
Osa IX

Z–muunnos
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4 Eräiden funktioiden Z–muunnoksia

A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 2007 299 / 322

1 Johdanto
Diskreetit funktiot

2 Z–muunnos

3 Differenssiyhtälö
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Johdanto

Z–muunnos on Laplace-muunnoksen diskreetti versio. Z–muunnosta
voidaan käyttää differenssiyhtälöiden ratkaisemiseen.

Differenssiyhtälöitä voidaan käyttäää differentiaaliyhtälöiden
numeerisessa approksimoinnissa ja niitä esiintyy myös mm.
digitaalisessa signaalinkäsittelyssä ja algoritmianalyysissä.

Muunnos syntyi differenssiyhtälöitä soveltaneen tekniikan alan
tutkimuksen yhteydessä 1940-luvulla.

Nimitys tulee muunnoksessa esiintyvästä muuttujasta z , ja sen on
antanut Columbian yliopistossa vaikuttanut tilastotieteilijä John
Raggazini tutkimusryhmineen 1952.

A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 2007 301 / 322



Diskreetit funktiot

Määritelmä

Sanomme, että funktio f on diskreetti, jos se on määritelty vain
(numeroituvassa) diskreetissä joukossa (D), esimerkiksi reaaliakselin tai
kompleksitason erillisissä pisteissä. Rajoitumme tässä vain C-arvoisiin
funktioihin.

Lukujono on diskreetti funktio k 7→ xk ; jokaista k ∈ N vastaa luku xk .

Toisaalta jokainen diskreetti funktio on lukujono: Numeroimalla
joukon D pisteet D = {xn : n ∈ N} voidaan tarkastella diskreettiä
funktiota g : n 7→ xn 7→ f (xn) millä tahansa funktiolla f joka on
määritelty joukossa D. g on itse asiassa kahden diskreetin funktion
yhdiste.
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“Lukujonon Laplace-muunnos”
Lukujono x(k) on funktiona määritelty vain luonnollisilla luvuilla. Emme
siis suoraan voi laskea Laplace–muunnosta

∫
x(t)e−stdt. Asettamalla

x(t) = 0, kun t ∈ R \ N, integraali suppenee mutta saamme muunnoksen
arvoksi aina nolla. Osoittautuu että toimiva tulkinta on muokata
integraalia ja asettaa integraalissa diskreettien pisteiden painoksi yksi ja
muiden pisteiden painoksi nolla: Jonon x(k) Laplace-muunnos
diskreetillä painofunktiolla on

L{x}(s) =

∫ ∞

0
x(t)e−st δ(t − k)︸ ︷︷ ︸

paino

dt =
∞∑

k=0

x(k)e−sk

=
∑
k

x(k) e−sk︸︷︷︸
=z−k

z=es

=
∞∑

k=0

x(k)z−k ,

eli jonon Z–muunnos. Huomaa, että

s ∈ {s ∈ C : Re s > α} ⇔ z ∈ {z ∈ C : |z | > eα}.
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Z–muunnos

Määritelmä

Oletetaan, että x : N → R on funktio (lukujono). Määritellään funktion
(lukujonon) Z–muunnos

X (z) = Z {x}(z) =
∞∑

k=0

x(k)z−k , z ∈ C, |z | > R

kaikille riittävän suurelle R jotta sarja suppenee.

Merkitsemme siis jonon x(k) Z–muunnosta tyypillisesti isolla kirjaimella
X . Voimme myös tulkita Z–muunnoksen kuvaukseksi jonosta

potenssisarjaksi

Z : {xk} 7→
∞∑

k=0

xkwk , jossa w = 1/z .
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Z–muunnoksen ominaisuuksia

Lineaarisuus: jos Z {x} = X ja Z {y} = Y niin

Z {ax + by} = aX + bY ∀a, b ∈ C

Vakiofunktio eli vakiojono x(k) = 1

Z {x} =
∞∑

k=0

z−k =
1

1− z−1
=

z

z − 1

Geometrinen jono x(k) = wk :

Z {x} =
∞∑

k=0

z−kwk =
1

1− (z/w)−1
=

z

z − w

Geometrisella funktiolla, k 7→ wk , (geometrisella jonolla) kertominen:
y(k) = wk x(k)

Y (z) = Z {y}(z) = Z {x}( z

w
). = X (

z

w
).
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Z–muunnoksen ominaisuuksia
Z–muunnokselle pätee kaikki Laplace-muunnosta vastaavat ominaisuudet
(onhan Z–muunnos oikeastaan Laplace-muunnos erityistapauksessa).

Delta-funktiota vastaa nyt diskreetti deltafunktio (jono)

δ = {1, 0, 0, 0, . . . }

ja konvolutiota summa:

(x ∗ y)k =

∫ ∞

0
x(t)y(k − t) δ(t − k)dt =

∞∑
j=0

xjyk−j .

jolloin suoraan kahden sarjan summakaavasta seuraa

Z {x}Z {y} =

( ∞∑
k=0

xkz−k

)( ∞∑
k=0

xkz−k

)
=

∞∑
k=0

z−k
k∑

j=0

xkyk−j︸ ︷︷ ︸
(x∗y)k

= Z {x∗y}.
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Siirros
Lukujonolle on helppo määrittää siirros: Lukujonosta x(n) ∼ {xn}
muodostetaan uusi vasemmalle siirretty lukujono y(n) kirjoittamalla

y(n) = x(n + 1)

{y0, y1, y2, . . . } = {x1, x2, x3, . . . }

jolloin

Z {ỹ} =
∞∑

k=1

xkz−k+1 = z
∞∑

k=1

xkz−k = z(Z {x} − x0)

Vastaavasti siirrolle oikealle

ỹ = {ỹk} = {0, x0, x1, x2, . . . }

Z {ỹ} =
∞∑

k=0

xkz−k−1 = z−1Z {x}

Tämä on tärkeä tulos ns. differenssiyhtälöitä ajatellen.
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Differenssiyhtälö
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Sovellus: Differenssiyhtälö
Ratkaistaan jono yk , kun

yk+1 = αyk + xk , y0 = 1; xk = 2−2k , k ≥ 0

Merkitsemme β = 1/4 ja Z–muunnamme yhtälön

z(Y (z)− y0) = αY (z) + X (z), X (z) =
z

z − β

joten jos α 6= β,

Y (z) =
z

(z − β)(z − α)
+

z

z − α

=
1

α− β

[
α

z

z − β
− β

z

z − α

]
+

z

z − α

y(k) =
α

α− β
βk +

(
− β

α− β
+ 1

)
αk
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Jos α = β,

Y (z) = z−1

(
z

z − β

)2

︸ ︷︷ ︸
Z {a}

+
z

z − β︸ ︷︷ ︸
Z {b}

joten bk = βk ja, koska Z {b ∗ b} = (Z {b})2

ak = (b ∗ b)k =
k∑

j=0

βjβk−j = (k + 1)βk

Saamme

yk =

{
1 , k = 0

ak−1 + bk = βk−1(k + β) , k ≥ 1
.
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Differenssiyhtälö

N. kertaluvun lineaarisen, vakiokertoimisen differenssiyhtälön
perusmuoto on

N∑
n=0

any(k − n) =
M∑

m=0

bmx(k −m), a0 6= 0.

⇔ a0yk + a1yk−1 + . . . aNyk−N = b0xk + b1xk−1 + . . . bNxk−M

jossa y ratkaistaan, kun x tunnetaan.

Z–muunnosta voidaan käyttää differenssiyhtälöiden ratkaisemiseen
samaan tapaan kuin Laplace-muunnosta käytetään
differentiaaliyhtälöiden ratkaisemiseen.

Itseasiassa differentiaaliyhtälöiden numeerinen ratkaiseminen
differentiaaliyhtälöitä approksimoidaan differenssiyhtälöllä, esimerkiksi
jatkuvan ajan t sijasta tarkastellaan diskreetteja ajanhetkiä
t0, t1, t2, . . . ja vastaavasti ratkaisua y(t) sijasta approksimaatiota
yk ≈ y(tk).
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Esimerkki: Fibonaccin luvut

Kuva: Leonardo Pisalainen (n. 1170-1250), joka tunnetaan paremmin
nimellä Fibonacci (filius Bonacci, eli Bonaccion poika). Kuuluisa lukujono
löytyy kanien lisääntymistä käsittelevästä tehtävästä kirjassa Liber Abaci
(Laskujen Kirja). Kirja on myös Euroopassa ensimmäinen, jossa käytetään
arabialaista (oikeimmin intialaista) lukujärjestelmää.
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Esimerkki: Fibonaccin luvut, jatkoa

Fibonaccin lukujono määritellään kaavalla f (n + 2) = f (n + 1) + f (n).

Tämä kaava voidaan tulkita differenssiyhtälöksi, missä alkuarvot ovat
f (1) = f (0) = 1.

Kysymys: Halutaan löytää suljettu muoto (eli kaava) funktiolle f (k),
joka parametrilla k antaa k:nnen Fibonaccin luvun.

Ratkaistaan ongelma Z–muunnoksen avulla.
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Esimerkki: Fibonaccin luvut, jatkoa

Tehdään Z–muunnos differenssiyhtälöllä f (n + 2) = f (n + 1) + f (n):

z2(F (z)− f (0)− z−1f (1)) = z(F (z)− f (0)) + F (z).

Sijoitetaan alkuarvot f (1) = f (0) = 1 ja ratkaistaan yhtälö
algebrallisesti

F (z) =
z2

z2 − z − 1
.

Etsitään nimittäjän nollakohdat; w± = (1±
√

5)/2. Nyt nimittäjä
voidaan jakaa tekijöihin:

z2 − z − 1 = (z − w+)(z − w−).
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Esimerkki: Fibonaccin luvut, jatkoa

Etsitään osamurrot

z

(z − w+)(z − w−)
=

c+

z − w+
+

c−
z − w−

.

Saadaan c± = ±w±/
√

5, koska w− − w+ =
√

5.

Voidaan kirjoittaa (huomaa z osoittajassa)

F (z) =
1√
5

(
zw+

z − w+
− zw−

z − w−

)
.

Koska Z {wk
±} = z/(z − w±), saadaan

f (k) =
1√
5
(wk+1

+ − wk+1
− )
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Esimerkki: Fibonaccin luvut, jatkoa

Koska w+ + w− = 1, voidaan kirjoittaa w+ = ϕ, w− = (1− ϕ), missä

ϕ =
1 +

√
5

2
≈ 1, 618033989

on kultaisen leikkauksen suhde.

Olemme johtaneet Jacques Binetin (1786-1856) tunnetun kaavan:

f (k − 1) =
ϕk − (1− ϕ)k√

5
.

A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 19. lokakuuta 2007 317 / 322



1 Johdanto

2 Z–muunnos

3 Differenssiyhtälö
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Vakiofunktio x(k) = 1, k ≥ 0

Tarkastellaan funktiota x(k) = 1.

Lasketaan Z–muunnos. Saadaan

X (z) = Z {x(k)} =
∞∑

k=0

z−k .

Kyseessä on geometrinen sarja. Saadaan

X (z) =
1

1− z−1
=

z

z − 1
.
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Porrasfunktio x(k) = k , k ≥ 0

Tarkastellaan funktiota x(k) = k.

Lasketaan Z–muunnos. Saadaan

X (z) = z−1 + 2z−2 + 3z−3 + . . . (4.1)

Jaetaan z :lla, siis

z−1X (z) = z−2 + 2z−3 + 3z−4 + . . . (4.2)

Lasketaan yhteen (4.1) ja (4.2). Saadaan

(1− z−1)X (z) = z−1 + z−2 + z−3 + . . . =
z−1

1− z−1
.

Siis

Z {x(k)} =
z−1

(1− z−1)2
.
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Funktio x(k) = k2, k ≥ 0

Tutkitaan funktiota x(k) = k2.

Lasketaan Z–muunnos:

Z {k2} = z−1 + 4z−2 + 9z−3 + . . .

Kerrotaan z−1:llä:

z−1Z {k2} = z−2 + 4z−3 + 9z−4 + . . .

Vähennetään alempi yhtälö ylemmästä. Uudelleenjärjestämällä
termejä saadaan:

(1− z−1)Z {k2} = −z−1 + 2[z−1 + 2z−2 + 3z−3 + . . .]

− [z−2 + z−3 + z−4 + . . .]
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Funktio x(k) = k2, k ≥ 0, jatkoa

Havaitaan, että keskimmäinen sulkeissa oleva jono on Z {k}. Loput
muodostavat geometrisen sarjan, joten saadaan

Z {k2} =
2z−1

(1− z−1)3
− z−1

(1− z−1)2

=
z−1(2− 1 + z−1)

(1− z−1)3

=
z−1(z−1 + 1)

(1− z−1)3
.
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