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1 Introduction


Consider solving, with a pair of square matrices M,M# ∈ Cn×n and a vector
b ∈ Cn, the R–linear system


Mz + M#z = b. (1)


Any standard linear system is a special case of this when either M# or M
is zero (linear and anti–linear, respectively). If both of these matrices are
nonzero, we have a real linear operator in Cn. This type of equations arise in
certain engineering applications; see [21, 22, 18, 20]. See also [15, Chapters
4.15 and 5.25] and references therein.


In this paper we introduce direct and iterative methods for solving (1).
Our study is originally motivated by iterative methods since the problem
could readily be rewritten as an equivalent linear system of doubled size for
its real and imaginary parts. Then any of the standard Krylov subspace
methods could be executed. The usual linear case suggests, however, that
this is not necessarily a good idea since the speed of convergence of iterations
can be prohibitively slow; see [3, 4, 2]. It can also be regarded as a somewhat
unnatural approach because R is not algebraically closed.


To avoid the real formulation with Krylov subspace methods, one option
is to generate a matrix Qk ∈ Cn×k with orthonormal columns. To this end
we employ the R–linear operator corresponding to the left hand–side of (1)
in an Arnoldi type of iteration. Then projecting the problem to Ck, by using
the Qk computed, gives rise to a real linear system which can be solved with
dense matrix techniques. This approach can be interpreted as a Galerkin
approximation. Also minimal residual methods are devised.


It is also of interest to note that any real 2n-by-2n system can be written
as (1). Therefore all the solution methods introduced in this paper apply to
real linear systems in R2n as well. This gives rise to new direct methods as
well as novel non–symmetric iterations for real problems.


Clearly R–linearity is a weaker assumption than C–linearity. Therefore
the problem considered involves two complex square matrices which makes
the arising matrix analysis very interesting. A large part of the paper is
devoted to these question. The spectrum of an R–linear operator in Cn is
introduced. We present various canonical forms, factorizations and respective
solution formulas for the problem (1).


The paper is organized as follows. In section 2 we develop basic matrix
analysis and spectral theory for R–linear operators in Cn. Direct methods
for solving real linear systems are derived. In section 3 we introduce iterative
methods for solving the corresponding problem and give numerical examples.
In section 4 some preliminary ideas are considered for computing the spec-
trum numerically. Properties of the spectrum are illustrated with numerical
experiments.







4 T. EIROLA, M. HUHTANEN, AND J. VON PFALER


2 Properties of R–linear operators in Cn


When Cn is regarded as a vector space over R, an R–linear operator in Cn


can be represented by a 2n-by-2n matrix. However, in this paper we consider
Cn as a vector space over C with its usual complex valued inner product and
associate with the system (1) an R–linear mapping


M(z) = Mz + M#z (2)


in Cn. For the converse, when Cn is regarded as a vector space over C, it is
easy to verify that any real linear mapping in Cn can be represented in this
form, after fixing a basis. We call M and M# the linear and anti–linear parts
of M, respectively.


Aside from the system (1) one can consider its real form by using the
matrices M and M#. To this end, write z = x + iy and b = c + id. Then
equating the real and imaginary parts gives rise to the linear system


[
Re(M + M#) − Im(M − M#)
Im(M + M#) Re(M − M#)


] [
x
y


]
=


[
c
d


]
. (3)


We denote by A ∈ R2n×2n the arising coefficient matrix. Conversely2, this
block structuring provides the conditions on reformulating a real 2n-by-2n
linear system as an R–linear problem in Cn.


It is readily seen that if the pairs (M,M#) and (N,N#) correspond to the
matrices A and B, respectively, then the real linear map


M(N (z)) = (MN + M#N#) z + (MN# + M#N) z (4)


corresponds to the matrix AB . Hence, under sufficient assumptions on in-
vertibility (which are generically satisfied),


M−1(z) = (M − M#M
−1


M#)−1z + (M# − MM#
−1M)−1z. (5)


Further, the pair (−iI, 0) corresponds to J =
[


0 I
−I 0


]
and (M ∗,M#


T ) to AT .
Using these, some properties of A can be expressed via M and M# as


follows.


Proposition 1 Let A be the coefficient matrix of (3). Then


1. A is (skew–) symmetric ⇐⇒ M∗ = (−) M and M#
T = (−) M#.


2. A is orthogonal ⇐⇒ M∗M +M#
T M# = I and M ∗M# +M#


T M = 0.


3. A is Hamiltonian ⇐⇒ M ∗ = −M and M#
T = M#.


2Using the notation of [3, Section 5.1], this corresponds to representing A ∈ R2n×2n as
the sum A = M? + M#?? in a unique way, i.e., we have an “R–linear splitting” of A.


Since M#?? is similar to −M#??, its eigenvalues are symmetrically located with respect
to the origin. Therefore, if M#?? dominates in this splitting, (3) can be very difficult to
solve fast with iterative methods.
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4. A is symplectic ⇐⇒ M∗M −M#
T M# = I and M ∗M# −M#


T M = 0.


(Hamiltonian means that AT = JAJ and symplectic that AT JA = J .)
With the norm ‖M‖ = max‖z‖=1 ‖M(z)‖ the set of R–linear operators in


Cn is a Banach algebra over R. However, (M,M#) 7→ (M ∗,M#
T ) is not an


involution since (αM ∗, αM#
T ) 6= α(M ∗,M#


T ) for α ∈ C\R. In particular,
we are not dealing with a C∗–algebra.


2.1 The spectrum of an R–linear operator in Cn


For solvability of (1) it is natural to define the spectrum as follows.


Definition 2 λ ∈ C is an eigenvalue of M : Cn 7→ Cn, if the range of
λI −M is not Cn. The set of eigenvalues of M is denoted by σ(M).


If λ = α + iβ ∈ C, with α, β ∈ R, is an eigenvalue of M, then there
exists a vector b ∈ Cn such that the equation (λI − M)z − M#z = b does
not have a solution. Then its equivalent real formulation does not have a
solution either. If A is the coefficient matrix in (3), this implies that


A(α, β) = αI − βJ − A (6)


is not invertible, i.e., det A(α, β) = 0. We call det A(α, β) the characteristic
bivariate polynomial of M. Consequently, we have an algebraic criterion for
finding the eigenvalues of M. The following gives a geometric interpretation.


Proposition 3 If λ ∈ C is an eigenvalue of M, then there exists a nonzero
vector z ∈ Cn such that M(z) = λz.


It is now clear that λ 6∈ σ(M) if and only if λI −M is invertible.
Although an eigenvalue λ gives rise to an R–linear invariant subspace for


M, we are actually dealing with a mildly nonlinear eigenproblem. More pre-
cisely, there need not be an invariant subspace associated with an eigenvector
z of M when Cn is regarded as a vector space over C. Indeed, with ρ, σ ∈ R
we have


M((ρ + iσ)z) = (ρ + iσ)λz − i 2σM#z (7)


which belongs to span{z,M#z}, or equivalently, to span{z,Mz}.


Proposition 4 A subspace V ⊂ Cn is invariant for M if and only if it is
simultaneously invariant for z 7→ Mz and z 7→ M#z.


Proof It is clear that the latter implies the former. For the converse, assume
that M(V ) ⊂ V . Then with z ∈ V and β ∈ C we have V 3 βM(z) −
M(βz) = (β − β)M#z, so that M#V ⊂ V . Therefore, also MV ⊂ V .


In case V is an invariant subspace for M, the spectrum of M : V 7→ V
is a subset of σ(M), a property of fundamental importance in sparse matrix
computations.
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With an invertible R–linear operator T in Cn, consider a similarity trans-
formation T −1 ◦M◦ T of M. The spectrum of M remains invariant in this
operation if the real form B ∈ R2n×2n of T commutes with J . This is equiv-
alent to having T (z) = Tz for an invertible T ∈ Cn×n. In this case we say
that T −1 ◦M◦T is a C–linear similarity transformation of M. The simplest
such a T is T (z) = λz with λ ∈ C\{0}. Then T −1◦M◦T (z) = Mz+ λ


λ
M#z.


A general R–linear similarity transformation in Cn need not preserve the
spectrum except that the eigenvalues on the real axis remain invariant.


To quantify (7) more generally, consider the kernel of λI −M , i.e., the
set {z ∈ Cn : λz − M(z) = 0}. Denote by r its dimension as a subspace
of Cn over R and let m be the dimension of the largest C–linear subspace it
contains. The resulting “multiplicity” index pair (r/2,m) gives useful infor-
mation regarding the eigenvalues of M. Clearly, if the anti–linear part of M
vanishes, then r/2 = m for every eigenvalue.


Example 1 Let M be upper-triangular with M = [ 2 1
0 4 ] and M# = [ 1 0


0 1 ] .
Then for any µ, ν ∈ C of modulus one we have the eigenvectors and eigen-
values


z = [ µ
0 ] , λ = 2 + µ2 and z =


[
2ν+ν3+ν


4+2ν2+2ν2


ν


]
, λ = 4 + ν2 .


These are the only eigenvalues and eigenvectors (up to real multiples) of M.
Thus the spectrum of M consists of two circles having one common point
λ = 3. For λ ∈ σ(M)\{3} we always have the index pair (1/2, 0). At the
intersection point we get (1, 0).


The spectrum has the following algebro-geometric structure (see also [13]).


Theorem 5 The spectrum of M : Cn 7→ Cn is a bounded algebraic curve of
degree 2n at most. The mapping λ 7→ (λI −M)−1 is smooth for λ 6∈ σ(M).


Proof Since λI −M is invertible if and only if (6) is, the spectrum of M
consists of those points (α, β) ∈ R2 for which det A(α, β) is zero. This is
clearly a bivariate polynomial in the real variables α and β of degree 2n.
That the arising algebraic curve must be bounded follows from Proposition
3 and the fact that M is a bounded operator.


For the second claim, for a fixed λ the mapping R(λ) = (λI −M)−1 is
also an R–linear operator in Cn. Therefore (λI−M)−1(z) = R(λ)z+R#(λ)z
for matrices R and R# depending on λ. The inverse of (6) is smooth at those
points where the determinant is nonzero. Thus, R and R# are smooth as
well.


Although we do not have a general spectral mapping theorem, it is clear,
for a fixed µ ∈ C, what are the spectra of µI + M and µI ◦M in terms of
σ(M).


The boundedness assertion of Proposition 5 imposes restrictions on those
algebraic curves that can appear as the spectrum of an R–linear operator in
Cn.
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As we already saw in Example 1, the spectrum can contain circles. More
generally:


Theorem 6 Assume S ∈ Cn×n is invertible and R(z) = Rz + R# z =
S−1M(Sz) is upper (lower) triangular. Then σ(M) is the union of the cir-
cles {


λ ∈ C : |rj,j − λ| = |r#


j,j|
}


, j = 1, . . . , n.


Proof Assume R is upper triangular. Clearly the spectra of R and M are
the same.


If λ is not in the union of the circles, then the equations of type


(rk,k − λ)wk + r#


k,k wk = vk


are uniquely solvable for wk. Then λz −R(z) = 0 implies z = 0. Hence λ is
not an eigenvalue of R.


If λ is in the union, take the first j such that |rj,j − λ| = |r#


j,j|. Set


wj =
( r#


j,j


rj,j−λ


) 1
2 (w = 1 if r#


j,j = 0) and wk = 0 for k = j + 1, . . . , n. Then


(rj,j − λ)wj − r#


j,j wj = 0 and the equations for wk , k = j − 1, . . . , 1 are
uniquely solvable recursively to give an eigenvector of R.


In case M# = 0 we may use a Schur decomposition of M and the circles
reduce to points.


Remark. We can assume the diagonal entries of R# to be nonnegative
real (after performing a C–linear diagonal unitary similarity transformation,
if necessary). Hence we have a spectral mapping theorem in case M is trian-
gularizable, i.e., by knowing only σ(M) we can readily determine σ (p(M))
for any polynomial p. To this end use (4) repeatedly.


In the situation of Theorem 6 there exists an increasing chain of nested
invariant subspaces of M of dimension k for k = 1, 2, . . .. The spectrum of
M restricted to these subspaces consists of k circles corresponding to the
first k pairs of the diagonal entries of R and R#. In this manner there arises
a hierarchy among these circles since, unlike with the Schur decomposition
(which exists if M# = 0), we cannot reorder the diagonal entries of R and R#


pairwise in general. To see this, it suffices to consider a 2-by-2 case. The circle
corresponding to the (1, 1)-entries always gives rise to an invariant subspace of
dimension 1. The other circle need not have an invariant subspace associated
with it. Consider, for example, M with M = [ 1 1


0 0 ] and M# = [ 3 1
0 1 ] . The


invariant subspace of M corresponding to the eigenvalue λ = 0 of M is not
invariant for z 7→ M#z. Thus, by Proposition 4, the order of the diagonal
entries of M and M# cannot be swapped.


Remark. Under the assumptions of Theorem 6, the characteristic bi-
variate polynomial of M factors as the product of 2nd degree bivariate poly-
nomials. So one might consider using Krylov subspace techniques to locate
just a few of these circles. However, the prescribed hierarchy can make this
a very challenging problem.
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If R and R# are diagonal matrices, it is natural to say that M is diagonal-
izable in a C–linear similarity transformation. Equivalently, M has n linearly
independent eigenvectors which each give rise to an invariant subspace of M.
If the matrix S can be chosen unitary, we say that M is unitarily diagonal-
izable. Then M is normal while the condition on M# means that the matrix
is unitarily condiagonalizable, i.e., complex symmetric [8, Chapter 4.6]. See
[8, Chapter 4.5] for a careful study and examples of the case in which M is
additionally Hermitian. To this corresponds a symmetric coefficient matrix
A in (3).


Remark. If M is unitarily diagonalizable in a C–linear similarity trans-
formation, then its real form A lies in the unitary orbit of binormal matrices.
For this, see [11].


The spectrum is not the union of circles in general.


Example 2 One readily verifies that with M = [ 0 0
1 0 ] and M# = [ 0 1


0 2 ] the
eigenvalues of M are given by those λ ∈ C that satisfy the equation λ2 −
2e−i2θλ − e−i2θ = 0 for some θ ∈ [0, 2π).


For a general M we can always have SMS∗ in the upper triangular form
with a unitary change of basis transformation S (use the Schur decomposition).
Or, by performing Householder transformations in an obvious way, we can
have a Hessenberg matrix SM#ST .


To generalize the concept of unitary C–linear similarity transformation,
we call an R–linear operator in Cn an isometry if it preserves the spectral
norm. This gives us a group since, clearly, an isometry corresponds to an
orthogonal matrix in R2n×2n. Hence if U(z) = Uz + U# z is an isometry, we
have


U−1(z) = U ∗z + U#
T z .


Example 3 If Q ∈ Cn×k satisfies Re(Q∗Q) = I, then U(z) = (I − QQ∗)z −
QQT z is an isometry (use Proposition 1 item 2 ). In addition, it satisfies
U2 = I. Note that the columns of Q need not be linearly independent, like
Q = 1√


2
[ 1−i 1+i


0 0 ] illustrates. Moreover, if Q ∈ Cn×1 is a unit vector, then U


corresponds to a Householder transformation in R2n×2n.


With an isometry we preserve the lengths but not the angles, i.e., for
z, w ∈ Cn the inner product (z, w) need not equal (U(z),U(w)) unless U is
unitary. In connection with the QR–decomposition we need isometries which
map an arbitrary pair of vectors to be parallel; see section 2.2.


Proposition 7 Let U be an isometry. Then σ(U) is either empty, a finite
set on the unit circle, or the unit circle.


Proof If λ is an eigenvalue of U , then it must have modulus one. If σ(U)
is not finite, then the respective algebraic curve must be closed. Thereby it
is the unit circle. To see that the spectrum can be empty, consider U(z) =
[ 0 1


i 0 ] z.
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If M∗ = −M and M#
T = −M#, then (M + I) ◦ (M− I)−1 gives us an


isometry, i.e., an analogy of the Cayley transform.
The following can be verified by a direct computation.


Proposition 8 Let U be an isometry. If M(z) = Mz + M#z with M∗ = M
and M#


T = M# (or M∗ = −M and M#
T = −M#), then U−1 ◦ M ◦ U =


Nz + N#z with N∗ = (−) N and N#
T = (−) N#.


In a translation of an anti–linear operator we have M = κI with κ ∈ C.
This case is of particular importance in view of applications [21, 22, 18, 20]
(with κ = 0 it arises in particle physics). It also appears after preconditioning
the system (1) with the inverse of M from the left, under the assumption
that M is readily invertible. We denote the corresponding operator by Mκ,
that is, Mκ(z) = κz+M#z. This yields another instance where we encounter
circles.


Proposition 9 For Mκ the spectrum is the union of circles centered at κ.


Proof Repeat the arguments of [8, p. 245] with the translation κ.
This case is not covered by Theorem 6 since Mκ may not have an upper


triangular form under C–linear similarity transformation ([8, Theorem 4.6.3]
determines when this is possible). Moreover, the situation is fundamentally
different now since there is an invariant subspace associated with each circle.


At least one circle appears in the following case.


Proposition 10 Assume M(z) = Mz + κz with κ ∈ C. If the intersection
the null spaces of M and M is nontrivial, then σ(M) contains the set {λ ∈
C : |λ| = |κ|}.


Proof If Mv = Mv = 0, then


λ(αv + αv) −M(αv + αv) = (λα − κα)(v + v) .


If v + v 6= 0 we get eigenvalues λ = κα/α, i.e., all complex numbers with
modulus |κ|. If v = −v, use vector v − v.


Note that if rank(M) < n
2
, then the assumptions of the proposition are


satisfied. This is the case also if M is real and singular.
If λ ∈ C is an eigenvalue of Mκ, then M#z = (λ−κ)z holds for a nonzero


z ∈ Cn. Therefore M#z = (λ − κ)z, so that


M#M#z = (λ − κ)M#z = |λ − κ|2z.


Consequently, a necessary condition for λ to be an eigenvalue of Mκ is that
M#M# has |λ − κ|2 as its eigenvalue. Since M#M# may have no real non-
negative eigenvalues, we infer that the spectrum of Mκ can be empty. See
also [8, Chapter 4].


The spectrum of an R–linear operator in Cn is related to the eigenvalues
of its real form (3) as follows.


Proposition 11 Let A ∈ R2n×2n be the real form of M. Then λ = α+ iβ ∈
σ(M) \ {0} if and only if α2 + β2 ∈ σ


(
αA + βJA).
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Proof Assume z = x+ iy ∈ Cn is an eigenvector corresponding to λ. Then
rewriting the equality M(z) = λz by using (6) we have


A


[
x
y


]
=


[
α −β
β α


]
⊗ I


[
x
y


]


which is equivalent to


( [
α β
−β α


]
⊗ I


)
A


[
x
y


]
= (α2 + β2)


[
x
y


]
,


proving the claim.
Fix ρ ∈ R and assume µ ∈ R and consider


A + ρJA. (8)


Then using Proposition 11 we obtain β = ρα and αµ = α2(1 + ρ2), so that
λ = µ


1+ρ2 (1 + iρ) is an eigenvalue of M. In other words, any real eigenvalue


of (8), with ρ ∈ R, gives rise to an eigenvalue of M.
Remark. If M# is complex symmetric, then (8) is symmetric for M0,


independently of ρ ∈ R. Consequently, σ(Mκ) is nonempty.


Proposition 12 For M(z) = Mz + M#z let M̃(z) = M ∗z + M#
T z. Then


σ(M̃) = σ(M).


Proof The real form of M̃ is AT , where A is the real form of M. Since
(βJ +A)T = −βJ +AT , an eigenvalue α+ iβ of M̃ gives rise to an eigenvalue
α − iβ of M and vice versa.


In particular, if M ∗ = M and M#
T = M#, then the spectrum is symmetric


relative to the real axis. If M ∗ = −M and M#
T = −M#, then σ(M) is on the


imaginary axis although it need not be symmetrically located with respect
to the origin.


Naturally all the eigenvalues of a real linear operator M in Cn lie inside
the disk {λ ∈ C : |λ| ≤ ||M||}. Also the field of values is defined in an
obvious way. Geršgorin disks have an analogy with


ρl(M,M#) = |m#


ll | +
n∑


j=1,j 6=l


(|mlj| + |m#


lj|).


Then a direct adaptation, e.g., of the proof of [8, Theorem 6.1.1] can be used
to show that the eigenvalues of M are located in the union of disks


n⋃


l=1


{z ∈ C : |z − mll| ≤ ρl(M,M#)}. (9)


An analogy of the Bauer–Fike theorem holds as well.


Proposition 13 Assume S ∈ Cn×n is invertible such that S−1 ◦ M ◦ S is
diagonal. If E is R–linear in Cn and λ is an eigenvalue of M + E, then


dist(σ(M), λ) ≤
∣∣∣∣S−1


∣∣∣∣ ||S|| ‖E‖ .
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Proof For a diagonal R–linear operator the norm of the resolvent is the
reciprocal of the distance of λ to the spectrum. To see this it suffices to
consider the scalar case. With fixed λ1, λ2 ∈ C the inverse of z 7→ (λ −
λ1)z − λ2z is


z 7→
1


|λ − λ1|2 − |λ2|2
(
(λ − λ1)z + λ2z). (10)


Choosing z on the unit circle such that (λ − λ1)z and λ2z are parallel, the


norm of (10) is
∣∣∣ 1
|λ−λ1|−|λ2|


∣∣∣, i.e., the reciprocal of the distance of λ to the


spectrum. Hence we can mimic the proof of [8, Theorem 6.3.2] together with
(15).


This is of use, e.g., if M is diagonalizable and ‖M#‖ ¿ ‖M‖.


2.2 Factorizations for an R–linear operator in Cn


Consider solving the system M(z) = b for b ∈ Cn. If both M and M# are
upper (lower) triangular matrices, then we can use the formula (10) on a
sequence of 1-by-1 systems together with back (forward) substitution to find
the solution3. In this case we say that M is upper (lower) triangular.


For solving a general real linear system in Cn we need to factorize M.
LU–decomposition. For given M,M# ∈ Cn×n consider finding a lower


triangular L(z) = Lz + L#z and an upper triangular U(z) = Uz + U#z such
that


M(z) = Mz + M#z = L(U(z)) = (LU + L#U#)z + (LU# + L#U)z


holds for every z ∈ Cn, i.e., M = L ◦ U . We assume that all the diagonal
entries of L equal to 1, and that L# is strictly lower triangular.


We need appropriate elementary R–linear operators in Cn. The following
is easy to check, where, for the sake of clarity, both row and column vectors
are boldfaced.


Lemma 14


If L(z) =


[
1 0


l I


]
z+


[
0 0


l# 0


]
z , then L−1(z) =


[
1 0


−l I


]
z+


[
0 0


−l# 0


]
z .


Assume L1 is of this type and partition M and M# accordingly as


M =


[
m1,1 mT


1,2


m2,1 M2,2


]
and M# =


[
m#


1,1 m#


1,2
T


m#


2,1 M#


2,2


]
.


We need to determine l and l#. The linear part of L1 ◦M is


[
m1,1 mT


1,2


m1,1 l + m2,1 + m#


1,1 l# lmT
1,2 + l# m#


1,2


T
+ M2,2


]


3Hence the Gauss–Seidel and the Jacobi method, as well as any other basic iterations,
can be devised by splitting a given R–linear operator in Cn in an obvious way.
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while its anti-linear part is


[
m#


1,1 m#


1,2
T


m#


1,1 l + m#


2,1 + m1,1 l# lm#T
1,2 + l# m1,2


T + M#


2,2


]
.


In order to have zeros in the first columns of these below the diagonal we
take


[
l l#


]
= −


[
m2,1 m#


2,1


] [
m1,1 m#


1,1


m#


1,1 m1,1


]−1


(11)


Thus, we need to assume that |m1,1| 6= |m#


1,1|.
This is then repeated with the blocks


lmT
1,2 + l# m#


1,2


T
+ M2,2 ≡ M̃


and
lm#T


1,2 + l# m1,2
T + M#


2,2 ≡ M̃#


of size (n− 1)-by-(n− 1). If no breakdown occurs, after n− 1 steps we have
an upper triangular Ln−1 ◦ · · · ◦ L1 ◦M. Or equivalently, by using Lemma
14 repeatedly, we have an LU–decomposition of M (since products of lower
triangular R–linear operators in Cn remain lower triangular). The product
L−1


1 ◦ L−1
2 ◦ · · · ◦ L−1


n−1 does not involve any computations since the lower
triangular parts of its linear and anti-linear part are obtained by collecting
the vectors from each of its factors.


If M# = 0, then this gives us the standard LU–factorization of M .
Remark. The 2-by-2 matrix in (11) is now the “pivot”. There are n− 1


pivot matrices in all. In particular, pivoting is straightforwardly incorporated
with the scheme by performing pre/post-operations with P(z) = Pz, where
P is a permutation matrix. This is needed if the inversion in (11) is ill-
conditioned.


Define the jth principal minor of M by extracting the upper left j-by-j
blocks of M and M# and compute the value of the corresponding characteris-
tic bivariate polynomial at the origin. It is easy to see that if all the principal
minors of M are nonzero, this LU–factorization exists.


Assuming no breakdown occurs, a Matlab [17] code is as follows.


function [L,La,U,Ua]=rl_lu(M,Ma)


% This computes lower triangular L (with unit diagonal),


% strictly lower triangular La, and


% upper triangular U and Ua such that


%


% M=L*U+La*conj(Ua) and Ma=L*Ua+La*conj(U)


n=size(M,1); L=eye(n); La=zeros(n); U=M; Ua=Ma;


for k=2:n ,
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a=U(k-1,k-1); b=Ua(k-1,k-1);


w=[U(k:n,k-1),Ua(k:n,k-1)]/[a,b;b’,a’];


L(k:n,k-1)=w(:,1); La(k:n,k-1)=w(:,2);


z=zeros(n-k+1,1); U(k:n,k-1)=z; Ua(k:n,k-1)=z;


U(k:n,k:n)=U(k:n,k:n)-w*[U(k-1,k:n);conj(Ua(k-1,k:n))];


Ua(k:n,k:n)=Ua(k:n,k:n)-w*[Ua(k-1,k:n);conj(U(k-1,k:n))];


end


This requires ∼ 4
3
n3 complex flops to compute an LU–factorization of


M : Cn 7→ Cn. The actual execution time depends on how well complex
arithmetic is implemented on a computer. In practice a pivoting strategy is
also needed.


For more symmetry, let uj,j , u#


j,j , j = 1, . . . , n be the diagonal entries
of U and U#, respectively. Define a diagonal operator D(z) = Dz + D#z
according to D = diag(uj,j) and D# = diag(−u#


j,j). If |uj,j| 6= |u#


j,j| , j =


1, . . . , n, then D is invertible and M = L ◦ D ◦ Ũ with an upper triangular
Ũ(z) = D−1(U(z)) = Ũz + Ũ#z such that all the diagonal entries of Ũ


equal to 1 while Ũ# is strictly upper triangular. This gives us a “Cholesky
factorization” if M ∗ = M and M#


T = M#; see Proposition 1 item 1 . Namely


then L∗ = Ũ and L#
T = Ũ#. This adds to the fact that this type of real


linear operators have many special properties.
For further structure, when M and M# are banded, the factors L and U


inherit the (maximum) band structure.
A given 2n-by-2n real matrix can fail to have an LU–factorization (with-


out pivoting) but has an LU–factorization as an R–linear operator in Cn.


Example 4 To the matrix A = [ 0 1
1 1 ] ∈ R2×2 corresponds M = 1/2 and


M# = −1/2 + i. For this operator L = 1, L# = 0, U = 1/2, and U# =
−1/2 + i.


The converse holds as well and, in fact, we obtain a curious class of R–
linear operators (and the corresponding matrices A). If all the entries of M
and M# have equal modulus (say 1, like in the Schur matrix), then pivoting,
i.e., pre and post operations by permutations does not cure a breakdown.
Hence an appropriate strategy to avoid a breakdown needs to be devised.


Remark. For large problems the above algorithm can be used as a
starting point for devising “ILU–preconditioners” for M. In particular, if
A ∈ R2n×2n is regarded as an R–linear operator in Cn, then this gives rise to
new ILU–preconditioning techniques for solving linear systems in R2n.


QR–decomposition. Here we consider slightly more general real linear
operators M : Cp → Cn defined via (2) by two matrices M,M# ∈ Cn×p.
Our aim is to transform M to upper triangular form by operating with
isometries from the left. Clearly, the standard Householder transformations
in Cn could be applied to make either the linear or the anti–linear part of M
upper triangular, but we want them in this form simultaneously.
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Theorem 15 For a given R–linear operator M : Cp → Cn there exists an
isometry Q (in Cn) such that R = Q−1 ◦M is upper triangular


This is proved by the construction that follows. For this purpose we need
special elementary isometries.


For given x, y ∈ Cn we want a real linear isometry that maps x and y in
the direction e = [1 0 · · · 0]T . If x and y are linearly dependent, a standard
Householder transformation in Cn will do. So, let us assume that x and
y are linearly independent over R. We look for an isometry in the form
H(z) = z − UU ∗z − UUT z, where U ∈ Cn×2 is such that Re(U ∗U) = I; see
Example 3. We call this a real linear Householder transformation. Writing
V = [x y] ∈ Cn×2 gives us the equation


V − 2 U Re(U ∗V ) = e a∗ (12)


for some a ∈ C2 . Hence U is of the form U = (V −e a∗)R , where R ∈ R2×2 .
By multiplying with U ∗ we obtain Re(U ∗(V + e a∗)) = 0 . Therefore (12)
holds, if
Re((V − e a∗)∗(V + e a∗)) = 0. Setting w = V ∗e this becomes


Re(V ∗V + w a∗ − aw∗ − a a∗) = 0 .


Vector c = Re(V ∗V )
1
2 [ 1


i ] satisfies Re(V ∗V −c c∗) = 0. We try a = η c, where
|η| = 1, so that Re(V ∗V − a a∗) = 0. Equation Re(w a∗ − aw∗) = 0 amounts
to


Re(w1ηc2 − ηc1w2) = 0 . (13)


This is equivalent to qη + qη = 0, where q = c2w1 − c1w2. Thus (13) is
satisfied for η = i q/|q|. Finally, we get U by orthonormalising the columns
of V − e a∗ with respect to the inner product 〈u, v〉 = Re(u∗v).


Since H2 = I we also have H(e a∗) = V .
The following Matlab code finds U .


function U=rl_H(x,y)


V=[x,y]; n=length(x);


c=real(V’*V)^(1/2)*[1;i];


q=V(1,:)*[-c(2);c(1)];


V(1,:)=V(1,:)-i*sign(q)*c’;


[Q,R]=qr([real(V);imag(V)],0);


U=Q(1:n,:)+i*Q(m+1:2*n,:);


For the QR–decomposition we first want a real linear Householder trans-
formation such that the first columns of


M̂ = (I − UU ∗)M − UUT M# and M̂# = (I − UU ∗)M# − UUT M
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are multiples of e. Let m and m# be the first columns of M and M#. Then


p = (I − UU ∗)m − UUT m# and q(I − UU ∗)m# − UUT m


are both multiples of e if


p + q = (I − UU ∗)(m + m#) − UUT (m + m#) and


i(p − q) = (I − UU ∗) i(m − m#) − UUT i(m − m#)


are such. Thus we take the real linear Householder transformation that maps
m + m# and i(m − m#) to multiples of e. Then the first columns of M̂ and


M̂# have zeros below the first entries.
After this we continue similarly with the lower right (n − 1)-by-(p − 1)


blocks of M̂ and M̂#. Below is the Matlab code for this decomposition.


function [Q,Qa,R,Ra]=rl_qr(M,Ma)


% This constructs a real linear isometry z -> Q*z+Qa*conj(z)


% and upper triangular R,Ra such that


% M = Q*R+Qa*conj(Ra) and Ma = Q*Ra+Qa*conj(R)


[n,p]=size(M); R=M; Ra=Ma; Q=eye(n); Qa=zeros(n);


for k=1:min(p,n-1) , kn=k:n; kp=k:p;


x=R(kn,k); y=Ra(kn,k);


U=rl_H(x+y,i*(x-y));


W=U’*R(kn,kp)+conj(U’*Ra(kn,kp));


R(kn,kp)=R(kn,kp)-U*W; Ra(kn,kp)=Ra(kn,kp)-U*conj(W);


W=Q(:,kn)*U+Qa(:,kn)*conj(U);


Q(:,kn)=Q(:,kn)-W*U’; Qa(:,kn)=Qa(:,kn)-W*transpose(U);


end


This implementation requires ∼ 40
3


n2p complex flops. With back substi-
tution this algorithm can be used to solve overdetermined R–linear systems.


Remark. The prescribed real linear Householder transformations can
also be used in computing an isometry U such that U−1 ◦M◦U has its linear
and anti–linear parts in Hessenberg form.


Schur decomposition. Here we consider bringing given real linear op-
erator to triangular form under a real linear isometric similarity transform.
The construction of this part proves the following.


Theorem 16 For given R–linear operator M there exists an isometry U
such that T = U−1 ◦M ◦ U is upper triangular


We need the following auxiliary result.


Lemma 17 There exist vectors x, y ∈ Cn, linearly independent over R, and
B ∈ R2×2 such that M([x y]) = [x y] B.
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Proof Let A ∈ R2n×2n correspond to M. Take u, v ∈ R2n either as


• two linearly independent real eigenvectors of A, or


• a real eigenvector u and vector v such that Av − λv = u, or


• the real and imaginary parts of an eigenvector corresponding to a non–
real eigenvalue.


Set [x y] = [I iI] [u v].


Now, let x, y be as in the previous lemma and take a real linear House-
holder transformation such that H([x y]) = e a∗. Then also H(e a∗) = [x y].
Consider


M̂(z) = H(M(H(z))) = M̂z + M̂# z .


and let m̂ and m̂# be the first columns of M̂ and M̂#. We have


[
m̂ m̂#


] [
a∗


aT


]
= M̂(e a∗) = H(M([x y])) = H([x y] B) = e a∗ B ,


since B is real. Here det
[


a∗


aT


]
= a1 a2 − a1 a2 6= 0 unless a1 a2 ∈ R. But the


latter would imply that x and y are linearly dependent over R – a contradic-
tion. Hence both m̂ and m̂# are multiples of e.


Continue similarly with the lower right (n−1)-by-(n−1) blocks of M̂ and


M̂# to obtain U as a composition of real linear Householder transformations.
Due to Proposition 8, the Schur decomposition U−1 ◦ M ◦ U of M is


diagonal in case M ∗ = M and M#
T = M#.


Remark. Proposition 1 items 1 and 2 hence give us very special real
linear operators. In view of this, to the polar decomposition of A ∈ R2n×2n


corresponds M = U ◦ S, where U is an isometry and S(z) = Sz + S#z with
S∗ = S and S#


T = S#.


With a small rank M# the operator M can be regarded as “almost” C–
linear. So can its inverse in the following sense.


Proposition 18 Let M(z) = Mz +M#z be invertible with M−1(z) = Rz +
R#z. If M is invertible as well, then rank(R − M−1) ≤ rank(M#) and
rank(R#) = rank(M#).


Proof We have M−1(Mz) = (RM + R#M#)z + (RM# + R#M)z. For this
to be the identity we obtain the conditions


R# = −RM#M
−1


and R = (M − M#M
−1


M#)−1. (14)


With R we can use the Sherman-Morrison formula to have the claims.
In this case one option is to use standard algorithms with (14) and the


Sherman-Morrison formula to find the inverse of M.
Not all the matrix factorizations have a particularly interesting analogue


for R–linear operators in Cn. For instance, assume the real form A ∈ R2n×2n
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of M is nonderogatory so that A = T−1C̃T with a companion matrix C̃.
Since all the factors are real, we have M = T −1◦C ◦T with C(z) = Cz+C#z
such that C is a companion matrix while C# is a rank-1 matrix with one
nonzero column. Since the spectrum of an R–linear operator in Cn is not
preserved under a general R–linear similarity transformation, this factoriza-
tion may not be very useful (aside from giving a very structured factor C). In
general T cannot be found such that the corresponding T would be a change
of basis transformation.


2.3 Miscellaneous remarks


We also have a Neumann type of series expansion for the inverse. Consider
first the operator Mκ.


Theorem 19 Assume M# ∈ Cn×n and λ ∈ C is such that ||M#|| < |λ|
holds. Then (λI −M0)


−1(z) = R(λ)z + R#(λ)z with


R(λ) =
∞∑


j=0


(M#M#)j


λ|λ|2j
and R#(λ) =


∞∑


j=0


(M#M#)jM#


|λ|2(j+1)
.


Proof By making an ansatz


z =
b


λ
+


M#b


|λ|2
+


M#M#b


λ|λ|2
+


M#M#M#b


|λ|4
+


M#M#M#M#b


λ|λ|4
+ · · · ,


it is straightforward to verify that z converges and solves the equation λz −
M#z = b for any b ∈ Cn. Separating the linear and anti–linear terms (that
is, the matrices multiplying b and b, respectively) from this sequence gives
R(λ) and R#(λ).


For a general R–linear operator M we have


(rI −M)−1 =
∞∑


j=0


Mj


rj+1
, (15)


whenever r ∈ R and ||M|| < |r|. Assume λ ∈ C. Since solvingă λz − Mz −


M#z = b is equivalent to solving z − M
λ


z −
M#


λ
z = b


λ
, we can employ (15)


with this latter problem. A substitution to (15) gives a series expansion for
the linear and anti–linear parts of R(λ) = (λI −M)−1 as


R(λ) =
I


λ
+


M


λ2
+


M2


λ3
+


M#M#


λ|λ|2
+


+
M3


λ4
+


MM#M#


λ2|λ|2
+


M#M
2


λ
2
|λ|2


+
M#MM#


|λ|4
+


M#M#M


λ2|λ|2
+ · · ·


and


R#(λ) =
M#


|λ|2
+


MM#


λ|λ|2
+


M#M


λ|λ|2
+


M2M#


λ2|λ|2
+


MM#M


|λ|4
+


M#M#M#


|λ|4
+ · · · .







18 T. EIROLA, M. HUHTANEN, AND J. VON PFALER


Remark. Since the set of R–linear operators in Cn is a normed algebra
over R, limj→∞ ||Mj||1/j exists and gives the spectral radius of the real form
of M. However, its connection with the spectrum of M is not obvious (except
when M# = 0) since σ(M) can be even empty.


Regardless of the size of the spectrum, the minimal polynomial an R–
linear operator in Cn is well defined.


Theorem 20 Let M be an R–linear operator in Cn. Then there exists a
monic polynomial p of degree at most 2n such that p(M) = 0.


Proof Take p to be the minimal polynomial of A ∈ R2n×2n corresponding
to the real formulation (3) of M. Since p has only real coefficients, p(M) is
also zero.


For iterative methods, the following is of interest. 2n


Corollary 21 If M is invertible, then M(q(M)) = I for a polynomial q of
degree 2n − 1 at most.


Proof Take p(λ)/p(0) = λq(λ)−1 which clearly has real coefficients. There-
fore the equivalent real operator in R2n gives the identity.


Example 5 In the context of forming polynomials in an R–linear mapping
in Cn many interesting classes of operators arise. In [18] there is an opera-
tor considered, the so–called Friedrichs operator, whose square is a C–linear
mapping in Cn. Generalizing this, it is an interesting problem to find, for a
given M, a monic polynomial of the lowest possible degree such that p(M)
is C–linear (or C–anti–linear).


Rank-1 matrices are fundamental for matrix computations. In fact, let
M = m1m


∗
2 and M# = n1n


∗
2 be of rank 1 both. Then there are three pos-


sibilities for the multiplicity indexes (see Example 1) of eigenvalue 0 of M,
i.e., we can have four different types of real linear low rank operators listed
in Table 2.1.


dim(span{m1, n1}) = 2 dim(span{m1, n1}) = 1
dim(span{m2, n2}) = 2 (2n−2


2
, n − 2) (2n−1


2
, n − 2)


dim(span{m2, n2}) = 1 (2n−1
2


, n − 1) (2n−1
2


, n − 1)


Table 1: Options for R–linear operators in Cn with rank-1 matrices M and
M#.


Example 6 Let σ1 [ ua
ub ] [ v∗


a v∗
b ] ∈ R2n×2n the best rank-1 approximation to


A ∈ R2n×2n from its SVD, i.e., σ1 is the largest singular value of A and
uj, vj ∈ Rn for j = a, b. For the corresponding real linear operator in Cn


the respective approximation is σ1


2
(ua + iub)


(
(v∗


a − iv∗
b )z + (v∗


a + iv∗
b )z


)
=


σ1 u Re(v∗z) with u = ua + iub and v = va + ivb. In the classification of Table
2.1 this is in the lower right corner.
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Repeating the construction of the preceding example with each rank-1
term in the SVD of A, we obtain an expansion


M(z) =
∑2n


j=1 σj uj Re(v∗
j z)


for M. Although this is a potentially useful representation of M, at this
point we are not sure whether it should be called the SVD of M.


Let V1, V2 ⊂ Cn be two subspaces of dimension k (over C as usual) and


let Ij : Vj 7→ Ck be an isometric isomorphism, for j = 1, 2. Define P̃ via


V1
P̃


−→ V2


↓ I1 ↑ I−1
2


Ck U
−→ Ck


, (16)


where U is an R–linear isometry in Ck. Then P = P̃ ⊕ 0 gives an R–linear
partial isometry in Cn, i.e., ‖P(z)‖ = ‖z‖ for z ∈ V1 while P(z) = 0 for
z ∈ V ⊥


1 .


3 Iterative methods for solving R–linear prob-


lems in Cn


Assume Qk ∈ Cn×k with orthonormal columns has been generated. Then a
low dimensional approximation to the problem (1) is given by


M(k)(wk) = Q∗
kMQkwk + Q∗


kM#Qkwk = Q∗
kb , (17)


and zk = Qkwk gives the corresponding Galerkin approximation. The arising
R–linear mapping in Ck can also be used in approximating the spectrum of
M via a Ritz type construction to have “Ritz curves”. In particular, the
subspace spanned by the columns of Qk is invariant for M if and only if


(I − QkQ
∗
k)MQk = 0 and (I − QkQ


∗
k)M#Qk = 0.


If this holds, then σ(M(k)) ⊂ σ(M). Otherwise good approximations (in
some sense) can be expected when the matrices on the left hand side are
small in norm.


3.1 The case of Mκ


To compute Qk with an iterative method, consider first the simplest case
involving the operator Mκ for κ ∈ C. Then we can use a minimal residual
approach which corresponds to replacing Q∗


k in (17) with Q∗
k+1 and solving


the arising low order problem with the least squares methods.
Now the Arnoldi method [1] is well defined in the sense that an application


of Mκ to a starting vector b ∈ Cn gives


κb + M#b.







20 T. EIROLA, M. HUHTANEN, AND J. VON PFALER


Orthogonalizing this against b yields α1
1b+α2


1M#b with α1
1, α


2
1 ∈ C. Applying


Mκ to this vector gives


κα1
1b + (κα2


1 + α1
1)M#b + α2


1M#M#b.


Orthogonalizing this against b and α1
1b + α2


1M#b yields a vector which is a
linear combination of the vectors b, M#b and M#M#b. An application of
Mκ to this vector and then performing an orthogonalization yields a linear
combination of the vectors b, M#b, M#M#b and M#M#M#b. Continuing this
inductively proves the following.


Theorem 22 Let κ ∈ C, M# ∈ Cn×n and b ∈ Cn. Then the Arnoldi method
with Mκ gives an orthonormal basis {q1, q2, . . . } of the Krylov subspace


span{b,M#b,M#M#b,M#M#M#b, . . .}. (18)


Remark. Solving κz + M#z = b with a direct method is naturally
equivalent to solving M#z + κz = b. However, an execution of the Arnoldi
method with the complex conjugate Mκ of Mκ using the starting vector b
does not seem to generate a subspace with a simple spanning set like that of
(18) unless simplifying assumptions are made.


By inspecting its spanning set, we can view (18) as a block–Krylov sub-
space generated with the matrix M#M# by using the starting vectors {b,M#b}.
In particular, a matrix M# ∈ Cn×n is congruence normal if M#M# is normal;
see [6] and references therein. In this case the ideas of [9, 13] can be used for
generating this subspace with a recurrence whose length grows very slowly.


If deg(M#M#), the degree of the minimal polynomial of M#M#, is mod-
erate, then we have a nontrivial invariant subspace of Mκ with (18).


Corollary 23 The dimension of (18) is min
{
rank(M#) + 1, 2 deg(M#M#)


}


at most.


Proof The claim follows by rewriting (18) as the sum of two subspaces as


K(M#M#; b) + M#K(M#M#; b), (19)


where K(M#M#; b) = span
{
b,M#M#b, (M#M#)2b, . . .


}
.


In view of iterative methods, this illustrates how the bound of Theorem
20 can be pessimistic.


Remark. Any invariant subspace of Mκ is necessarily invariant for
M#M#. For the converse, K(M#M#; b) is an invariant subspace of M#M#


for any vector b ∈ Cn. Hence (19) is the smallest invariant subspace of Mκ


containing K(M#M#; b). For instance, if b is an eigenvector of M#M#, then
the dimension of (19) is either 1 or 2. Both cases are possible.


We denote by Wk the subspace spanned by the first k vectors in (18).
Clearly, Mκ(Wk) ⊂ Wk+1. This implies that the resulting canonical form
(17) consists of a diagonal and a Hessenberg matrix for the linear and anti–
linear parts of Mκ, respectively. Writing Qk = [q1 q2 . . . qk] we get:


Theorem 24 The Arnoldi method with Mκ gives a Hessenberg matrix Q∗
kM#Qk


for k = 1, 2, . . ..







SOLUTION METHODS FOR R–LINEAR PROBLEMS IN Cn 21


Proof If Wj denotes the subspace spanned by the first j vectors in (18),
then M# maps W j into Wj+1, for every j > 0.


If no breakdown occurs, with k = n we have performed a consimilarity
transformation of M#; see [7].


With iterative methods one is always interested in the length of the re-
currence to have less expensive steps.


Theorem 25 If M#
T = cM# for c = ±1, then the Arnoldi method with Mκ


is realizable with a 3–term recurrence.


Proof Let q0, . . . , qj−1 denote the orthonormal basis of Wj generated with
the Arnoldi method. Then


(Mκ(qj−1), ql) = (κqj−1, ql) + (qj−1,M#
∗ql),


where the first inner product is zero for j−l > 1. Hence we have (qj−1,M#
∗ql) =


(qj−1,M#
T ql) = c(qj−1,M#ql) = 0 for j − l > 2.


Under these assumptions the matrices Q∗κIQ and Q∗M#Q are diagonal
and tridiagonal, respectively. With c = −1 the diagonal entries of Q∗M#Q
equal zero, i.e., we then get a real skew–symmetric matrix. Hence the eigen-
values of the matrices M# and Q∗M#Q can differ dramatically even though
the eigenvalues of the mappings z 7→ M#z and z 7→ Q∗M#Qz are the same.


Remark. Since Q is unitary, the singular values of the matrix M# equal
those of Q∗M#Q. Therefore, under the assumptions of Theorem 25, the
singular values of M# can be approximated with an iterative method relying
on a 3–term recurrence.


The following is of use for preconditioning the problem (1) with the inverse
of M from the left.


Proposition 26 Let M(z) = Mz + M#z be diagonalizable by a unitary
change of basis transformation. If M is invertible, then M−1M# is complex
symmetric.


We have M# Qk w in the range of Qk+1 for all w ∈ Ck. Hence


∥∥κQkwk + M#Qkwk − b
∥∥ =


∥∥κQ∗
k+1Qkwk + Q∗


k+1M#Qkwk − Q∗
k+1b


∥∥


=
∥∥∥κĨkwk + H̃kwk − ‖b‖ e1


∥∥∥ ,
(20)


where Ĩk ∈ C(k+1)×k is the identity matrix augmented with the row of zeros
and H̃k is a (k + 1)-by-k Hessenberg matrix. Hence, solving the system κz +
M#z = b approximately with the corresponding minimal residual approach
amounts to finding the minimum of the last expression in (20), e.g. by the
real linear QR-decomposition.


A Matlab implementation of the method is as follows.
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function x=rl_GMRES(kappa,Ma,b,tol)


nb=norm(b); Q=b/nb; H=[]; Ha=[]; eb=nb; err=1; j=0;


while err>tol ,j=j+1;


r=Ma*conj(Q(:,j));


for l=1:j,


h=Q(:,l)’*r; r=r-Q(:,l)*h;


Ha(l,j)=h; end


nr=norm(r); Q=[Q,r/nr];


jj=j:j+1; H(jj,j)=[kappa;0]; Ha(j+1,j)=nr; eb(j+1,1)=0;


for l=1:j-1, U=UM{l}; ll=l:l+1;


W=U’*H(ll,j)+conj(U’*Ha(ll,j));


H(ll,j)=H(ll,j)-U*W; Ha(ll,j)=Ha(ll,j)-U*conj(W); end


x=H(jj,j); y=Ha(jj,j);


U=rl_H(x+y,i*(x-y)); W=U’*H(jj,j)+conj(U’*Ha(jj,j));


H(jj,j)=H(jj,j)-U*W; Ha(jj,j)=Ha(jj,j)-U*conj(W);


eb(jj)=eb(jj)-2*U*real(U’*eb(jj)); UM{j}=U;


err=abs(eb(j+1))/nb;


end


w=rl_ut_solve(H(1:j,:),Ha(1:j,:),eb(1:j));


z=Q(:,1:j)*w;


Note that (similarly to the standard implementation of GMRES) the
Hessenberg matrix is transformed isometrically to an upper triangular form
while it is being built.


The work and storage needed with this method (as a function of the
number of steps) are comparable with GMRES [19]. Further, we have:


Proposition 27 The method above is at least as fast as the standard GMRES


method applied to the real form A [ x
y ] =


[
Re(b)
Im(b)


]
of the problem.


Proof Minimizing (20) amounts to finding the minimum of ‖Mκ(z) − b‖
for z ∈ Wk. GMRES applied to the real form minimizes the same but only in
the set of real linear combinations of b,Mκ(b), . . . ,M


k−1
κ (b) which is a subset


of Wk.
The number of steps needed for the exact solution is bounded according


to Corollary 23.
With κ = 0 we have a“conjugate GMRES”algorithm for solving M#z = b


(which is equivalent to solving M#z = b when direct methods are used). It
coincides with GMRES if and only if M# and b are real.


The case of κ = 0 and M#
T = M# has been studied in [2].


Remark. As a curiosity, because of (5) we could also consider separately
the linear and anti–linear parts of M−1


κ . This amounts to solving, after mul-
tiplying the second system with M# from the left, two standard C–linear
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systems in Cn involving translations of M#M#. In particular, if M# is con-
gruence normal, then the 3–term recurrence of [10] can be employed to this
end.


3.2 The general case


To compute Qk for (17) with a general R–linear operator by using an Arnoldi
type of iteration is straightforward by orthogonalizing M(qj) against the
vectors q1, . . . , qj computed so far, for j = 1, . . . , k − 1.


As opposed to the case Mκ, this iteration is less satisfactory since Hessen-
berg matrices do not arise. Not even with M(z) = Mz + κz, for κ ∈ C, any
particular structure seems to appear. In particular, we do not have the prop-
erty M(Wk) ⊂ Wk+1, where Wk denotes the span of the vectors generated
after k − 1 steps.


For the number of steps we have the following analogy of [14, Proposition
2.6].


Proposition 28 The Arnoldi method with M(z) = Mz + M#z generates at
most deg(M)(rank(M#) + 1) linearly independent vectors.


Proof Denote by Kj(M ; q0) = span{q0,Mq0, . . . ,M
j−1q0}, where q0 =


b/‖b‖. If v1, . . . , vk is a basis of the range of M#, then


q2 = α2
1(Mq0 + M#q0) − α2


2q0 ∈ K2(M ; q0) + span{vl}l=1,...,k


with α2
1, α


2
2 ∈ C. Similarly, q3 ∈ K3(M ; q0) + span{M jvl} j=0,1


l=1,...,k


so that


the induction step becomes clear. Since Kn(M ; q0) + span{M jvl} j=0,...,n
l=1,...,k


has


dimension at most deg(M)(rank(M#) + 1), the assertion is proved.
This also implies that if deg(M)(rank(M#) + 1) < n, then M always has


an invariant subspace.
Instead of a minimal residual approximation to the solution of the system


M(z) = b, we compute a Galerkin approximation by using (17).
For a minimum residual method we should augment Qk with (typically)


k extra orthonormal vectors such that the resulting span would include the
range of M|Wk


. This seems to become rather uneconomical.


3.3 Cost, restarting and related remarks


For an iterative method to be preferred over a direct method, typically the
crucial bottleneck is the cost of matrix-vector products. Here all the standard
ideas, like using the FFT techniques, apply in an obvious way.


Like with GMRES, restarting may be needed to save storage. In connec-
tion with this, there is now the additional possibility of solving the conjugated
problem M(z) = M#z + Mz = b instead of the original system M(z) = b.
Either of these two options can be chosen before every new restart.
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The Krylov subspace methods suggested above were based on an itera-
tive generation of orthogonal projectors. These are very particular type of
partial isometries (16). Hence the possibility of iteratively computing more
general real linear partial isometries and using them in solving linear systems
approximately needs to be studied further.


We have only considered methods that consume storage linearly. Devising
a quasi–minimal residual type of iteration [4] is another alternative to save
memory.


3.4 Numerical experiments


Next we consider iteratively solving a system M(z) = b. In each experiment
either rl_GMRES or rl_Gal applied to M is compared with GMRES applied
to the equivalent real formulation of the problem. Here rl_Gal refers to the
method of Section 3.2. To save storage, we also compare their restarted ver-
sions rl_GMRES(k), rl_Gal(k) and GMRES(k) restarted after every k steps.
The residual at the jth step (defined similarly for the real formulation) is
denoted by rj = M(zj) − b,


The computations were performed with Matlab whose syntax we use.


Example 7 This family of R–linear systems arose in connection with the
inverse problem of reconstructing an unknown electric conductivity in the
unit disc from boundary measurements; see [21, 22]. To this end one needs
to solve repeatedly the system Mκ(z) = z + M#z = 1 resulting from a
discretization of a weakly singular Fredholm integral equation of the second
kind depending on various parameters. More precisely, Mκ depends on the
measured current on the unit circle as well as on the point in the unit disc the
reconstruction is being computed for. The right hand–side is the constant
vector with ones. Due to the size n = 216 of the system, the matrices are not
represented explicitly.


The problem was iteratively solved by using the simulated boundary data
on the unit circle used in [21, Problem 4] with the initial guess z0 = 1.
We executed rl_GMRES and GMRES as well as their restarted versions with
k = 30, 60. Since M# is the product of a Toeplitz matrix and a diagonal
matrix, matrix–vector products could be computed fast by using the FFT.


After fixing values for the parameters, we compared the relative residuals
‖rk‖ / ‖r0‖ in the log10 scale for all the six iterations; see Figure 1.


The experiments were repeated by varying the parameters and each time
rl_GMRES outperformed GMRES (see Proposition 27). Quantitatively we
had approximately 30% shorter execution times in a typical case illustrated
in Figure 1. There we also see that for the restarted iterations the difference
could be even more drastic: rl_GMRES(60) converged whereas GMRES(60)
stagnated. For k = 30 both methods stagnated.


Example 8 Here we illustrate the Galerkin approximation of Section 3.2
for iteratively solving the system M(z) = b with restarts. The computations
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Figure 1: The convergence of the relative residuals in the log10 scale in Exam-
ple 7. rl_GMRES and rl_GMRES(k) are depicted with a solid line and GMRES
and GMRES(k) with a dashed line, k = 30, 60. The restart points are marked
with ’o’.


were carried out with Matlab whose syntax is used. Below we denote by
Rn,m = randn (n,m) ∈ Rn×m a normally distributed random matrix which
has been regenerated each time encountered. So no two matrices Rn,m are the
same. In this somewhat articifial problem M = (20 + 10i)I + Rn,n + i Rn,n,
M# = (I + Rn,n + i Rn,n)/10, and b = Rn,1 + i Rn,1 with n = 150. By
using the initial guess z0 = 0, we executed rl_Gal(k) and GMRES(k) with
k = 2, 6, 10.


Short restarting frequency seems to be optimal in this problem for both
methods. See Figure 2 for the behavior of the relative residuals in the log10


scale.


4 Computing the spectrum of an R–linear op-


erator in Cn


In this final section we consider some ideas for locating the spectrum of a
real linear operator M.
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Figure 2: The relative residuals in the log10 scale in Example 8. rl_Gal(k)
is depicted with a solid line and GMRES(k) with a dashed line. The labels
above the squares refer to the restarting frequency k.


In the one-parameter family of real matrices A(0, β) = −βJ − A in (6),
every real eigenvalue α of A(0, β) corresponds to an eigenvalue α + iβ of
M. Hence a brute force method to find the spectrum of M is to com-
pute the eigenvalues of A(0, β) for those β that are of interest. Since the
spectrum is bounded by the norm, we need to consider only the interval
{β ∈ R : |β| ≤ ‖M‖} which can be further reduced (to be possibly non–
convex) by using the Geršgorin disks (9). There are also many alternatives
to benefit from Geršgorin disks if we perform change of basis transformations
in a clever way.


Remark. For a fixed µ ∈ C, the spectra of M and µI ◦M are related
in an obvious way. However, for computations a multiplication by a scalar
makes a difference. For instance, if σ(M) is locally tangential to the real axis,
then the prescribed approach is numerically less stable. The choice µ = i
rotates the spectrum by π/2 and removes the problem in that particular
neighborhood.


To get a rough picture of σ(M), one option is to use a coarse grid for β
over an interval of interest. The grid can then be refined in those areas where
the spectrum appears to be changing rapidly while β varies. However, with
a coarse tracking of the spectrum we face the risk of missing entire isolated
subsets of σ(M). For example, if M# = 0, then the spectrum consists of
isolated points which are missed almost certainly. Also in a nearly C–linear
case with ‖M#‖ ¿ ‖M‖ the isolated subsets of the spectrum can be very
small and could thus be overlooked.


To locate tiny subsets better, we employ the information also in the non–
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(a) (b)


Figure 3: The spectra of the R-linear operators of Examples 9–10. (a) The
spectrum of M of Example 9. (b) The spectra of “symmetric” M1 (dotted
line) and “anti–symmetric”M2 (crosses) of Example 10.


real eigenvalues and the corresponding eigenvectors of A(0, β). To this end,
set φ(w) = i w∗Jw


w∗w
for w ∈ C2n with w 6= 0. This satisfies φ(µu) = φ(u) ∈ R


for any nonzero u ∈ C2n and µ ∈ C. Also |φ(w)| ≤ ‖J‖ = 1.
With φ define the set valued function


Φ(β) = {φ(w) Im λ : A(0, β)w = λw , w 6= 0} ⊂ R.


Obviously, if A(0, β) has a real eigenvalue, then 0 ∈ Φ(β).


Lemma 29 If |β| > 2‖A‖, then β Φ(β) ⊂ R+. If for all β the non–real
eigenvalues of A(0, β) are simple, then Φ is continuous.


Proof For the first claim, assume |β| > 2‖A‖ and that A(0, β)w = λw , w 6=
0. Since J is normal, min |λ± iβ| ≤ ‖A‖ by the Bauer–Fike theorem. Hence
| Im λ| > ‖A‖ with Im λ having the same sign as β. If Im λ ≥ 0, then, since
β φ(w) ∈ R


β φ(w) =
i w∗βJw


w∗w
=


i w∗(−λ + A)w


w∗w
=


w∗(Im λ + 1
2
(iA + (iA)∗))w


w∗w
> 0.


In the case Im λ < 0 we get β φ(w)z < 0. Hence, Im λβ φ(w) > 0 in both
cases.


Eigenvalues depend continuously on β and eigenvectors corresponding to
simple eigenvalues can be chosen continuous. Hence the assumptions imply
that the numbers φ(w) Im λ depend continuously on β for Im λ 6= 0. Further,
these tend to zero when λ approaches R since |φ(w)| ≤ 1.


Since β Φ(β) ⊂ R+ far from the origin, we see that all the elements of
Φ(β) cross the origin as β runs over R. In fact, the vanishing elements (often)
seem to take opposite signs as we step over a isolated subset of spectrum.
If we order Φ along decaying Re λ, we may use simple bisection method to
refine the grid on every change (of sign or length) of the vector Φ. If, at







28 T. EIROLA, M. HUHTANEN, AND J. VON PFALER


Figure 4: The spectrum of an R–linear operator M, where M is almost
diagonal. The Bauer–Fike bound of Proposition 13 has been colored light
blue by regarding z 7→ M#z as the perturbation E . The Geršgorin disks of
M are shown in darker red color. See Example 11.


a change of sign in Φ, Im λ stays away from zero, we skip the interval. If
Im λ crosses origin, we look for a subset of the spectrum. This way we have
been able to locate isolated points and horizontal parts of the spectrum more
accurately while, simultaneously, execution times have decreased. Of course,
there is no guarantee that this tool manages to pick every isolated subset of
the spectrum.


Using the lemma we can save computational work by refining the β–
grid only on intervals of interest, but this still is a rather tedious way to
visualize the spectrum. The same technique, with very coarse grid, can also
be used to only locate a point on each isolated subset of the spectrum. These
points, in turn, can be extended to find the corresponding piece of the curve
{α+ iβ : det A(α, β) = 0} using standard continuation techniques (see [16]).


Once sufficiently many points of σ(M) have been computed accurately,
one can also use the information to find the coefficient of the characteristic
bivariate polynomial approximately. To this end, for example, the ideas of
[12, Section 4.1] can be employed.


Next we consider numerical examples. All our matrices are artificially
constructed and small since we only aim at illustrating various aspects of the
spectrum. Rn,n is defined as in Example 8.


Example 9 The spectrum of an R–linear operator can be profuse and very
arresting. We illustrate this with M : C10 7→ C10 having M = R10,10+i R10,10


and M# = R10,10 + i R10,10. See Figure 3(a).


Example 10 To illustrate Proposition 12, we take M1 and M2 with the
real forms A1 = R + RT and A2 = R − RT with R = R20,20. The spectrum
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Figure 5: The spectrum of an R-linear operator under R–linear, but not
C–linear, similarity transformations. The horizontal copies of the complex
plane correspond to the values of the parameter t. See Example 12.


of M1 is symmetric relative to the real axis. The spectrum of M2 consists
of at most 2n isolated points. See Figure 3(b).


Example 11 To see how the spectrum varies, let M = M1 + 1
20


M2 such that
M1 ∈ C10×10 is a diagonal matrix having the eigenvalues zj = 6eiθj , with
θj = 2π


10
j for j = 0, . . . , 9, and M2 = 1


2
(R10,10 + i R10,10). The anti–linear part


is M# = 1
4


(R10,10 + i R10,10). In Figure 4 we have plotted σ(M) and σ(M)
together with the Geršgorin disks. The Bauer–Fike bound of Proposition 13
is also plotted by regarding z 7→ M#z as the perturbation E of the C–linear


operator M̃(z) = Mz. Rounding to four digits, we had ‖S−1‖ ‖S‖ = 2.01
and ‖E‖ = 4.05.


Example 12 We illustrate the fact that the spectrum is not preserved, in
general, in a R–linear similarity transformation. We take M : C2 7→ C2


where M = 1
10


[ 0 11
3i 10i ] and M# = [ 1 −1


0 1 ]. The spectrum is a curve encircling
the origin. Let


E0 = [ 0 1
−1 0 ] , E1 = [ 1 0


0 0 ] , E2 = [ 0 1
1 0 ] , and E3 = [ 0 0


0 1 ] .
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Then we consider Ms,i,t = T −1
i,t,s ◦ M ◦ Ti,t,s, where the real forms of Ti,t,+


and Ti,t,− are exp
([


tEi 0
0 −tEi


])
and exp


([
0 tEi


tEi 0


])
, respectively. Unless t = 0,


Ti,t,+ and Ti,t,− are not C–linear. In Figure 5 we have plotted σ(Mi,t,s). The
spectrum is shown for four pairs (s, i), s = 0, 2 and i = ±, each on a separate
plot. On each plot, the horizontal copies of the complex plane correspond to
values of t = −0.7 . . . 0.7. Note that the two real eigenvalues remain invariant
here as in any similarity transformation.


5 Conclusions


Matrix analysis for R–linear operators in Cn has been studied. Although
we are dealing with a weaker assumption than C–linearity, a large part of
the familiar theory could be recovered. In particular, most of the matrix
factorizations aimed at solving linear systems can be regarded as special
cases of our more general results.


Basics of the spectral theory for R–linear operators in Cn were developed
together with some preliminary computational ideas for finding the spectrum.


Initial motivation for our study being Krylov subspace methods, we have
introduced new iterative schemes that avoid using an equivalent real formu-
lation.
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