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Fast solvers of the Lippmann—Schwinger equation

G. Vainikko

1 Introduction

In this paper we deal with the integral equation formulation on the scattering prob-
lem for the Helmholtz equation in the inhomogeneous media. We assume that the
inhomogeneity is smooth or piecewise smooth and of compact support containing
the origin, with possibly complex-valued smooth or piecewise smooth refractive in-
dex b: R™ - C, n =2 or 3, b(z) = 1 outside the inhomogeneity. The formulation
of the problem reads as follows: find u: R" — € (n = 2 or 3) such that

Au(r) + k*b(z)u(z) = 0, z € R", (1)
u=u'+ u’, (2)

ou’ x

: (n=1)/2(Z7~" _ ...8) — : el
r:fl;;;rg T ( 5 mu) 0 uniformly for 7] € 5(0,1) (3)
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where u' (the incident field) is a given entire solution of the Helmholtz equation
Au+ £*u = 0, z € R" (usually v’ is given as a plain wave: u'(z) = exp(ikd - x),
d € R", |d| = 1), v® is the scattered field, k > 0 is the wave number; (3) means that
u® must satisfy the Sommerfeld radiation condition. We refer to [2] for more details
concerning problem (1)—(3).

Problem (1)—(3) is equivalent to the Lippmann—Schwinger integral equation (see
2)

u(@) = w'(@) - &" [ @(slz - yhay)uly)dy ()
IRTI.
where @ = 1 — b is smooth or piecewiese smooth and of compact support,

)
Z (gl)(r)a n=2
(I)('r) —_ 1 eir ) r > 07 (5)
Bl -3
mr "

H{" is the Hankel funktion of the first kind of order zero (see [1], formula 9.1.3).
For r — 0, H(gl)(r) ~ —5=Inr. Thus integral equation (4) is weakly singular both in
cases n = 2 and n = 3. The integration over R" can be replaced by the integration
over supp a.

Problem (1)—-(3) and integral equation (4) are uniquely solvable if and only in the
homogeneous integral equation corresponding to (4) has only the trivial solution or,
equivalently, the homogeneous problem corresponding to, (1)—(3), i.e. the problem
with u? = 0, has only the trivial solution.

The unboundedness of the domain IR" in problem (1)—-(3) causes some numerical
difficulties. A simplest idea is to use grid methods in a large ball B(0, R), with
boundary condition 2% — jku® = 0 for |z| = R. This method produces very large
discrete problems. Another, more popular idea elaborated in [5] is to use coupled
finite and boundary methods: in a ball B(0, ) containing the support of a = 1 — b,
the problem is treated by finite elements; a boundary integral equation and the
Nystrom method are used to treat the problem in the domain |z| > p; finally, a
special equation is derived to produce appropriate boundary values of u + mg—g for
|z| = o. This approach is complicated in it essence. As mentioned in [2], the
volume potential approach, i.e. the solution of Lippmann—Schwinger equation (4)
instead of (1)-(3), has the advantage that the problem in an unbounded domain is
handled in a simple and natural way; a disadvantage is that one has to approximate
multidimensional weakly singular integrals and that the discrete problem derived
from (4) has a non-sparse matrix. In the present paper we try to show that actually
these disadvantages are not serious. First, the optimal convergence order

lon — aullx < eN*#lauf,  (0< A< p)

in the scale of Sobolev norms with any 4 > n/2 can be achieved by trigonometric
collocation method (cf. [6]) applied to a periodized version of (4) if a and u® are
sufficiently smooth (¢ € W*2(IR™) and u* € W/*?(R™)). Secondly, the N para-
meters of vy can be computed in O(N"In N) arithmetical operations. Finally, the
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algorithm needs to store O(N") quantities. The method is treated in Section 3. In
Section 2 we discuss a method of the second accuracy order:

max |u;p — u(jh)] < ch*(1+ |Inhl), h=1/N;
j

here ¢ may be only piecewise smooth. This method is a modification of a simplest
cubature formula method examined in [7] for more general weakly singular integral
equations. The purpose of the modification is to obtain a convolution system as
the discrete counterpart of (4) maintaining the second order of the approximation.
The convolution system can be solved in O(N"log N) arithmetical operations using
FFT and two grid iterations.

2 The case of piecewise smooth a

First we somewhat simplify the form of the integral equation (4). The change of
variables

F=kr, J=ry, 4@ =u(), a@) =aly), @(@)="u'(z)

transforms (4) into
W(&) = (@) ~ [ o(IF - g)i(g)dy
Rn

which is (4) with k = 1. Thus, without a loss of generality, we put k = 1 in (4).
To a great wave number x now there corresponds a large support of a, namely,
suppa = ksuppa. Further, instead of 4!, an entire solution to Helmholtz equation,
we consider an arbitrary sufficiently smooth function f : IR" — €. Thus our problem
reads as follows: given a piecewise smooth function a : IR® — € with support in an
open bounded set G C IR", and a smooth function f : R® —»C, find v : G — R"
satisfying the integral equation

u(@) = f() = [ @(le ~yhawul)dy (= €G). (6)

Recall that @ is given by formula (5). Solving (6) we obtain u(z) for z € G; for
z € R"\G, u(x) can be obtained after that by simple integration. Notice that due
to the Fredholm alternative, equation (6) remains to be uniquely solvable if it is
uniquely solvable for f(z) = u'(z), i.e. if problem (1)—(3) is uniquely solvable. Now
we make precise conditions on a used in this section. We assume that

a € W (G\I)

where I' consists of a finite number of piecewise smooth compact surfaces I'; (for
n = 3) or curves I'; (for n = 2) which may meet each other along manifolds of
dimension < n — 2. More precisely, every I'; satisfies the following condition (PS):
there exist constants ¢y > 0 and 79 > 0 such that, for z € T;, the piece I';NB(x, rq) of



I'; is representable in the form 2, = ¢(2'), 2’ = (21, ..., 25-1) € Z;, where z,..., 2,
is a suitable orthogonal system of coordinates obtained from the original system
Z1,...,%, by tha translation of the origin into the point x and a rotation of axes;
Zig C IR™! is a bounded closed region and ¢ = ¢; , is a continuous function on Z; ,
which is continuously differentiable with |grady(2')| < ¢y everywhere in Z; . except
possibly a manifold of dimension < n — 2. The surfaces of a ball, cylinder, cone
and cube are simplest examples of I'; satisfying (PS), together they may build more
complicated configurations, e.g. two tangential balls (one in another).
Let h > 0 be a discretization step. For j = (ji,...,jn) € Z", denote

Bj’h:{a::(xl,...,:cn)EIR": (jk—%)h<xk< (jk+é)h, k:l,...,n}.

This is a rectangular cell with the center at jh. We define the grid approximation
of a as follows. We put

ajp = a(]h) if Bj,h NI= @;

in particular,
ajpn = 0 if Bj,h N suppa = @ .

For B, NT # (0 we put
gj
ajn=h"" 231 a(z%)) meas B® with some =) € BY)
p:

where B](f’,z (p=1,...,q;) are the connectivity components of the open set B;,\I'.

The measure of BJ(-‘;",B may be computed approximately with an accuracy O(h™*1).

Further, define
o [ @i, 0#jez
aih 0 , j=0.

Take a sufficiently large N € IN and an open bounded set G € IR" (independent of
h) such that

suppa C »_ B;jn C G (7)
jezn
where N ;
Zy={jez": 5 < g < R k=1,...,n}.
We approximate (6) by the discrete problem
Usp = f(]h) — B Z @j_k,hak,huk,h (j & Z?]) . (8)

kezr,

This is a modification of the cubature formula method examined in [7]. The modifi-
cation is performed so that the discrete problem maintains the convolution structure.
The following convergence result can be followed from the general result of [7].
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Theorem 1 Assume that suppa satisfies (7), f € C*(G) and a € W2*(G\I') with
I' satisfying condition (PS). Finally, asume that the homogeneous integral equation
corresponding to (6) posesses only the trivial solution. Then system (8) is uniquely
solvable for all sufficiently small h > 0, and

max |u;, — u(jh)| < ch*(1 + |Inh|)
JEZY

where u € C(G) is the solution of (6) and u;y (j € Z%) is the solution of system

(8).

An application of the convolution multi-matrix of system (8) to the multi-vector
apuy, costs O(N™log N) arithmetical operations if FFT techniques is involved. This
enables to solve system (8) with the accuracy O(h*(1 +|Inh|) in O(N™In N) arith-
metical operations using two-grid iterations. For instance, putting M ~ N'/3 for
the coarse grid, 5 iterations are sufficient; the M-multisystems can be solved e.g.
by Gauss elimination. There are different other strategies for the two-grid methods.
We quote to [7] for numerical schemes. In Section 3.7 we present more details in the
case of smooth a and trigonometric collocation as the basis of the discretization.

3 The case of a smooth a

3.1 Periodization of the problem

From now we assume that

suppa C B(0,0), a€ WHX(R™), fe WM (RY), up> —g (9)

ocC

Due to the Sobolev imbedding theorem, it follows from (9) that a and f are conti-
nuous on IR™. Denote

Ggr =1{$ e R": lxk[<:]2, k ::1,...,n}

where R > 2p is a parameter. Multiplying both sides of (6) by a(z) we rewrite
equation (6) with respect to a(z)u(z):

a@)u(z) = a(2)f(2) - ala) [ Oz~ yDlawuwldy (v € Gr).

We are interested in finding of a(z)u(z) for = € suppa C B(0, ¢). For those z, only
values from B(0,2p) of the function ®(|z|) are involved; changing ® outside this
ball, the solution a(z)u(z) does not change in B(0, p). We exploit this observation
and define a new kernel K(z) which coincides with ®(|z|) for z € B(0,20). The
simplest possibility is to cut ®(|z|) off at |z| = R:

O(lz]), [z <R

K("”):{ 0 . zeGp\BO,R), =% (10)
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We also consider the possibility with smooth cutting:
K(z) = ®(jz))¢(lz),  ze€Gr, R> 2, (11)
with ¢ : [0,00) — IR satisfying the conditions
P e C®0,00), P(r)=1 for 0<r<20,%(r)=0 for r>R. (12)

After that we extend functions K, a and af from Gy to IR" as 2R-periodic functions
with respect to zy,...,x,; for extensions we use the same designations. Thus we
have a multiperiodic integral equation

v(@) = a(2)f(2) - a@) [ K(z - y)oy)dy. (13)
GRr

It is easy to see that a unique solvability of (6) involves a unique solvability of (13).
As already explained, the solutions are related by

v(z) = a(z)u(z) for z € B(0, ),
moreover, v is the 2R-periodization of au restricted to Gg. Further,
u(@) = f@) = [ ®(o-yholy)dy for =€ R" (14)
B(0,0)

and in particular

/Kx— y)dy for z € B(0, ).

3.2 Periodic Sobolev spaces H*

The trigonometric orthonormal basis of L?(Gg) is given by
- oz . . n
pi(@) = @R exp(imj - ), J=(n,---0n) €2 (15)

Introduce the Sobolev space H* = H*(Gg), A € IR, which consists of 2R-multipe-
riodic functions (distributions) u having the finite norm

lulls = (32 2aG)?)™”.

jezr

Here

i(j) = [ u@)p@)de = (we-), ez,
Gp

are the Fourier coefficients of u, and

{[Jl G2+ + )2 0#£jezn

111 , 1=



Notice that H* C WA2(IR"™), thus a function u € H* with A\ > n/2 is continuous.
We will also use the relation

u,v€ H, > n/2 = uv € H?, luvlla < exllullallvila;

a proof can be constructed as in [4] where somewhat different Sobolev spaces are
used.

3.3 Trigonometric collocation

Recall the designation

. N ___N

Let Ty be the N"-dimensional linear space of trigonometric polynomials of the form
Uy = Zjezj{, ¢jpj, ¢; € C. The formula

Pyv =Y 9(j)p;

jEz
defines the orthogonal projection Py in H* to Ty. Clearly,

Ny~
llv — Pyvl|y < (—2—) “Iwll, for A<pu, LpeR. (16)

For v € H*, u > %, we define the interpolation projection Qyv claiming
Qnvv € Ty, (Qnv)(jh) =v(jh), j€Z}, where h=2R/N.
The error of the trigonometric interpolation can be estimated by ( cf. (16))
lv — Qnvllx < c)\,p,NA""Hv[[u for 0<A<pu, p> g; (17)

a proof with a characterization of the constant c, , can be constructed following [8].
We solve the equation (13) by trigonometric collocation method

vy = Qn(af) — Qn(aKvy) (18)

where K is the integral operator from (13):

(Kv)(@) = [ K(o = yoly)dy.

Since K(z) is 2R-periodic, the eigenvalues and eigenfunctions of the convolution
operator K are known to be K(j) and ¢;(z), respectively:

~

Kop; = K(j)p; Jez).



In the case of cutting (10), closed formulae for K (j) are presented in Section 3.8.
According to those formulae,

o =32 p=2 )
Kol PR 125 G0
In the case of the smooth cutting (11),

|K()| < cgrlj|™ (j#0) for n=2 and n=3.

We present in Section 3.8 a cheep algorithm to approximate K (4), 7 € Z%, in this
case.

We quote to [6] for the study of the trigonometric collocation method in a more
complicated but one dimensional situation.

3.4 Matrix form of the collocation method

We have two representations of a trigonometric polynomial vy € Ty: (i) through
its Fourier coefficients by

on(z) = Z on (k) pr(z)

kezy,

with ¢ defined in(15); () through its nodal values by

vn(T) = Z UN(jh)<PN,j(5U)7 h = N
jezy,

with oy ; € Ty satisfying ¢n ;(kh) = ;4 (the Kronecker symbol), j,k € z%. An
explicit formula for ¢y ; is given by
o
ong(@) =N exp (z‘m’c' (%——NJ—)), JELY.

ke

It is easy to change the type of representation. Having the nodal values vy of
vy € Ty, its Fourier coeficients oy = Fyuy are given by the discrete Fourier
transformation Fy:

ow(k) = [ ox(@)p-r(e)ds = RN S ux(jh)exp { - mk%} kezn.
Gr JELY

Conversely, if we have the Fourier coefficients 0y of vy € Ty, then its nodal values
vy = Fn'On are given by the inverse discrete Fourier transformation F Y

92

on(ih) = @R 5 ax(kyexp {ink- 2}, j ey
kezn,
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Using the transforms Fy and Fy', the collocation method (18) can be repre-
sented as

uy = (af)n — anFy KnFruy
where ay and (af)~ present the nodal values at jh, j € Z%, of a and af, respectevely,

and Ky multiplies the Fourier coefficients oy (k) of 9y = Fyuy by K (k), k e z7%
the product of gy and Fy 'Kuy is to be taken pointwise at nodes. Thus, the matmx
form of the collocation method (18) is given by

An application of Fy or Fy' to a N"-vector vy or Oy in a usual way costs N2"
multiplications and additions but the FFT does this in O(N"log N) arithmetical
operations. The application of diagonal operations Ky and ay cost N™ multiplica-
tions. Thus, the application of Ay is cheap and therefore it is appropriate to solve
(19) by some iteration method. We return to this question in Sections 3.6-3.7.

With respect to Fourier coefficients, the matrix form of the collocation method
(18) reads as follows:

Ayoy =gy, Axn=1Iy+ FrnanFi'Ky, gn= Fn(af)n

3.5 Convergence of the collocation method
Lemma 1 Assume that a € H*, > n/2, and |K ()| < ¢|j|™2 (j #0). Then

NA»E 0<A<pu, u<2,
laK — QnaK |l ggamy <ed N2, 0<A<pu—2, p>2, (20)
NY# o —2<A<p, p>2.

Proof. First notice that K € L(H*, H*"?) for any A € IR. Consider the case p > 2,
0 <A< pu—2. Dueto (17),

laKv—@Qn(aKv)|lx < eN7*[laKv|xi2 < ¢ N7%al|rall Kvllasa < "N 72 [lallrszlv]lx

resulting to |l[aK — QnaK || ;s gry < ¢N72. The other cases can be analysed in a
similar way. O

In the case of cutting (10), n = 2, we have |K(5)| < c|j|~*2 (j # 0), and instead
of (20) we obtain

NY¥# 0<A<p, p<i,
aK — QnaK | gy <ed N2 0<a<pu—2, p> 3, 21
( 2> 2
NY“# =2 <A<p, p>32,

Theorem 2 Assume that the functions a and f satisfy (9), and the homogeneous
problem corresponding to (1)-(3), with k = 1, u' = 0, has only the trivial solution.
Then equation (13) has a unique solution v € H*, collocation equation (18) has a
unique solution vy € Ty for N > Ny, and

lon =iy < cllv = Quulls < ]l ,N*7*, 0< A< p. (22)



Proof. The bounded inverse to I +aK in L(H*, H*) exists since aK € L(H*, H*)
is compact and the homogeneous integral equation corresponding to (13) has only
the trivial solution. Using (20) or (21) we obtain that the inverse to I + QyaK in
L(H*, H*) exists for all sufficiently great N, and

I+ QnaK) Heamnmy <c (0<A<pu, N>N). (23)
Error estimate (22) follows form (23) and the equality
(I + QnaK)(vny —v) = Qn(af) —v - QnaKv=Qnv—v. 0

Thus we have an approximation vy € Ty to the 2R-periodic extension v of au.
An approximation to u outside B(0, g) can be defined by the discretization of (14):

un(e) = f(@) = b* 5 Ol — jhljun(jh), h=2R/N, |o| > 0.
jezn
It can be deduced from (22) that
un () = u(@)] < [Vl N7#, 2] > 20, (24)

where the constant c is independent of z and N (this constant has a bad behaviour
as |z| — o, therefore we restricted us to |z| > 20).
The following well known asymptotic formula for the solution of (6) follows from

(14) and the properties of ®(r) as r — oo (for the behaviour of H}(r), see formula
9.2.3 in [1)):

_ ell! ) 4 O]~ (+1)/2
u(z) = f(z) - Wuw(%‘) + O(|z| ), lz[ = o0,

where & = z/|z| and the far field pattern u., is defined by

142 .
" =, N =4,
Uoo (%) = / e o(y)dy, = ‘ﬁﬁ
Gr E , m=3.
A natural approximation to us, is given by
Uso, v (2) = 1™ Y e hyn(jh), @€ 5(0,1).
jezr,
Under conditions of Theorem 2,
Max |Ueo, N(Z) — Uoo(Z)] < clfv|| ,N7H. (25)

£€5(0,1)
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3.6 Solution of the system of the collocation method

As already mentioned, iteration methods are most natural to solve the system (19).
Due to (23), for the condition number vy of the system, with respect to the spectral
norm, we have

v = |ANIHITAR ] = 1T + QnaK || mo,m0) | (1 + QnaK) ™| ciaro oy < 7

where the constant v is independent of N. If v% denotes the kth iteration approxi-
mation by the conjugate gradient method applied to the symmetrized system

AvAvuy = Ayg,, Ay =Iv+Fy'KyFnal,
then (see e.g. [3])

vk — vnllo < ed*llof —vnlle,  a=(v—1)/(v+1),

and the accuracy ||vk —un|lo < eN7# (cf. (22)) will be achieved in O(log N/|loggq])
iteration steps. Since every iteration step costs O(N™log N) arithmetical operations,
the whole cost of the method is O(N" log? N) arithmetical operations. This amount
of the work can be reduced to O(N™log N) arithmetical operations with the help of
two grid iteration schemes.

3.7 Two grid iterations

Denoting
gN:QN(CLf)ETN, TN:QNG,KE[,(H/\,H/\),

the collocation equation (18) can be rewritten as vy + Twvy = gn. Take a M €
IN of order M ~ N® 0 < © < 1. The collocation equation is equivalent to
(I+TM)_1(I +TN)UN = (I -+ TM)_lgN, or
vy = Ty NUN + gu,N
with
Tun = (I +Tau) ' (Tsr — Tw), gun =T +Tu) 'gn .

Under conditions of Lemma 1 and Theorem 2 we have for 0 < A\ < p— 2, p > 2,
the estimate (see (20) and (23))

”TM,NHK(H)*,HA) S CLM_Q S 0,47\[-2@.

Thus, the norm of the operator Ty, v is small, and we may apply the iterations

’Uf\; = TM,NU§;~1 + MmN (k‘ =1,2,.. ) (26)
starting e.g. from v} = vy = (I + Tas) "*gar. For the exact collocation solution vy
we have vy = Ty yUN + guy and

’U}]-Cv —UN = TM,N(’U},%_I - ’UN) = ... = TI{C,[,N(U?V - ’UN) y
ok —onlls < 1Tl vy (low = vlla + llvar — vll2)

< dANTORORTI ||, <eNVEl, (0< A< p)
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with a small € > 0 (cf. (22)) provided that (2k + ¢ — A\)® > p — X. This condition
is most strong for A = 0O:

1-0
1
k > 55 M for fixed © € (0,1),
or equivalently
o>~ for fixed k € IN.
-+ 2k

So only few iterations (26) are needed to achieve the accuracy (22) by v%, and this
number of iterations may be taken to be independent of N. On the other hand, if we
put 0 > - 747, then only one iteration (26) is sufficient, i.e. asymptotically already
vk achives the accuracy (22).

To present the matrix form of the two-grid iterations (26), notice that

(T+Ty) ' =1~ +Ty) "Ty.

Thus (26) can be written in the form where (I — T),)™! is applied only to functions
from Ty

vy = [ = (I 4+ Tag) ' Tod][(Tar — T )ok ! + g] -
With respect to the Fourier coefficients of v%, the matrix form of the two-grid
iterations (26) is as follows:

0% = [In — PysAnt FruanRunFy Kyllin
(PN mFuay Ry — Fyay) FilKnok . (27)

The designations le, FN, .7-';, , K N, @y, gy have been explained in Section 3.4;
Ry vwy restricts wy from the net hZf = {hj : j € Z}%}, h = 2&, to the subnet
Wz, B = 28 (we assume that h'/h = N/M is an integer); the prolongatlon operator

Py is deﬁned by

s e [ aw), jezy
(PN,MwM)(j)_ { 0 ’ jéZ%\Z?{,[.
Of course, a vector uy = /1;{ wys 1s computed solving the M™-system AMUM =
wy- This can be done e.g. by the conjugate gradient method in O(M™log® M) =
O(N®"log® N) arithmetical operations as explained in Section 3.6. For0 < © < 1/3,
also a direct solution of the M"-system e.g. by the Gauss elimination holds the
amount of work in O(N™) arithmetical operations.

Most costful operations in (27) are Fy and Fy'. During one iterations, they
occur three times, plus once to compute gy. Asymptotically most cheep version of
(27) is obtained putting © > u/(p + 2). As explained, then only one iteration (26)
is sufficient to achive the accuracy (22); respectively, only once we have to solve
M™-system in 1terat10n(27) and once it should be done to compute the initial guess
#% = da = A7} gr. The whole amount of the computational work is O(N "log N)
arithmetical operations, and it is caused by 4 operations with Fy and Fg'; all other
operations cost O(N™) or less.

Recall that this analysis is based on (20) for 0 < A < p— 2, > 2. It is easy to
complete the analysis considering other cases in (20) and (21).

i4



3.8 Appendix: Fourier coefficients of K(z)

Clearly, (A+1)p; = (1—-72|j|*/R?)p;. For|j| # R, denoting \; = R?/(x?|j|?—R?),
with help of the Green formula we obtain

KG) = /K o_i(@)dz = -\, /K (A + 1)p_;(x)de

= —)\lim / K(z)(A + 1)o_y(a)ds

J6—>O
B(0,R)\ B(0,9)
. . &p_j oK
- (] - )% s
S(0,R)  S(0,8)

+ ((A+1)K(x))<p_j(a;)dx}

B(0.R)\B(0,)

where 2 = Y7, %’j 7o~ According to the construction (see (10) and (11)) K(z) =

®(]z|) on the sphere (n = 3) or circle (n = 2) S(0,6). Taking ino account the
asymptotics of ®(r) and &'(r) as r — 0, we obtain

K(@j) = /\1{90—3'(0)— / (K&p_j—a—K%D—j)dS

or or
S(0,R)

60
B(0,R)\B(0,8)

~lim / (A + 1)K(;L‘))cp_j(:c)da;} . (28)
Cutting (10), n = 3. According to (10), since (A + 1)K () = (A + 1)®(|z|) = 0
for 0 # = € B(0, R), (28) reduces to

KG)="e-0) - o) [ Etastam) [ o as)

or

5(0,R) 5(0,R)
We use the symmetry argument to evaluate
/ eiwj-:c/RdS — R2 / €i7rj~zds — R2 / eiﬂfjfa:lds

S(0,R) 5(0,1) 5(0,1)

1
L 4R?
— R2 / 63771313127rd$1 I e Slﬂ(ﬂ-‘]l) ’ ] # 0.

g, ¥l
Similarly
. 1 .
[ Lewretngs = L[ (iay. E)mreinas
S(0,R) S(0,R)



=R / (im - 2)e™*dS = R / ir|jlz e ds

5(0,1) 5(0,1)

1
. 4
= Rirl|j| /xle”m’“%rda:l = 4w Rcos(r|j|) — w—?sin(w}j’) , J#0.

Recalling that ¢_;(z) = (2R)*/? exp ( inj - R) for n = 3, this results to

o R? anle un . R ., .
KO) = e 2|t = e (costrli) i sinGali) ] g 0,
K(0) = —(2R)™?[1 - e"(1 - Ri)].

For 7|j] = R we obtain
K(j) = —i27°?R™Y2(1 — ¢®R ' sin R)
by the L'Hospital rule or directly noticing that

1 .
O(|z]) = —&T—Z(A +1)e' for n=3.

Clearly |K(j)| < ¢|5|™% (j # 0) in the case of cutting (10), n = 3.
Cutting (10), n = 2. Now

/ e TRls = R / €™ Tds = R / el g

S(O0,R) 5(0,1) S5(0,1)
_ap / sbles(1 — 2)V2ds, — 4R / cos(rjfa) (1 — a%) e,

= 27TRJ0(’R’I][)

and similarly
0 irjx : :
| gmeie s = —arjl(nlj))

S(0,R)
(see [1], formulae 9.1.20 and 9.1.28 for the Bessel fubctions Jy and J;). This results

5 R? 1 L. . I -
KG) = apm— e R L+ ginlrlilh(rliD B (R) - Rau(rli) L (R)

- for wljl R, j#0,
~(2R)™ —¥(R) = —2R)™ + TH(R),

=
c
I

rRi[Jo(R)HS" (R) + J(RHM(R)] for xj| =

Qo

Since J,(r) ~ 1/2/(nr) cos(r — svm — 1) as 7 — oo (see [1], formula 9.2.1), we have

|K(§)] < ¢|j|®% (j # 0) in the case of cutting (10), n = 2.

ie



Cutting (11), n =2 or n = 3. Using the soft cutting (11) we obtain from (28)

() = n{eR 2 - [ (Ve vy + 08v)e s} = MR - 1()

Gr

where the function
x(z) :=2Ve(|z|) - Vi (lz|) + @(lz) Ay (|z]) = 20" (r)y' (r) + D (r)[4" (r) + 2r~ "¢/ (r)]

is C"**-smooth and supported on the annulus 290 < 7 < R (see (12). Therefore
XU < 6plg|77 (0 # j € 2") with any p > 0, and |K(j)] < ¢|]A;] < ¢|j]72 (5 # 0).
Approximating x by Qax, M ~ N®, 0 < © < 1, we have

max [x(z) = (Qux)(@)] < ¢llx = Quxll> < M ?[|x]lp+2
with any p > 0. The computation of (Q/Jx) (7), 7 € Z%,, from grid values of x by

FFT costs O(M™log M) arithmetical operations. Thus, we have a cheep way to
compute the approximations

. R2

Kn(j) = m{(ﬂz)‘m — @ux)(j)} for j €z},
% ; R2 -n/2 . n n
Kn(j) = W(QR) for j € Z}\z},

to K(j) of a high accuracy:

%%% |Kn(5) — K(5) < ¢,N™||x|lp42 with any p > 0. (29)
There is also a possibility for an exact expression of x(j) through integrals on (2o, R)
from some smooth functions containing the multipliers 1'(r) and " (r).
Let us briefly discuss also the construction of cutting function ¢ satisfying (12).
Take a function ¢ € C*[0,00) such that ¢*)(0) = 0 for all £ = 0,1,2,..., eg.
©(s) =e™%* § > 0. Then

1 , 0<r <2
b(r) =1 ;" [Fo(s — 209(R~s)ds, 20<r<R
0 , T> R

with
R
co = / o(s — 20)p(R — s)ds
20

satisfies (12). A fortune is that we need only derivatives ¢'(r) and ¥"(r), not ¢ (r)
itself, and the derivatives of ¢ are available from the formula. The only integral
defining ¢y can be approximated with a high accuracy by the trapezoidal rule since
the integrand and all its derivatives vanish at the end points 2p and R. If we put
©(s) = s™ we have ¢ = %%(R — 20)*™~1 and ¢ € C™[0, c0). With m sufficiently
large, also this cutting function % is suitable for our purposes.
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