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1. Introduction

A wavelet basis of L2(Rn) is an orthonormal basis of the form (ψλ)λ∈Λ, where
Λ is the set of dyadic n-vectors of the form λ = k2−j + η2−j−1 (j ∈ Z, k ∈
Z
n, η ∈ {0, 1}n \ {0}), and ψλ(x) = 2jn/2ψη(2jx − k), where ψη ∈ L2(Rn), η ∈
{0, 1}n \ {0}, are the 2n − 1 mother wavelets. The basis is called r-regular if
|∂αψη(x)| ≤ Cm(1 + |x|)−m and

∫
xαψη(x) dx = 0 for all |α| ≤ r, all m ∈ N and

all η ∈ {0, 1}n \ {0}.
Y. Meyer [5] has proved the following characterization of the Hardy space

H1(Rn) in terms of wavelets:

Theorem 1.1 ([5]). Let (ψλ)λ∈Λ be a 1-regular wavelet basis of L2(Rn). The
following conditions are equivalent for the distribution

f(x) :=
∑
λ∈Λ

αλψλ(x) :

f ∈ H1(Rn),(1.2)

sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥∥∥∑
λ∈F

ελαλψλ(·)

∥∥∥∥∥
L1(Rn)

<∞,(1.3)

(∑
λ∈Λ

|αλ|2 |ψλ(·)|2
)1/2

∈ L1(Rn),(1.4)

(∑
λ∈Λ

|αλ|2 |Q(λ)|−1 1Q(λ)(·)

)1/2

∈ L1(Rn),(1.5)

(∑
λ∈Λ

|α(λ)|2 |Q(λ)|−1 1R(λ)(·)

)1/2

∈ L1(Rn),(1.6)

where

• the first supremum in (1.3) is taken over all finite subsets F of Λ,
• Q(λ) := 2−j([0, 1[n + k) for λ = k2−j + η2−j−1, and
• R(λ) := 2−j(Aη + k), where Aη is any non-degenerate cube.

Our purpose is to give an analogue of this result in the context of the Hardy
space H1(Rn;X) of X-valued functions, where X is a Banach space with the so
called UMD property (unconditionality of martingale differences), a UMD-space
for short.

The properties of the wavelet bases in the Lp spaces (p ∈ ]1,∞[) of UMD-
valued functions have been studied by T. Figiel [2] already in the 80’s. His
methods are based on the unconditionality of the Haar system on Lp([0, 1];X),
and of its analogues on Lp(Rn;X), which could actually be taken as the definition
of the space X being UMD. This approach does not apply to the Hardy space
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H1(Rn;X), since the Haar system is not a basis of H1(Rn), even in the scalar-
valued setting. Instead, the Haar system spans a smaller dyadic Hardy space,
which is useful for certain purposes but a little less “natural” than the usual
Hardy space. It would be of interest also to understand the wavelet expansions
on the usual H1(Rn;X) space, and this is the task taken up here.

It is well-known that the“right”substitute in general Banach spaces for the qua-
dratic estimates as in (1.4) through (1.6) (which work well for Hilbert spaces) is
in terms of Rademacher averages. We denote by ελ independent random variables
on some probability space Ω with distribution P(ελ = +1) = P(ελ = −1) = 1/2.
Eε denotes the corresponding expectation. Then we have:

Theorem 1.7. Let X be a UMD-space, (ψλ)λ∈Λ a 1-regular wavelet basis of
L2(Rn), and α ∈ XΛ. The following conditions are equivalent for the X-valued
distribution

f(x) :=
∑
λ∈Λ

αλψλ(x) :

f ∈ H1(Rn;X),(1.8)

sup
F⊂Λ

sup
ε∈{±1}Λ

∥∥∥∥∥∑
λ∈F

ελαλψλ(·)

∥∥∥∥∥
L1(Rn;X)

<∞,(1.9)

∫
Rn

Eε

∣∣∣∣∣∑
λ∈Λ

ελαλψλ(x)

∣∣∣∣∣
X

dx <∞,(1.10)

∫
Rn

Eε

∣∣∣∣∣∑
λ∈Λ

ελαλ |Q(λ)|−1/2 1Q(λ)(x)

∣∣∣∣∣
X

dx <∞,(1.11)

∫
Rn

Eε

∣∣∣∣∣∑
λ∈Λ

ελαλ |Q(λ)|−1/2 1R(λ)(x)

∣∣∣∣∣
X

dx <∞,(1.12)

where F , λ, Q(λ) and R(λ) = 2−j(Aη + k) have the same meaning as in Theo-
rem 1.1.

Moreover, each of the expressions (1.9) through (1.12) define equivalent norms
of H1(Rn;X). Consequently, the wavelet series of f converges unconditionally to
f in the H1(Rn;X)-norm.

Note that the condition (1.12) a priori depends on the choice of the cubes
Aη defining the R(λ)’s. However, the proof of the Theorem will show that the
validity of this condition for any one choice of the Aη’s already implies it for all
possible choices.

To simplify the matters, note that it suffices to establish the equivalence of the
different norms in the case of (αλ)λ∈Λ finitely non-zero. The general case then
follows by standard arguments, using the density in H1(Rn;X) of such functions.
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The definition of the Hardy space H1(Rn;X), which we use, is in terms of
atoms: We have, by definition, f ∈ H1(Rn;X) if and only if f has an expansion
of the form

f(x) =
∞∑
i=1

ai(x), supp ai ⊂ B̄i,

∫
ai(x) dx = 0,

where the B̄i are balls in Rn, and we have

(1.13)
∞∑
i=1

‖ai‖Lp(Rn;X)

∣∣B̄i

∣∣1/p′ <∞,
where some value of p ∈ ]1,∞[ is fixed, and p′ denotes the conjugate exponent,
1/p + 1/p′ = 1. The norm ‖f‖H1(Rn;X) is defined as the infimum of the above
series taken over all such decompositions. It depends, of course, on the choice
of p ∈ ]1,∞[, but it is well-known that each p ∈ ]1,∞[ (actually also p = ∞)
gives the same space H1(Rn;X) with an equivalent norm. This will also follow
from our theorem and its proof, since the conditions (1.9) through (1.12) do not
contain any explicit or implicit reference to the parameter p.

The main arguments which show that (1.8) implies the other conditions are
based on results concerning generalized Calderón–Zygmund operators on UMD-
Bôchner spaces, due to T. Figiel [3]. The reverse direction involves some essen-
tially pointwise estimates.

Acknowledgments. I wish to thank Dr. Hans-Olav Tylli who brought the re-
sults of T. Figiel to my knowledge, and Prof. Tadeusz Figiel himself, who
kindly supplied me with further pieces of his work.

I acknowledge financial support from the Magnus Ehrnrooth Foundation.

2. Implications using Calderón–Zygmund operators

In proving Theorem 1.7, we will need to apply several transformations of the
wavelet series. All these transformations will have the generic form of an integral
operator

Tf(x) =

∫
Rn

k(x, y)f(y) dy,

where the kernel k is actually bounded and integrable. What is important is to
obtain appropriate uniform bounds for operator norms of different operators T
of this kind.

T. Figiel [3] has generalized the famous T (1) theorem of G. David and J.-L.

Journé to the setting of X-valued Lp spaces. (See also [4], where an intermediate
estimate omitted in [3] is proved in detail.) A rather general formulation of this
result is given in [3]; for our purposes, the following version is sufficiet:

Proposition 2.1 ([3]). Let k(x, y) ∈ L1(Rn×Rn) satisfy the standard estimates

|k(x, y)| ≤ κ |x− y|−n , |∇xk(x, y)|+ |∇yk(x, y)| ≤ κ |x− y|−n−1 .
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Assume, moreover, that T is bounded on L2(Rn) with operator norm at most κ.
Then T is also bounded on Lp(Rn;X), where X is any UMD space, with norm
≤ Cp(X)κ, for all p ∈ ]1,∞[, and it is bounded from H1(Rn;X) to L1(Rn;X)
with norm ≤ C1(X)κ. If, in addition,

[T ′(1)](y) :=

∫
Rn

k(x, y) dx ≡ 0,

then T is bounded on H1(Rn;X) with norm ≤ C0(X)κ.

This proposition is essentially a statement of the fact that for an operator
defined in terms of a kernel which verifies the standard estimates, the conditions
of the T (1) theorem are necessary and sufficient: Since T is bounded on L2(Rn),
it satisfies these conditions, but then the vector-valued version applies to give
the boundedness on Lp(Rn;X). For our purposes, we would actually only need a
special T (1) theorem, i.e., the case T (1) = 0 = T ′(1).

It is a well-known fact, in which the vector-valued situation brings no compli-
cations, that an integral operator satisfying the standard estimates and bounded
on Lp(Rn;X) is also bounded from H1(Rn;X) to L1(Rn;X). Concerning the
H1(Rn;X)-boundedness under the additional assumption, see Y. Meyer and
R. Coifman [6], Th. 3 of Ch. 7. (This is also an extension argument, which goes
through in the vector-valued setting without modifications.)

Corollary 2.2. Let (aλ)λ∈Λ, (bλ)λ∈Λ be orthogonal sets in L2(Rn) satisfying

|aλ(x)| ≤ Cm
2nj/2

(1 + |2jx− k|)m
, |∇aλ(x)| ≤ Cm

2nj/2+j

(1 + |2jx− k|)m

for all λ = k2−j + η2−j−1 and all m ∈ N, with similar estimates for the (bλ)λ∈Λ.
Consider the integral operators with kernels given by

k(x, y) =
∑
λ∈F

νλaλ(x)bλ(y),

where F ⊂ Λ is any finite set and νλ ∈ C, |νλ| ≤ 1.
These are uniformly bounded on Lp(Rn;X), and from H1(Rn;X) to L1(Rn;X),

with the operator norms depending only on p ∈ ]1,∞[, the UMD-constant of the
space X, and the quantities Cm, m ∈ N. If the aλ’s have vanishing integral, then
we also have boundedness on H1(Rn;X) with a similar estimate for the norm.

Proof. From the assumed pointwise estimates, it easily follows that ‖aλ‖2 ≤ C,
which depends only on the Cm’s, and similarly ‖bλ‖2 ≤ C. Then a bound
depending only on the Cm’s is easily derived for the operator norm of f 7→∑

λ∈F νλaλ 〈bλ, f〉 on L2(Rn), using the orthogonality of the two sets (aλ) and
(bλ).

It is also a routine exercise to verify the standard estimates for the kernel k,
with the constant only depending on the Cm’s. Then the assertion follows from
Prop. 2.1. �



5

Now the first steps in our main theorem follow at once:

Proof of (1.8)⇒ (1.9)⇒ (1.10). The first implication is immediate from the fact
that, for any F ⊂ Λ, ε ∈ {±1}Λ,∑

λ∈F

ελψλ(x)ψ̄λ(y)

are kernels of the kind considered in Cor. 2.2. Clearly the integral operator with
the kernel given above maps f to

∑
λ∈F ελαλψλ(·).

The second implication is obvious, since the L1 norm on the probability space
Ω is dominated by the L∞ norm. �

For the proof of further implications, we will need regular wavelet bases with
the mother wavelet non-vanishing at a preassigned point. This is a somewhat
untypical need, since usually it is the cancellation and vanishing properties of the
wavelets which are desired.

Lemma 2.3. For every x ∈ R, there exists an infinitely regular wavelet ψ on R
such that ψ(x) 6= 0.

Proof. The proof is based on a modification of Meyer’s construction of the Little-
wood–Paley multiresolution analysis ([5], §2.2), and the related wavelet ([5], §3.2).
In that construction, one starts with an even, non-negative function θ ∈ D(R),
such that θ(ξ) = 1 for |ξ| ≤ 2π/3, θ(ξ) = 0 for |ξ| ≥ 4π/3, and θ2(ξ) + θ2(2π −
ξ) = 1 for ξ ∈ [0, 2π]. Our modification consists of choosing an η ∈ C∞(R),
which is required to be 0 on [−2π/3, 2π/3] but otherwise arbitrary, and taking
ϑ(ξ) := θ(ξ)eiη(ξ). We set φ := ϑ̌, the inverse Fourier transform.

It follows, for m(ξ) :=
∑
cke

ikξ, that∥∥∥∑ ckφ(x− k)
∥∥∥2

2
=

1

2π
‖m(ξ)ϑ(ξ)‖2

2 =
1

2π

∞∑
j=−∞

∫ 2π

0

|m(ξ)ϑ(ξ + 2πj)|2 dξ

=
1

2π

∫ 2π

0

|m(ξ)|2 dξ =
∑
|ck|2 ,

since
∑
|ϑ(ξ + 2πj)|2 ≡ 1, as is easily verified, and so φ(· − k), k ∈ Z, are

the orthonormal basis of a closed subspace V0 of L2(R), which gives rise to a
multiresolution analysis of L2(R).

We then pass to the construction of the corresponding wavelet ψ. Following
[5], §3.2, we compute the auxiliary coefficients

αk =

∫ ∞
−∞

1

2
φ
(x

2

)
φ̄(x+ k) dx =

1

2π

∫ ∞
−∞

ϑ(2ξ)ϑ̄(ξ)eikξ dξ =
1

2
φ

(
k

2

)
,

since ϑ(ξ) = 1 on the support of ϑ(2ξ).
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Then

m0(ξ) :=
∞∑
−∞

αke
ikξ =

∞∑
−∞

ϑ(−2(ξ + 2kπ)).

by Poisson’s summation formula, and ψ̂(ξ) := e−iξ/2ϑ1(ξ), where

ϑ1(ξ) := m̄0(ξ/2 + π)ϑ(ξ/2) =


ϑ(ξ/2) ξ ∈ ±[4π/3, 8π/3]

ϑ̄(−ξ ± 2π) ξ ∈ ±[2π/3, 4π/3]

0 else,

where the last equality follows readily when taking into account the sets on which
ϑ equals 1 or 0. Note that ϑ1|±[2π/3,4π/3] is obtained from ϑ1|±[4π/3,8π/3] by reflecting
and scaling about the point ±4π/3; in fact

ϑ1(4π/3− ξ) = ϑ̄(2π/3 + ξ), ϑ1(4π/3 + 2ξ) = ϑ(2π/3 + ξ) for ξ ∈ [0, 2π/3],

and similarly on the negative axis. Thus

(2.4) ψ(x+ 1/2) =
1

2π

∫ ∞
−∞

eiξ(x+1/2)e−iξ/2ϑ1(ξ) dξ

=

∫ 2π/3

0

(
ϑ̄(2π/3 + ξ)ei(4π/3−ξ)x + 2ϑ(2π/3 + ξ)ei(4π/3+2ξ)x

)
dξ

+ an integral over the negative half-line.

Now the phase of ϑ on±[4π/3, 8π/3] is in our control; moreover, it can be adjusted
independently on the positive and negative line segments. By symmetry, it then

suffices to show that we can make the integral
∫ 2π/3

0
(. . .) dξ above non-vanishing

with an appropriate choice of this phase. We choose this phase in such a way
that

Re

∫ 2π/3

0

ϑ(2π/3 + ξ)ei(4π/3+2ξ)x dξ ≥ 3

4

∫ 2π

0

|ϑ(2π/3 + ξ)| dξ;

then the integral in (2.4) is estimated by∣∣∣∣∣
∫ 2π/3

0

(I(ξ) + II(ξ)) dξ

∣∣∣∣∣ ≥
∣∣∣∣∣
∫ 2π/3

0

II(ξ) dξ

∣∣∣∣∣−
∫ 2π/3

0

|I(ξ)| dξ

≥
(

3

2
− 1

)∫ 2π/3

0

|ϑ(2π/3 + ξ)| dξ > 0.

Thus, for an arbitrary x ∈ R, we have constructed a wavelet ψ such that
ψ(x+ 1/2) 6= 0; in fact, one with |ψ(x+ 1/2)| ≥ c, where c > 0 does not depend
on x. �

The n dimensional version follows readily by a tensor product construction.
Recall that the 2n− 1 mother wavelets in the n-dimensional setting are naturally
indexed by η ∈ {0, 1}n \ {0}. We denote by ι := (1, . . . , 1) the n-vector, all of
whose entries are 1.
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Corollary 2.5. For any x ∈ Rn, there exists an infinitely regular wavelet basis
of L2(Rn) such that ψι(x) 6= 0.

Proof. Let ψi,0 := φi, ψi,1 := ψi be (infinitely regular) father, resp. mother,
wavelets on R for i = 1, . . . , n. For η ∈ {0, 1}n, y ∈ Rn, denote

ψη(y) :=
n∏
i=1

ψi,ηi(yi).

Then ψη, η ∈ {0, 1}n \ {0}, is the set of (infinitely regular) mother wavelets for a
multiresolution analysis of L2(Rn). By choosing the 1-dimensional wavelets ψi,1
in such a way that ψi,1(xi) 6= 0 for a given x = (x1, . . . , xn), we clearly ensure the
condition ψι(x) 6= 0. �

Proof of (1.8)⇒ ∀Aη : (1.12)⇒ (1.11). Let Aη, η ∈ {0, 1}n \{0}, be non-degene-
rate cubes, and denote

A :=
⋃

η∈{0,1}n\{0}

Aη;

this is a compact set.
For every x ∈ A, we choose an infinitely regular wavelet basis (ψx,λ)λ∈Λ such

that ψιx(x) 6= 0. By continuity of ψιx, we have ψιx(Ux) 63 0 for some neighbourhood
Ux of x, and then by compactness we can choose finitely many, say m, infinitely
regular wavelet bases (ψi,λ)λ∈Λ such that

∑m
i=1 |ψιi(x)| ≥ c > 0 for all x ∈ A. Now

the kernels ∑
λ∈F :η=η0

ελ2
jn/2ψιi(2

jx− k)ψ̄λ(y)

satisfy the assumptions of Cor. 2.2; hence they define uniformly bounded integral
operators from H1(Rn;X) to L1(Rn;X), and thus

m∑
i=1

Eε

∫
Rn

∣∣∣∣∣∑
λ∈F

ελαλ2
jn/2ψιi(2

jx− k)

∣∣∣∣∣
X

dx ≤ C ‖f‖H1(Rn;X) .

The contraction principle permits replacing ψιi(2
jx − k) by its absolute value

above, and using the fact that
∑m

i=1 |ψιi(2jx− k)| ≥ c1Aη(2
jx − k) = c1R(λ)(x)

and the contraction principle again, we finally deduce

Eε

∫
Rn

∣∣∣∣∣∑
λ∈F

ελαλ |Q(λ)|−1/2 1R(λ)(x)

∣∣∣∣∣
X

dx ≤ C ‖f‖H1(Rn;X) .

The fact that (1.12) for all Aη implies (1.11) is evident, since (1.11) is just the
special case of (1.12) with Aη = [0, 1[n. �

Proof of (1.10)⇒ ∃Aη : (1.12). It suffices to observe that necessarily |ψη(x)| ≥
c > 0 for all x in some cube Aη; then the expression in (1.12) can be dominated
by that in (1.10) according to the contraction principle. �
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Now we have shown that

(1.8) =⇒ (1.9) =⇒ (1.10) =⇒ ∃Aη : (1.12), and

(1.8) =⇒ ∀Aη : (1.12) =⇒ (1.11) =⇒ ∃Aη : (1.12)

(where the last implication was not mentioned explicitly before, but it is trivial).

3. Construction of the atomic decomposition

To complete the proof of Theorem 1.7, we need to show that the condition
(1.12), for any cubes Aη whatsoever, implies the existence of an atomic decompo-
sition for f ; moreover, the H1 norm of f computed in terms of this decomposition
should be controlled in terms of the expression in (1.12). Note that, without loss
of generality, we may take the Aη to be dyadic cubes of side-length ≤ 1, since
the expression in (1.12) decreases when the sets Aη (and hence R(λ)) decrease.
When this is done, it follows that the R(λ) are dyadic cubes as well.

To achieve the atomic decomposition, we are going to modify the construction
used by Meyer [5]. Certain parts of the proof are in almost one-to-one cor-
respondence with the scalar-valued case; however, there are also significant and
essential departures from Meyer’s reasoning.

Let us fix an η0 ∈ {0, 1}n \ {0}, and consider f =
∑

λ:η=η0
αλψλ(x). It clearly

suffices to decompose each of the 2n − 1 series of this kind. Then we can use a
different indexing system which is more convenient in the present context: Let
R be the collection of all the cubes R(λ) = 2−j(Aη + k) such that η = η0. Then,
instead of Λ, we can use R as our index set, and we write εR instead of ελ.
Moreover, write αR := αλ for R = R(λ) and η = η0. Since |Q(λ)| and |R(λ)| only
differ by a multiplicative constant independent of λ (as long as η = η0 is fixed),

we can further replace the factor |Q(λ)|−1/2 in our equations by |R|−1/2.
Following [5], we denote

σ(x) := Eε

∣∣∣∣∣∑
R∈R

εRαR |R|−1/2 1R(x)

∣∣∣∣∣
X

,

and we have σ ∈ L1(Rn) by the standing assumption (1.12).
We further adopt the following notations:

Ek := {x : σ(x) > 2k}, Ck := {R ∈ R : |R ∩ Ek| ≥ β |R|}, ∆k := Ck \ Ck+1,

where we fix some β ∈ ]0, 1[. Note that, if αR 6= 0, then σ(x) ≥ |αR|X for all
x ∈ R. Thus R ⊂ Ek and hence R ∈ Ck for all small enough k.

The maximal members of Ck will be denoted by R(k, `), where ` runs over an
appropriate index set, and

∆(k, `) := {R ∈ ∆k : R ⊂ R(k, `)}.
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Note that

(3.1)
∑
`

|R(k, `)| ≤
∑
`

β−1 |R(k, `) ∩ Ek| ≤ β−1 |Ek|

and

(3.2)
∞∑
−∞

2k |Ek| ≤ 2 ‖σ‖L1(Rn) .

We then come to a key estimate in the proof of (1.12)⇒ (1.8). The statement
of this estimate is little more than a vector-valued analogue of the corresponding
step in [5]; however, the proof is substantially longer and very different in spirit.
The proof in [5] (where p = 2) exploits the Hilbert space structure of the scalar-
valued L2 space, which at first seems to give little hope of extending the result
beyond Hilbert space framework. In view of this, it is perhaps surprising that
the argument given below actually requires no geometric restrictions on the un-
derlying Banach space X. The proof is very local in spirit; it essentially involves
going through every cube R ∈ R one by one, in sharp contrast to the “global”
argument in [5] in terms of the orthogonal expansions.

Lemma 3.3. With the notation adopted above, we have the estimate∫
Rn

Eε

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x)

∣∣∣∣∣∣
p

X

dx

≤ 1

1− β

∫
R(k,`)\Ek+1

Eε

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x)

∣∣∣∣∣∣
p

X

dx ≤ cp
2(k+1)p

1− β
|R(k, `)| .

Proof. The second inequality is clear from Kahane’s inequality Eε |
∑
εixi|pX ≤

cp (Eε |
∑
εixi|X)p and the fact that σ(x) ≤ 2k+1 for x /∈ Ek+1. We will then

concentrate on the first inequality.
Observe that if R1 ∩ R2 6= Ø, then necessarily R1 ⊂ R2 or R2 ⊂ R1, since

R1, R2 are dyadic cubes. If R̃ ∈ ∆(k, `) is minimal, in the sense that R ( R̃ =⇒
R /∈ ∆(k, `), then for x ∈ R̃ we have

(3.4) Eε

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x)

∣∣∣∣∣∣
X

= Eε

∣∣∣∣∣∣
∑

R∈∆(k,`),R⊃R̃

εRαR |R|−1/2

∣∣∣∣∣∣
X

,

i.e., this expression is constant for x ∈ R̃.
More generally, if R̃ ∈ ∆(k, `), and

(3.5) R̃0 := R̃ \
⋃

R∈∆(k,`)

R(R̃

R,
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then (3.4) holds for all x ∈ R̃0.
It suffices to establish the assertion of the lemma in the case when only finitely

many α(Q) are non-zero, since the general case then follows from the monotone
convergence theorem. Then the summations involved are finite, and we can avoid
all convergence problems in the following. Replacing ∆(k, `) by {R ∈ ∆(k, `) :
αR 6= 0}, if necessary, we can assume that ∆(k, `) is finite.

Let R be one of the maximal members of ∆(k, `). It clearly suffices to prove,
for all such R, that

∫
R

Eε

∣∣∣∣∣∣
∑

R̃∈∆(k,`),R̃⊂R

ε(Q̃)α(Q̃)1R̃(x)

∣∣∣∣∣∣
p

X

dx

≤ 1

1− β

∫
R\Ek+1

Eε

∣∣∣∣∣∣
∑

R̃∈∆(k,`),R̃⊂R

ε(Q̃)α(Q̃)1R̃(x)

∣∣∣∣∣∣
p

X

dx.

(3.6)

To prove this inequality, we need to introduce some notation. We say that R̃
is a ∆-subcube of R if R̃ ( R and R̃ ∈ ∆(k, `). We say that R̃ is a first order ∆-

subcube of R if, in addition, the following property holds: there is no R̂ ∈ ∆(k, `)

with R̃ ( R̂ ( R. We label the first order ∆-subcubes of R by Ri, where i runs
over an appropriate finite index set. The first order ∆-subcubes of Ri, which
are labelled Rij, are called the second order ∆-subcubes of R, and so on, in an
obvious fashion. The mth order ∆-subcubes of R will be denoted by Rα, where
α = α1 . . . αm is a string of m indices. We further denote Rα0 := Rα \ ∪Rαi,
which is obviously equivalent to the earlier definition (3.5). For convenience, we
also denote E := Ek+1.

Since the proof of the inequality (3.6) in the general situation involves a very
large amount of indices, it is helpful first to consider a special case in which only
first and second order ∆-subcubes of R are involved. If S ⊂ R, we denote by
I(S) the integral over S of the same integrand as in (3.6), and µ(S) := I(S)/ |S|
if |S| > 0, and µ(S) := 0 otherwise.

Now in our special situation, the cube R is decomposed into disjoint parts as
follows:

(3.7) R = R0 ∪
⋃
i∈I

Ri ∪
⋃
j∈J

Rj0 ∪
⋃
k∈Kj

Rjk

 ,

where Ri, i ∈ I are those first order ∆-subcubes of R which have no further
∆-subcubes, whereas Rj = ∪k∈{0}∪KjRjk, j ∈ J , are those first order ∆-subcubes
of R which do have some further ∆-subcubes, namely the Rjk, k ∈ Kj.
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Now

I(R \ E) = I(R0 \ E) +
∑
i∈I

I(Ri \ E) +
∑
j∈J

I(Rj \ E) +
∑
k∈Kj

I(Rjk \ E)


= |R0 \ E|µ(R0) +

∑
i∈I

|Ri \ E|µ(Ri)

+
∑
j∈J

|Rj0 \ E|µ(Rj) +
∑
k∈Kj

|Rjk \ E|µ(Rjk)

 ,

since the integrand is constant on each of the sets R0, Ri, Rj0, Rjk, as was
observed above.

We want to show that the above displayed quantity is at least (1− β)I(R) =:
tI(R), denoting t := 1 − β. To see this, observe that

∣∣R̄ ∩ E∣∣ =
∣∣R̄ ∩ Ek+1

∣∣ <
β
∣∣R̄∣∣, hence

∣∣R̄ \ E∣∣ > (1 − β)
∣∣R̄∣∣ for all R̄ ∈ ∆k ⊂ Cck+1 by the definition of

Ck+1. Now

tI(R) =

t |R0|µ(R0) +
∑
i∈I

t |Ri|µ(Ri) +
∑
j∈J

t |Rj0|µ(Rj0) +
∑
k∈Kj

t |Rjk|µ(Rjk)

 ,

and hence

I(R \ E)− tI(R) = (|R0 \ E| − t |R0|)µ(R0) +
∑
i∈I

(|Ri \ E| − t |Ri|)µ(Ri)

+
∑
j∈J

(|Rj0 \ E| − t |Rj0|)µ(Rj0) +
∑
k∈Kj

(|Rjk \ E| − t |Rjk|)µ(Rjk)

 ,

and denoting τ(S) := |S \ E| − t |E| (whence τ(R̄) > 0 for all R̄ ∈ ∆k), this can
be further written as

=

τ(R0) +
∑
i∈I

τ(Ri) +
∑
j∈J

∑
k∈{0}∪Kj

τ(Rjk)

µ(R0)

+
∑
i∈I

τ(Ri) (µ(Ri)− µ(R0)) +
∑
j∈J

 ∑
k∈{0}∪Kj

τ(Rjk)

 (µ(Rj0)− µ(R0))

+
∑
k∈Kj

τ(Rjk) (µ(Rjk)− µ(Rj0))

 .
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Noting that the quantity in brackets [· · · ] is simply τ(R), whereas that in the
braces {· · · } is τ(Rj), we find that all the terms appearing above are non-negative,
and hence I(R \ E) ≥ tI(R), which we wanted to prove.

The special case treated above already contains the essence of the matter, and
it is essentially the notation which is more difficult in the general case where
∆-subcubes of higher orders are allowed. Now R is disjointly decomposed as

(3.8) R = R0 ∪
⋃
α

(⋃
i

Rαi ∪
⋃
j

Rαj0

)
,

where α runs over an appropriate set of strings of indices, and i and j over
appropriate sets (possibly different for different α) of single indices. Note that
the possibility of α being the empty string is allowed. The decomposition (3.8)
should be compared with the special case in (3.7).

We have

I(R \ E)− tI(R) = (|R0 \ E| − t |R0|)µ(R0)

+
∑
α

(∑
i

(|Rαi \ E| − t |Rαi|)µ(Rαi) +
∑
j

(|Rαj0 \ E| − t |Rαj0|)µ(Rαj0)

)

= τ(R0)µ(R0) +
∑
α

(∑
i

τ(Rαi)µ(Rαi) +
∑
j

τ(Rαj0)µ(Rαj0)

)

We claim that this is equal to

{
τ(R0) +

∑
α

(∑
i

τ(Rαi) +
∑
j

τ(Rαj0)

)}
µ(R0)

+
∑
α

∑
i

τ(Rαi) (µ(Rαi)− µ(Rα0))

+
∑
α

∑
j

[
τ(Rαj0) +

∑
β

(∑
k

τ(Rαjβk) +
∑
`

τ(Rαjβ`0)

)]
(µ(Rαj0)− µ(Rα0)) .

In the expression above, the quantity in the braces {· · · } is τ(R) ≥ 0 and that
in the brackets [· · · ] is τ(Rαj) ≥ 0, so that all the terms appearing above are
non-negative. Hence it suffices to verify the claimed equality, i.e., the vanishing
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of the expression

(3.9)∑
α,i

τ(Rαi)µ(R0) +
∑
α,j

τ(Rαj0)µ(R0)−
∑
α,i

τ(Rαi)µ(Rα0)−
∑
α,j

τ(Rαj0)µ(Rα0)

+
∑
α,j,β

(∑
k

τ(Rαjβk) +
∑
`

τ(Rαjβ`0)

)
µ(Rαj0)

−
∑
α,j,β

(∑
k

τ(Rαjβk) +
∑
`

τ(Rαjβ`0)

)
µ(Rα0)

When α runs over all strings, and j over all single indices, αj clearly runs over
all strings except for the empty string. Hence the second-to-last term in (3.9) is
equal to

∑
α,β

[∑
k

τ(Rαβk) +
∑
`

τ(Rαβ`0)

]
µ(Rα0)−

∑
β,k

τ(Rβk)µ(R0)−
∑
β,`

τ(Rβ`0)µ(R0)

Similarly, replacing the pair (j, β) by β alone in the last term of (3.9), we find
that this last terms is equal to

−
∑
α,β

[∑
k

τ(Rαβk) +
∑
`

τ(Rαβ`0)

]
µ(Rα0) +

∑
α,k

τ(Rαk)µ(Rα0)

+
∑
α,`

τ(Rα`0)µ(Rα0).

Now it is clear that the different terms in (3.9) cancel each other, so our claim,
and hence the assertion of the lemma, is verified. �

Now we denote

Ak,`(x, ε) :=
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x);

note that
∞∑

k=−∞

∑
`

Ak,`(x, ε) =
∑
R∈R

εRαR |R|−1/2 1R(x).

A modification of this series will give us the required atomic decomposition of f .
Observe that suppAk,`(·, ε) ⊂ R(k, `) by the definition of ∆(k, `).
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Moreover, by Lemma 3.3, we have

(3.10)
∑
k,`

‖Ak,`‖Lp(Ω×Rn;X) |R(k, `)|1/p
′

≤
∑
k,`

c1/p
p (1− β)−1/p2k+1 |R(k, `)|1/p |R(k, `)|1/p

′

≤ 2c1/p
p (1− β)−1/p

∑
k

2k
∑
`

|R(k, `)|
(3.1)

≤ 2c1/p
p (1− β)−1/pβ−1

∑
k

2k |Ek|

(3.2)

≤ 4c1/p
p (1− β)−1/pβ−1 ‖σ‖L1(Rn) .

The quantity on the left of this estimate should be compared with the definition
of the H1 norm in (1.13).

Now we are ready to finish the proof of Theorem 1.7.

Conclusion of the proof of (1.12)⇒ (1.8). Now we construct the atomic decom-
position of f , or more precisely, of each of the subseries

fη0(x) :=
∑

λ∈Λ:η=η0

αλψλ(x) =
∑
R∈R

αRψλ(R)(x)

where λ(R) := 2−jk + 2−j−1η0 for R = 2−j(Aη0 + k).
Consider a basis (Ψλ)λ∈Λ of compactly supported, 1-regular wavelets. The

existence of such wavelet bases is well-known, see [5]. Now that Aη0 is a non-
degenerate cube, we have supp Ψ2−j0k0+2−j0−1η0

= supp 2j0n/2Ψη0(2j0 · −k0) ⊂ Aη0

for some suitable j0 ≥ 0 and k0 ∈ Zn.
Let us denote Ψη

j,k := Ψλ for λ = 2−jk + 2−j−1η, and set φ := Ψη0

j0,k0
, and

φj,k := 2nj/2φ(2j · −k) = 2n(j+j0)/2Ψη0(2j0(2j · −k)− k0) = Ψη0

j+j0,2j0k+k0
.

Since j0 ≥ 0, we see that (φj,k)j∈Z,k∈Zn is a subset of (ψλ)λ∈Λ, thus orthonormal
(but not complete, of course) in L2(Rn).

Now that φ is bounded and supported on Aη0 , we have

|φ(x)| ≤ C |Aη0|−1/2 1Aη0 (x),

where C = ‖φ‖∞ |Aη0 |1/2, and then by scaling

|φR(x)| := |φj,k(x)| ≤ C |R|−1/2 1R(x)

for R = 2−j(Aη0 + k). Then the contraction principle gives∫
Rn

Eε

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαRφR(x)

∣∣∣∣∣∣
p

X

dx ≤ C

∫
Rn

Eε

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x)

∣∣∣∣∣∣
p

X

dx.
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Now we apply Cor. 2.2 with ∑
λ∈Λ:η=η0

εR(λ)ψλ(x)φ̄R(λ)(y)

to the result

∫
Rn

∣∣∣∣∣∣∣∣
∑

λ∈Λ:η=η0,
R(λ)∈∆(k,`)

αλψλ(x)

∣∣∣∣∣∣∣∣
p

X

dx ≤
∫
Rn

∣∣∣∣∣∣
∑

R∈∆(k,`)

εRαR |R|−1/2 1R(x)

∣∣∣∣∣∣
p

X

dx

Taking the expectation Eε of the right-hand side and combining this with the
previous inequality, we have shown, for

ak,`(x) :=
∑

λ∈Λ:η=η0,
R(λ)∈∆(k,`)

αλψλ(x),

the estimate

(3.11) ‖ak,`‖Lp(Rn;X) ≤ C ‖Ak,`‖Lp(Ω×Rn;X) .

Since each of the wavelets ψλ has a vanishing integral, so does ak,`. Consider
two cases:

The case of compactly supported wavelets. Since Aη is a non-degenerate cube and
ψη has compact support, we have suppψη ⊂ (Aη)∗ where Q∗ denotes the cube
concentric with Q and having g times the side length of Q, where g is a sufficiently
large constant. Then ψηj,k = ψ2−jk+2−j−1η = 2jn/2ψη(2j · −k) satisfies suppψηj,k =

2−j(suppψη + k) ⊂ 2−j((Aη)∗ + k) = (2−j(Aη + k))∗, i.e., suppψλ ⊂ R(λ)∗.
Thus, if R(λ) ∈ ∆(k, `), hence R(λ) ⊂ R(k, `), we have suppψλ ⊂ R(k, `)∗.

This means that supp ak,` ⊂ R(k, `)∗, and then

‖fη0‖H1(Rn;X) ≤
∑
k,`

‖ak,`‖Lp(Rn;X) |R(k, `)∗|1/p
′

(3.11)

≤ C
∑
k,`

‖Ak,`‖Lp(Ω×Rn;X) |R(k, `)|1/p
′ (3.10)

≤ C ‖σ‖L1(Rn) .

Thus we obtain a norm estimate for fη0 , and then for f =
∑

η∈{0,1}n\{0} fη, of the
desired form.

The general case. By the special case considered above, we obtain∥∥∥∥∥∑
λ∈Λ

αλΨλ

∥∥∥∥∥
H1(Rn;X)

≤ C ‖σ‖L1(Rn) ,
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where (Ψλ)λ∈Λ is a compactly supported 1-regular wavelet basis, as above. Then
it suffices to apply the H1(Rn;X)-boundedness assertion of Cor. 2.2 to∑

ψλ(x)Ψ̄λ(y)

to conclude the desired norm estimate for f =
∑
αλψλ, where (ψλ)λ∈Λ is any

1-regular wavelet basis.
This completes the proof of the implication (1.12) ⇒ (1.8), and with it the

proof of Theorem 1.7. �

4. On BMO(Rn;X) and duality

One can also generalize the wavelet characterization of the space BMO(Rn)
from [5] to the UMD-valued situation. This generalization is not as exciting
as that of the characterization of H1(Rn): In essence, we just need to replace
classical L2 estimates used in [5] by the application of Cor. 2.2, but otherwise the
proof follows the same lines as in [5].

Proposition 4.1. Let X be a UMD-space and (ψλ)λ∈Λ a 1-regular wavelet basis.
If b ∈ BMO(Rn;X) and αλ :=

〈
b, ψ̄λ

〉
, then

(4.2)

∫
Rn

Eε

∣∣∣∣∣∑
λ∈F

ελαλψλ(x)

∣∣∣∣∣
p

X

dx ≤ κp |Q| ∀F ⊂ {λ ∈ Λ : Q(λ) ⊂ Q},

where κ ≤ Cp ‖b‖BMO(Rn;X), and p ∈ ]1,∞[.

Conversely, if (4.2) holds for some set of coefficients (αλ)λ∈Λ ⊂ X and all
finite sets F as above, then the series∑

λ∈Λ

αλψλ(x)

converges unconditionally in Lploc(R
n;X)/X, to a function in BMO(Rn;X) with

norm at most Cpκ.

By convergence in Lploc(R
n;X)/X we mean the following: For every compact

K ⊂ Rn, the exist “renormalization constants” cλ ∈ X such that
∑

λ∈Λ(αλψλ(·)+
cλ) converges in Lp(K;X).

Proof. We may assume that (ψλ)λ∈Λ are compactly supported wavelets, since
otherwise we can apply Lp(Rn;X)-bounded integral transformations with kernels
of the form

∑
Ψλ(x)ψ̄λ(y) (Cor. 2.2) to reduce the matters to this situation.

Then, as we saw in the conclusion of the proof of Theorem 1.7, we have suppψλ ⊂
Q(λ)∗.
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Necessity of (4.2). Writing b := (b−bQ∗)1Q∗+(b−bQ∗)1(Q∗)c +bQ∗ =: b1 +b2 +b3,

where bQ∗ := |Q∗|−1 ∫
Q∗
b(x) dx, we find that

〈
b2, ψ̄λ

〉
= 0 if Q(λ) ⊂ Q (since

then suppψλ ⊂ Q∗), and
〈
b3, ψ̄λ

〉
= 0 for all λ ∈ Λ, since

∫
ψλ(x) dx = 0. Thus,

when Q(λ) ⊂ Q, we have

αλ =
〈
b, ψ̄λ

〉
=
〈
(b− bQ∗)1Q∗ , ψ̄λ

〉
,

and so∫
Rn

Eε

∣∣∣∣∣∣
∑

Q(λ)⊂Q

ελαλψλ(x)

∣∣∣∣∣∣
p

X

dx ≤ C ‖(b− bQ∗)1Q∗‖pLp(Rn;X)

≤ C |Q∗| ‖b‖pBMO(Rn;X) .

This completes the first half of the proof.

Sufficiency of (4.2). Let B̄ be a ball of radius r. We investigate separately the
two series ∑

|Q(λ)|≤|B̄|
αλψλ(x) and

∑
|Q(λ)|>|B̄|

αλψλ(x).

Concerning the first series, if x ∈ B̄ and x ∈ suppψλ ⊂ Q(λ)∗ for some x,
then B̄ ∩ Q(λ)∗ 6= Ø, and from the size assumption |Q(λ)| ≤

∣∣B̄∣∣ it follows
that Q(λ) ⊂ B̄?, where the ? designates expansion about the same centre by a
sufficiently large factor which only depends on the expansion factor implicit in
the notation Q(λ)∗. Thus

(4.3)

∫
Rn

Eε

∣∣∣∣∣∣∣∣∣
∑

λ∈F :|Q(λ)|≤|B̄|,
B̄∩suppψλ 6=Ø

ελαλψλ(x)

∣∣∣∣∣∣∣∣∣
p

X

dx ≤
∫
Rn

Eε

∣∣∣∣∣∣
∑

λ∈F :Q(λ)⊂B̄?
· · ·

∣∣∣∣∣∣
p

X

dx

≤ cκp
∣∣B̄∣∣ .

From this estimate, which is uniform for finite sets F ⊂ Λ, and the fact that
c0 6⊂ X for X UMD, it follows that the series

∑
ελαλψλ(·) (summation over

λ ∈ Λ : |Q(λ)| ≤
∣∣B̄∣∣ , B̄ ∩ suppψλ 6= Ø) converges almost surely (with respect

to the ελ’s) in Lp(Rn;X). But due to the Lp(Rn;X)-boundedness of the integral
transformations with kernels

∑
ελψλ(x)ψ̄λ(y), it actually converges surely, i.e.,∑

αλψλ(x) (summation restricted as above) converges unconditionally. For x ∈
B̄, this series agrees with ∑

λ∈Λ,|Q(λ)|≤|B̄|
αλψλ(x),

which hence converges unconditionally in Lp(B̄;X).
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We then consider summation over |Q(λ)| >
∣∣B̄∣∣. For each fixed size 2−jn =

|Q(λ)|, there are at most a bounded number, say m, of dyadic cubes Q(λ) such
that Q(λ)∗ ∩ B̄ 6= Ø. Moreover, denoting by x0 the centre of B̄, we have for
x ∈ B̄

|ψλ(x)− ψλ(x0)| ≤ |(x− x0) · ∇ψλ(ξ)| ≤ C2nj/2+jr,

where r is the radius of B̄ and λ = 2−jk + 2−j−1η. From (4.2) it follows that
|αλ|X ≤ Cκ2−nj/2. Combining these observations, it follows that

(4.4)
∑

|Q(λ)|>|B̄|,Q(λ)∗∩B̄ 6=Ø

|αλ|X |ψλ(x)− ψλ(x0)| ≤
∑

2−jn>|B̄|
mκ2−nj/2C2nj/2+jr

≤ cκ
∑

2j<r−1

2jr ≤ cκ,

and this shows that
∑
|Q(λ)|>|B̄| αλ(ψλ(x)−ψλ(x0)) converges absolutely in X, uni-

formly on B̄; thus
∑
|Q(λ)|>|B̄| αλψλ(x) converges unconditionally on Lp(B̄;X)/X.

The asserted convergence of
∑
αλψλ(x) has now been established. Moreover,

the estimates (4.3) and (4.4) combined give

∫
B̄

∣∣∣∣∣∣∣
∑

|Q(λ)|≤|B̄|
αλψλ(x) +

∑
|Q(λ)|>|B̄|

αλ (ψλ(x)− ψλ(x0))

∣∣∣∣∣∣∣
p

X

dx ≤ Cκp
∣∣B̄∣∣ ,

which shows the membership of the limit element in BMO(Rn;X), and the as-
serted norm estimate. �

Finally, we wish to exploit the wavelet framework to give a new point-of-view
to the H1-BMO duality in the UMD-valued situation. It should be noted that
Fefferman’s duality theorem holds in the vector-valued situation under much
milder geometric assumptions (see O. Blasco [1]), but requires a different ap-
proach then.

Proposition 4.5. Let X (and then also X ′) be a UMD-space and (ψλ)λ∈Λ (and
then also (ψ̄λ)λ∈Λ) a 1-regular wavelet basis of L2(Rn). Let

b(x) =
∑
λ∈Λ

α′λψ̄λ(x) ∈ BMO(Rn;X ′), α′λ = 〈b, ψλ〉 ∈ X ′,

where the convergence is unconditional in Lploc(R
n;X ′)/X ′. Then

(4.6) A(f) = A

(∑
λ∈Λ

αλψλ

)
:=
∑
λ∈Λ

α′λ(αλ)

converges unconditionally for every f =
∑

λ∈Λ αλψλ ∈ H1(Rn;X), and defines
an element of H1(Rn;X)′ with ‖A‖H1(Rn;X)′ ≤ ‖b‖BMO(Rn;X′).
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Conversely, every A ∈ H1(Rn;X)′ is of the form (4.6), where
∑

λ∈Λ α
′
λψ̄λ

converges in Lploc(R
n;X ′)/X ′ to b ∈ BMO(Rn;X), which satisfies ‖b‖BMO(Rn;X′) ≤

C ‖A‖H1(Rn;X)′.

Proof. Let F ⊂ Λ be finite. Then

(4.7)
∑
λ∈F

α′λ(αλ) =

∫
Rn

〈∑
λ∈F

α′λψ̄λ(x),
∑
µ∈F

αµψµ(x)

〉
dx.

According to Prop. 4.1, the BMO(Rn;X)-norms of bF :=
∑

λ∈F α
′
λψ̄λ are bounded

by C ‖b‖BMO(Rn;X) for all F ⊂ Λ. On the other hand, from Theorem 1.7 it follows

that the H1(Rn;X)-norms of fF :=
∑

µ∈F αµψµ are uniformly bounded, and also

that ‖fF‖H1(Rn;X) can be made smaller than any positive ε as soon as F ⊂ F c
ε ,

where Fε is a sufficiently large set.
Now fF has an atomic decomposition

∑
ai, where supp ai ⊂ B̄i,

∫
ai = 0, and∑

‖ai‖Lp′ (Rn;X)

∣∣B̄i

∣∣1/p ≤ (1 + ε) ‖f‖H1(Rn;X). Since the atomic series converges in

L1(Rn;X), and bF ∈ L∞(Rn;X ′), we have

|〈bF , fF 〉| ≤
∞∑
i=1

|〈bF , ai〉| ≤
∞∑
i=1

‖bF‖BMO(Rn;X′)

∣∣B̄i

∣∣1/p ‖ai‖Lp′ (Rn;X)

≤ (1 + ε) ‖b‖BMO(Rn;X′) ‖fF‖H1(Rn;X) ,

where a standard estimate for the pairing of a BMO-function and an H1-atom
was used in the second step.

From this estimate and the unconditional convergence of fF to f in H1(Rn;X)
as F ↑ Λ, it follows readily that

∑
λ∈Λ α

′
λ(αλ) converges unconditionally to a

complex number of absolute value at most ‖b‖BMO(Rn;X′) ‖f‖H1(Rn;X). This proves
the first assertion.

The converse implication. Let now A ∈ H1(Rn;X)′ be arbitrary. Define α′λ ∈ X ′
by α′λ(x) := A(xψλ) for x ∈ X. Since

∑
λ∈Λ αλψλ converges unconditionally to

f in H1(Rn;X), we have that
∑

λ∈ΛA(αλψλ) =
∑

λ∈Λ α
′
λ(αλ) converges uncon-

ditionally to A(f). Denote bF :=
∑

λ∈F α
′
λψ̄λ for finite F ⊂ Λ.

We estimate the BMO(Rn;X)-norm of bF . Let B̄ be a ball, and f ∈ Lp′(B̄;X).
Then

〈bF − (bF )B̄, f〉 = 〈bF , f − fB̄1B̄〉 − 〈(bF )B̄1B̄, f〉+ 〈bF , fB̄1B̄〉 ,

and the last two terms are both equal to
∣∣B̄∣∣ 〈(bF )B̄, fB̄〉. Furthermore, note that

〈bF , g〉 = 〈bF , gF 〉 = A(gF ) for any g ∈ H1(Rn;X). Thus

|〈bF − (bF )B̄, f〉| = |A((f − fB̄1B̄)F )| ≤ ‖A‖H1(Rn;X)′ ‖(f − fB̄1B̄)F‖H1(Rn;X)

≤ ‖A‖H1(Rn;X)′ ‖f − fB̄1B̄‖Lp′ (Rn;X)

∣∣B̄∣∣1/p .
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Taking the supremum over all f ∈ Lp′(B̄;X) of norm at most 1, and observing
that the unit ball of Lp

′
(B̄;X) is norming for Lp(B̄;X ′), we deduce

‖(bF − (bF )B̄)1B̄‖Lp(Rn;X′) ≤ 2 ‖A‖H1(Rn;X)′

∣∣B̄∣∣1/p ,
and thus ‖bF‖BMO(Rn;X) ≤ 2 ‖A‖H1(Rn;X)′ . From Prop. 4.1 it follows that this
uniform estimate for bF implies that bF → b as F ↑ Λ, unconditionally in the
space Lploc(R

n;X ′)/X ′, and ‖b‖BMO(Rn;X′) ≤ C ‖A‖H1(Rn;X). Then, by the first

part of the proof, b defines via duality an element Ã ∈ H1(Rn;X)′. It is clear
that Ã(f) = 〈bF , f〉 = A(f) if f =

∑
λ∈F αλψλ and F ⊂ Λ is finite; since such f

are dense in H1(Rn;X), we see that A = Ã, i.e., A is of the asserted form. �

The previous proposition shows the fact thatH1(Rn;X)′ = BMO(Rn;X ′) forX
UMD, which, as mentioned, actually holds under more general conditions. While
restricted to the UMD-setting, the present approach has the virtue of providing
the explicit formula (4.6) for the evaluation of the duality pairing 〈b, f〉. Note
that the wavelet coefficients α′λ of b and αλ of f are uniquely determined by the
functions b and f , and moreover explicitly given by the formulae α′λ = 〈b, ψλ〉,
αλ =

〈
f, ψ̄λ

〉
. On the other hand, the atomic decomposition of f , in terms of

which the H1-BMO duality is often defined by 〈b, f〉 =
∑∞

i=1 〈b, ai〉 is far from
being unique.

From the previous proof we also readily see the following, recalling that UMD
spaces are reflexive:

Corollary 4.8. Let X be a UMD space, and (ψλ)λ∈Λ a 1-regular wavelet basis.
Then, for every b ∈ BMO(Rn;X), the wavelet expansions

∑
λ∈F

〈
b, ψ̄λ

〉
ψλ con-

verge unconditionally to b in the weak∗ topology σ(BMO(Rn;X), H1(Rn;X ′)) as
F ↑ Λ.
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