + (div (σ − Rhσ), w∗)

+
∑

K∈Ch

(∇(u − v∗) − (σ − Rhσ),∇(I − Ph)w
∗)K + (f − Phf, w∗).

The commuting property (2.16) gives

(div (σ − Rhσ), w∗) = −(f − Phf, w∗). (2.45)

Hence, the third and the last term on the right hand side of (2.44) cancel.
The other terms are directly estimated

(σ − Rhσ,ϕ) ≤ ‖σ − Rhσ‖0‖ϕ‖0 ≤ C‖σ − Rhσ‖0, (2.46)

(div ϕ, u − v∗) ≤ C‖ϕ‖0‖u − v∗‖1,h ≤ C‖u − v∗‖1,h (2.47)

and
∑

K∈Ch

(∇(u − v∗) − (σ − Rhσ),∇(I − Ph)w
∗)K (2.48)

≤ C
(

‖u − v∗‖1,h + ‖σ − Rhσ‖0

)

‖w∗‖1,h

≤ C
(

‖u − v∗‖1,h + ‖σ − Rhσ‖0

)

.

The assertion then follows by collecting the above estimate and using the
triangle inequality. ¤

For the example methods we obtain the estimates (with the assumption
of a sufficiently smooth solution).

Corollary 2.6 There are positive constants C such that

‖σ − σh‖0 + ‖u − u∗
h‖1,h ≤ Chk+1|u|k+2 for BDM, (2.49)

‖σ − σh‖0 + ‖u − u∗
h‖1,h ≤ Chk|u|k+1 for RTN. (2.50)

3 A-posteriori estimates

We define the following local error indicators on the elements

η1,K = ‖∇u∗
h − σh‖0,K , η2,K = hK‖f − Phf‖0,K , (3.1)

and on the edges
ηE = h

−1/2
E ‖[[u∗

h]]‖0,E. (3.2)
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Using these quantities, the global estimator is

η =
(

∑

K∈Ch

(

η2
1,K + η2

2,K

)

+
∑

E∈Γh

η2
E

)1/2

. (3.3)

The efficiency of the estimator is given by the following lower bounds,
which directly follow from (1.3) using the triangle inequality, and from (3.2)
noting that [[u]] = 0 on each edge E.

Theorem 3.1 It holds

η1,K ≤ ‖∇(u − u∗
h)‖0,K + ‖σ − σh‖0,K ,

ηE = h
−1/2
E ‖[[u − u∗

h]]‖0,E.
(3.4)

As far as the estimator reliability is concerned, below we will use two
different techniques to prove the following upper bound

Theorem 3.2 There exists a positive constant C such that

‖σ − σh‖0 + ‖u − u∗
h‖1,h ≤ Cη. (3.5)

The first technique to prove the upper bound is based on the following
saturation assumption. We let Ch/2 be the mesh obtained from Ch by refined
each element into 2n (n = 2, 3) elements. For clarity all variables in the spaces
defined on Ch will be equipped with the subscript h whereas h/2 will be used
for those defined on Ch/2. Accordingly, we let (σh/2, u

∗
h/2) ∈ Sh/2 × V ∗

h/2 be
the solution to

Bh/2(σh/2, u
∗
h/2; τ h/2, v

∗
h/2)+(Ph/2f, v∗

h/2) = 0 ∀(τ h/2, v
∗
h/2) ∈ Sh/2×V ∗

h/2.
(3.6)

As already done in [4], we make the following assumption for the solutions
of (2.27) and (3.6).

Saturation assumption. There exists a positive constant β < 1 such that

‖σ − σh/2‖0 + ‖u − u∗
h/2‖1,h/2 ≤ β

(

‖σ − σh‖0 + ‖u − u∗
h‖1,h

)

. (3.7)

Using the triangle inequality this gives

‖σ − σh‖0 + ‖u − u∗
h‖1,h ≤

1

1 − β

(

‖σh/2 − σh‖0 + ‖u∗
h/2 − u∗

h‖1,h/2

)

. (3.8)

Proof of Theorem 3.2 using the saturation assumption. By (3.8) it is sufficient
to prove the following bound

‖σh/2 − σh‖0 + ‖u∗
h/2 − u∗

h‖1,h/2 ≤ Cη. (3.9)

By Lemma 2.4 applied to the finer mesh Ch/2, there is (τ h/2, v
∗
h/2) ∈ Sh/2 ×

V ∗
h/2, with ‖τ h/2‖0 + ‖v∗

h/2‖1,h/2 ≤ C, such that

(

‖σh − σh/2‖0 + ‖u∗
h − u∗

h/2‖1,h/2

)

(3.10)

≤ Bh/2(σh − σh/2, u
∗
h − u∗

h/2; τ h/2, v
∗
h/2).
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Using the fact that

(σh/2, τ h/2) + (div τ h/2, u
∗
h/2) = 0 (3.11)

we have

Bh/2(σh − σh/2, u
∗
h − u∗

h/2; τ h/2, v
∗
h/2)

= (σh − σh/2, τ h/2) + (div τ h/2, u
∗
h − u∗

h/2) + (div (σh − σh/2), v
∗
h/2)

+
∑

K∈Ch/2

(∇(u∗
h − u∗

h/2) − (σh − σh/2),∇(I − Ph)v
∗
h/2)K (3.12)

= (σh, τ h/2) + (div τ h/2, u
∗
h) + (div (σh − σh/2), v

∗
h/2)

+
∑

K∈Ch/2

(∇u∗
h − σh,∇(I − Ph)v

∗
h/2)K ,

Using (2.9) and (3.1)–(3.3), we obtain

(σh, τ h/2) + (div τ h/2, u
∗
h)

=
∑

K∈Ch

(σh −∇u∗
h, τ h/2)K +

∑

E∈Γh

〈τ h/2 · n, [[u∗
h]]〉E

≤
∑

K∈Ch

‖σh −∇u∗
h‖0,K‖τ h/2‖0,K +

∑

E∈Γh

‖τ h/2 · n‖0,E‖[[u
∗
h]]‖0,E(3.13)

≤ η‖τ h/2‖0,h ≤ ηC‖τ h/2‖0 ≤ Cη.

Similarly for the last term in (3.12) we get

∑

K∈Ch/2

(∇u∗
h − σh,∇(I − Ph)v

∗
h/2)K ≤ Cη‖(I − Ph)v

∗
h/2‖1,h/2 (3.14)

≤ Cη‖v∗
h/2‖1,h/2 ≤ Cη.

When estimating the term (div (σh − σh/2), v
∗
h/2) in (3.12) we use that

(div σh/2, v
∗
h/2) + (f, v∗

h/2) = 0,

div σh = −Phf and that Ph is the L2-projection operator. Therefore, we
have

(div (σh − σh/2), v
∗
h/2) = (f − Phf, v∗

h/2)

= (f − Phf, v∗
h/2 − Phv

∗
h/2)

≤ ‖f − Phf‖0‖v
∗
h/2 − Phv

∗
h/2‖0 (3.15)

≤ C
(

∑

K∈Ch

h2
K‖f − Phf‖

2
0,K

)1/2
‖v∗

h/2‖1,h/2

≤ C
(

∑

K∈Ch

h2
K‖f − Phf‖

2
0,K

)1/2
≤ Cη.
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Here, we have used the interpolation estimates

‖v∗
h/2 − Phv

∗
h/2‖0,K ≤ ChK |v∗

h/2|1,h/2,K , ∀K ∈ Ch, (3.16)

where
|v∗

h/2|
2
1,h/2,K =

∑

Ki

‖∇v∗
h/2‖

2
0,Ki

+
∑

Ei

h−1
Ei
‖[[v∗

h/2]]‖
2
0,Ei

(3.17)

and Ki ⊂ K are the elements of Ch/2 and Ei are the edges of Γh/2 lying in
the interior of K. These are easily proved by standard scaling arguments, cf.
[4, Lemma 3.1]. By collecting the estimates (3.13)–(3.15), from (3.12) we get

Bh/2(σh − σh/2, u
∗
h − u∗

h/2; τ h/2, v
∗
h/2) ≤ Cη. (3.18)

The assertion now follows from (3.10). ¤

We have presented the above proof since this is rather general and can be
used for other problems as well. In [12] we use it for a plate bending method.

Next, let us give the other proof not relying on the saturation assumption.

Proof of Theorem 3.2 using a Helmholtz decomposition. We use the tech-
niques of [10] and [9]. For simplicity we consider the two dimensional case
Ω ⊂ R2. We first notice that

||σ − σh||0 = sup
ϕ∈L

2(Ω)

(σ − σh,ϕ)

||ϕ||0
. (3.19)

For a generic ϕ ∈ L2(Ω), we consider the L2-orthogonal Helmholtz de-
composition (see, e.g. [11]):

ϕ = ∇ψ + curl q, ψ ∈ H1
0 (Ω), q ∈ H1(Ω)/R, (3.20)

with

||ϕ||0 =
(

||∇ψ||20 + ||curl q||20

)1/2

. (3.21)

Therefore, from (3.19)–(3.21) we see that it holds

||σ − σh||0 ≤ sup
ψ∈H1

0
(Ω)

(σ − σh,∇ψ)

|ψ|1
+ sup

q∈H1(Ω)/R

(σ − σh, curl q)

|q|1
. (3.22)

Given ψ ∈ H1
0 (Ω), from (1.4) and (1.6) it follows that

(

div (σ − σh), Phψ
)

= 0. (3.23)

Hence, we have

(σ − σh,∇ψ) = − (div (σ − σh), ψ)

= − (div (σ − σh), ψ − Phψ)

≤C
(

∑

K∈Ch

h2
K ||div (σ − σh)||

2
0,K

)1/2

|ψ|1

≤C
(

∑

K∈Ch

h2
K ||f − Phf ||

2
0,K

)1/2

|ψ|1.

(3.24)
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As a consequence, we get (cf. (3.1))

sup
ψ∈H1

0
(Ω)

(σ − σh,∇ψ)

|ψ|1
≤ C

(

∑

K∈Ch

h2
K ||f − Phf ||

2
0,K

)1/2

= C
(

∑

K∈Ch

η2
2,K

)1/2

.

(3.25)

To continue, let Ihq be the Cleḿent interpolant of q in the space of con-
tinuous piecewise linear functions (see [3], for instance) satisfying

‖q − Ihq‖1 +
(

∑

E∈Γh

h−1
E ||q − Ihq||

2
0,E

)1/2

≤ C|q|1. (3.26)

Noting that curl Ihq ∈ Sh, and div curl Ihq = 0, from (1.3) and (1.5) we get

(σ − σh, curl Ihq) = 0. (3.27)

Therefore, using (3.26), one has

(σ − σh, curl q) =
(

σ − σh, curl(q − Ihq)
)

=
(

∇u − σh, curl(q − Ihq)
)

= −
(

σh, curl(q − Ihq)
)

= −
∑

K∈Ch

(

σh −∇u∗
h , curl(q − Ihq)

)

K
+

∑

K∈Ch

(

∇u∗
h , curl(q − Ihq)

)

K

≤C
(

∑

K∈Ch

||σh −∇u∗
h||

2
0,K

)1/2

|q|1 +
∑

K∈Ch

(

∇u∗
h , curl(q − Ihq)

)

K
.

(3.28)
Furthermore, an integration by parts and standard arguments and (3.26) give

∑

K∈Ch

(

∇u∗
h, curl(q − Ihq)

)

K
= −

∑

K∈Ch

〈∇u∗
h · t , q − Ihq〉∂K

= −
∑

E∈Γh

〈[[∇u∗
h · t]], q − Ihq〉E

≤
(

∑

E∈Γh

hE||[[∇u∗
h · t]]||

2
0,E

)1/2( ∑

E∈Γh

h−1
E ||q − Ihq||

2
0,E

)1/2

≤C
(

∑

E∈Γh

h−1
E ||[[u∗

h]]||
2
0,E

)1/2

|q|1.

(3.29)

From (3.28) and (3.29) we obtain (see (3.1) and (3.2))

sup
q∈H1(Ω)/R

(σ − σh, curl q)

|q|1
≤ C

(

∑

K∈Ch

||σh −∇u∗
h||

2
0,K +

∑

E∈Γh

h−1
E ||[[u∗

h]]||
2
0,E

)1/2

= C
(

∑

K∈Ch

η2
1,K +

∑

E∈Γh

η2
E

)1/2

.

(3.30)
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Using (3.25) and (3.30) we deduce

||σ − σh||0 ≤ C
(

∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

. (3.31)

We now estimate the term ||u − u∗
h||1,h. We first recall that

||u − u∗
h||1,h =

(

∑

K∈Ch

‖∇(u − u∗
h)‖

2
0,K +

∑

E∈Γh

h−1
E ‖[[u − u∗

h]]‖
2
0,E

)1/2

(3.32)

and we notice that (cf. (3.2))

(

∑

E∈Γh

h−1
E ‖[[u − u∗

h]]‖
2
0,E

)1/2

=
(

∑

E∈Γh

h−1
E ‖[[u∗

h]]‖
2
0,E

)1/2

=
(

∑

E∈Γh

η2
E

)1/2

.

(3.33)
We have

‖∇(u−u∗
h)‖

2
0,K =

(

∇u −∇u∗
h ,∇(u − u∗

h)
)

K
=

(

σ −∇u∗
h ,∇(u − u∗

h)
)

K

=
(

σ − σh,∇(u − u∗
h)

)

K
+

(

σh −∇u∗
h ,∇(u − u∗

h)
)

K

≤
(

||σ − σh||0,K + ||σh −∇u∗
h||0,K

)

||∇(u − u∗
h)||0,K ,

(3.34)
by which we obtain

‖∇(u − u∗
h)‖0,K ≤ ||σ − σh||0,K + ||σh −∇u∗

h||0,K . (3.35)

Hence we infer

(

∑

K∈Ch

||∇(u−u∗
h)||

2
0,K

)1/2

≤ ||σ−σh||0 +
(

∑

K∈Ch

||σh−∇u∗
h||

2
0,K

)1/2

. (3.36)

Using (3.31) and recalling (3.1), from (3.36) we get

(

∑

K∈Ch

||∇(u − u∗
h)||

2
0,K

)1/2

≤ C
(

∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

. (3.37)

Therefore, joining (3.33) and (3.37) we obtain

||u − u∗
h||1,h ≤ C

(

∑

K∈Ch

(η2
1,K + η2

2,K) +
∑

E∈Γh

η2
E

)1/2

. (3.38)

From (3.31) and (3.38) we finally deduce (see (3.3))

||σ−σh||0 + ||u−u∗
h||1,h ≤ C

(

∑

K∈Ch

(η2
1,K +η2

2,K)+
∑

E∈Γh

η2
E

)1/2

= Cη. (3.39)

¤

We end the paper by the following
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Remark 3.3 On the the estimate in the H(div :Ω)-norm. In the paper we
have repeatedly used the fact that by the equilibrium property (2.14) we have
div (σ−σh) = Phf−f and hence ‖div (σ−σh)‖0 = ‖f−Phf‖0 is a quantity
that is directly computable from the data to the problem. For the BDM spaces
it furthermore holds that ‖f−Phf‖0 = O(hk), whereas ‖σ−σh‖0 = O(hk+1),
and hence this trivial component in the H(div :Ω) norm dominates the whole
estimate. ¤
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