
interpolation16.tex

1 Interpolation and approximation

General question: How to approximate a given function with a class of simpler functions.

Assume we are given the following table of values:

x0 x1 x2 . . . xn

y0 y1 y2 . . . yn

Table 1:

The table may consist of some measured data or values yk of a given function at the given
xk-points

If we know or if there’s reason to believe, that the y-values represent values of a smooth
1 function, it may be reasonable to look for a function in a given class of functions that
passes through all the data points. This is called interpolation.

In case the measurements are inaccurate or there are other reasons, like lots of data, it
is often more reasonable to look for the trend of the data instead, and thus give up the
requirement of the model function to exactly pass through the data points. Instead of
interpolation we then usually look for a least squares approximation.

Typically the class of simpler functions is taken to be polynomials but other “basis func-
tions” are also possible. For instance periodic data is better approximated by trigono-
metric polynomials.

In addition to linear approximations (problem parameters appear linearly), there are
natural non-linear models, whose solution requires non-linear optimization techniques.

1By smooth we mean a function that is at least continuous and has sufficiently many derivatives for
the application

1

1.1 Polynomial interpolation

1.2 Review to polynomial basics

Start by a well-known “high-school theorem”:

Theorem 1 If the polynomial p(x) = a0 + a1x + a2x
2 + . . . + anx

n has a zero x0, then
p(x) is divisible by (x− x0):lla.

Proof:
Now,

p(x) = p(x)− p(x0) = a1(x− x0) + a2(x2 − x2
0) + . . .+ an(xn − xn

0).

Each term (xk − xk
0) has (x− x0) as a factor because of the formula:

xk − xk
0 = (x− x0)(xk−1 + xk−2x0 + . . .+ xxk−2

0 + xk−1
0).

From this we get very simply a “uniqueness theorem”.

Corollary 2 If two polynomials of degree at most n agree at n+ 1 different points, they
are identical.

Proof: Let p and q be polynomials of degree at most n, which agree at the distinct points
x0, . . . , xn. Then their difference r(x) = p(x)− q(x) is a polynomial of degree d ≤ n.

Now, r has n+ 1 and thus certainly d+ 1 different zeros x0, . . . , xd.

Applying d times Theorem 1 gives us the representation

r(x) = c(x− x0).(x− xd−1),

with some constant c .

As r(xd) = 0 and all factors xd−xi, i = 0 . . . d− 1 are different from zero, c must be zero.
Thus r(x) = p(x)− q(x) ≡ 0.

Note 3 Let’s emphasize that all what is needed for this conclusion is the above eleman-
tary reasoning. So no dependence on the much deeper Fundamental theorem of
algebra.

2

1.3 Polynomial interpolation

Interpolation task:

Given n + 1 x- and y-values (Table 1), find a polynomial p of degree at most n, that
satisfies

p(xk) = yk, k = 0, . . . , n.

Solution by linear system of equations

Let p(x) = a0 + a1x+ . . .+ anx
n.

There are n+1 unknown coefficients a0, a1, . . . an, and the known data points give us n+1
equations p(xk) = yk, k = 0, . . . n. So it’s reasonable to hope for a (unique) solution.

Let’s start with an example:

Example 1 Let x0 = −2, x1 = −1, x2 = 3 and y0 = 1, y1 = −2, y2 = 5. We are looking
for a 2nd degree polynomial

p(x) = a0 + a1x+ a2x
2, satisfying p(xk) = yk, k = 0, 1, 2.

Thus we get the system of equations
a0 + a1(−2) + a2(−2)2 = 1
a0 + a1(−1) + a2(−1)2 = −2
a0 + a13 + a232 = 5

for solving the coefficients a0, a1, a2.

A =


1 −2 4
1 −1 1
1 3 9

 ja b =


1
−2
5


Note the structure of the matrix A: First column: ones, second column: xdata, third
column: xdata2.

In this simple case we could build A just row-wise and proceed as follows:

3

>> A=[1 -2 4;1 -1 1;1 3 9]

A =
1 -2 4
1 -1 1
1 3 9

>> b=[1;-2;5]

b =
1

-2
5

>> a=A\b

a =
-3.1000
-0.1500
0.9500

A generalizable way of forming the matrix A would be:

>> xdata=[-2;-1;3];
>> A=[ones(3,1),xdata,xdata.^2]

This kind of matrix has the name Vandermonde matrix.

Note 4 Matlab has the command vander. Try vander(xdata) and fliplr(vander(xdata))
. See also help vander, help polyval ,
http://se.mathworks.com/help/matlab/ref/polyval.html

Plot the xy-data

>> xdata=[-2 -1 3];
>> ydata=[1 -2 5];
>> plot(xdata,ydata,’o’)
>> hold on

4

Add interpolation polynomial to the picture

>> x=linspace(-2.1,3.1,100); % 100 evalution points.
>> p=a(1)+a(2)*x+a(3)*x.^2; % Note .^
>> plot(x,p)
>> xlim([-2.1 3.1]) % Adjust x-view.
>> grid on

Note 5 Matlab has the command polyval for evaluating polynomials. It is highly
recommended in general. Its form is polyval(coeff,x) but the coefficient vector is
given in the “most significant first” order. Thus in this case one would do
p=polyval(flipud(a),x);

(Note here that a is a column vector, thus flipud instead of fliplr.)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

5

6

The obvious first check is to see if the polynomial passes through all data points, like in
this figure.

5

In the general case we are looking for a polynomial

p(x) = a0 + a1x+ . . .+ anx
n

and we are led to the system of equations with matrix A and rhs y

A =



1 x0 . . . xn
0

1 x1 . . . xn
1

...
1 xn . . . xn

n

 , y =


y0
...
yn

 .

There is a unique solution provided det(A) 6= 0.

As noted earlier, A is a Vandermonde matrix. It is possible to derive a nice formula for the
determinant as a product of differences of the xk-points, thus showing that it’s different
from zero as long as the xk-points are distinct.

However, we don’t need to do (or believe in) this exercise, as the existence will be proved
by a clever direct construction (invented by Lagrange) and uniqueness was already shown
in Corollary 2.

Note 6 A Vandermonden matriisi (with distinct x0, . . . , xn) is non-singular, but it gets
more and more ill-conditioned 2 as n increases.

1.4 Lagrangen interpolation method

The interpolation task has two beautiful constructive solutions. One is due to Lagrange
and the other, guess who, Newton.

Let’s proceed with the former.

Thus we are given distinct points x0, . . . , xn and corresponding arbitrary (not necessarily
distinct) y−points like in Table 1.

Our task is to construct a polynomial p of degree at most n that “interpolates the given
data”, ie. satisfies: p(xk) = yk, k = 0 . . . n.

2Briefly: small errors in data cause large errors in results

6

Lagrange’s idea is a kind of orthogonal representation of the polynomial in terms of simpler
polynomials in the form

p(x) = y0L0(x) + y1L1(x) + . . .+ ynLn(x).

Let’s see if we can choose the polynomials Lj of degree n so that they only depend on the
xdata and satisfy the “orthogonality type” relations:

Lk(xj) = δkj =

1, if k = j

0, if k 6= j

If such poynomials can be found, our problem is immedisately solved, because

p(xk) = y0L0(xk)︸ ︷︷ ︸
=0

+ . . .+ ykLk(xk)︸ ︷︷ ︸
=yk

+ yk+1Lk+1(xk)︸ ︷︷ ︸
=0

+ . . .+ ynLn(xk)︸ ︷︷ ︸
=0

= yk

How to find the “basispolynomials” Lk

To avoid notational complications, let’s look at L0. It must have zeros x1, x2, . . . , xn. Such
a polynomial can be written as

L0(x) = c0(x− x1)(x− x2) . . . (x− xn)

with some constant c0, which is determined by the condition L0(x0) = 1. Thus

c0 = 1
(x0 − x1)(x0 − x2) . . . (x0 − xn) .

Hence,
L0(x) = (x− x1)(x− x2) . . . (x− xn)

(x0 − x1)(x0 − x2) . . . (x0 − xn)

Similarly for any Lk, so that the formula for Lk can be written as.

Lk(x) =
n∏

j=0,j 6=k

x− xj

xk − xj

.

In words:
Numerator: Product of terms (x− xj), j 6= k
Denominator: Same product evaluated at x = xk (the term (xk − xk) is “luckily” absent
in the denominator.)

This formula can be directly turned into a Matlab function:

7

function y = Lag(k,xdata,x)
% Lagrange basis function for xdata evaluated at vector x.
% k refers to k^th data point.

n=length(xdata);
y=ones(size(x));
for j=[1:k-1 k+1:n]

y=y.*((x-xdata(j))./(xdata(k)-xdata(j)));
end

There’s a neat little trick here if you think of the for-loop when k=1. What is 1:0 ? Let’s
see:

>> 1:0
ans =

Empty matrix: 1-by-0

Thus the loop indices are just right for k = 1 as well.

The first test would be:

M=zeros(N,N);
for k=1:N

M(k,:)=Lag(k,xdata,xdata);
end

Resulting as expected:

M
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Some graphic illustartions could be done along these lines:

8

xdata=[0 2 5 8 7]
N=length(xdata);
x=linspace(-.5 ,8.5); % Evaluation points
plot(x,Lag(2,xdata,x),xdata,Lag(2,xdata,xdata),’x’)
grid on

VIIMEISTELE TEKSTIA !!!

Problem 1 Write a function polinterp:

y=polinterp(xdata,ydata,x)
%

Use the function Lag.

%%% Lagscript: Demonstrate Lagrange polynomials
%
%% Function Lag:
type Lag
xdata=[0 2 5 8 7]
%%
M=zeros(N,N);
for k=1:N

M(k,:)=Lag(k,xdata,xdata);
end
M
%%
close all
N=length(xdata);
x=linspace(-.5 ,8.5); % Evaluation points
%subplot(2,1,1)

plot(x,Lag(2,xdata,x))
hold on
plot(x,Lag(4,xdata,x))
plot(xdata,0*xdata,’o’)

%plot(xdata,Lag(2,xdata,xdata),’or’)

9

title(’Lagrange multiplier functions L_2 , L_5’)
legend(’L_2’,’L_5’,’Location’,’NorthWest’)
grid on

%%
figure
%subplot(2,1,2)
hold on
plot(xdata,0*xdata,’o’)
plot(xdata,ones(1,N))
grid on
for k=1:N

plot(x,Lag(k,xdata,x))
plot(xdata,Lag(k,xdata,xdata),’xk’)

end
title(’Whole set of Lagrange multipliers for xdata’)

-2 0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

2

2.5

Lagrange multiplier functions L
2
 , L

5

L
2

L
5

Figure 2: Lagrange multiplier functions L2, L5

10

-2 0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Whole set of Lagrange multipliers for xdata

Figure 3: All Lagrange multiplier functions for xdata

Kts, vihko s. 5, ehkä parempi esittää niin ... 3

Example 2

1.5 Interpolation error

In case the y-values are the values of a known smooth function f , it is possible to derive
an error formula.

Theorem 7 Error formula for polynomial interpolation Let f have n+ 1 contin-
uos derivatives on the interval where the points x0, . . . , xn lie.

Let pn be the interpolation polynomial for this data

Then the error εn(x) = f(x)− pn(x) satisfies
3Jossain on tuo maaginen vihko ehkä vuodelta 2003, nyt on 6.4.2014 ja nyt 9.8.2016

11

εn(x) = (x− x0)(x− x1) . . . (x− xn)f
(n+1)(ξ)

(n+ 1)! ,

where ξ is a point on the interval including all the xk−points and x.

Proof: The proof is a straightworward application of Rolle’s theorem (apply n times).
Let’s skip it here.

Note 8 The point ξ is unknown, so all we can do is to use the maximum of the (n+ 1)st

derivative. Computer algebra is needed, one possibility is to use Matlab’s symbolic toolbox.
The maximum need’n be accurate, figure is enough. There are cases where the estimate
is very coarse, but it gives a basis for the analysis of it’s behaviour.

12

