
Lecture 3: Parallel computing with MATLAB
Examples on optimization problems

Heikki Apiola
April 16, 2019

Aalto University
heikki.apiola@aalto.fi,juha.kuortti@aalto.fi

Parallel Computing Toolbox

General concepts

The PCT (Parallel Computing Toolbox) allows exploitation of
multicore processors, and it supports the use of computer clusters
and graphics processing units (GPUs).

Goals of parallel computing

• Efficiency: Gain remarkable speedup distributing a
computational task between several computing units, which
work simultaneously with parts of the task. (Decompose your
task into independent parts that may or may not
communicate with each other.)

• Memory: Solve larger problems than can be done in one
computational unit.

Parallel pool

A parallel pool is a set of MATLAB® workers on a compute cluster
or desktop.

More details: MathWorks:Run Code on Parallel Pools

https://se.mathworks.com/help/parallel-computing/run-code-on-parallel-pools.html;jsessionid=bc7a6982e78fb31d6dc0db31a416

Difficulties with parallel computing

• Computer architectures evolve ⇒ programming techniques
have to evolve as well.

• How the data has to be stored and shared between
computational resources

• In some cases it may be difficult to achive satisfactory speed
improvements, especially when there’s need to communicate
between different computational units.

• Writing and debugging parallel code is often difficult

What Matlab’s PCT is good for

• Relatively easy to write parallel programs using just minor
extensions of the language.

• Limitations: Special parallel computing languages provide
more flexibility (but require more programming effort).

• Prototype parallel code by working on your local (at least two
kernel) computer before running on a remote cluster.

Note: The cluster on which you run jobs must be running the
MATLAB Distributed Computing Server, such as our Triton.

Parallel pool, workers, client

Terminology:

• Client: Matlab-session running on your laptop or remote
computer (like Triton).

• Workers are MATLAB computational engine processes
running on laptop or remote cluster. Workers don’t have a
MATLAB desktop, they can communicate between themselves
and the client.

• Pool: A set of workers forms a parallel pool. A pool can be
started with the command >>parpool and closed with
>>delete(gcp)

Example: Open pool, doc parallel.Pool

>> p=parpool

Starting parallel pool (parpool) using the 'local' ...

profile ...

connected to 2 workers.

p =

Pool with properties:

Connected: true

NumWorkers: 2

Cluster: local

AttachedFiles: {}

AutoAddClientPath: true

IdleTimeout: 30 minutes (30 minutes remaining)

SpmdEnabled: true

>> p.NumWorkers

ans =

2

Controlling pool, profile

• parpool - Open parallel pool with default profile.
• parpool(n) - Open parallel pool with n workers.
• delete(gcp) - Close pool (default idle time: 30 min).

Most of the parallel computing constructs (parfor,spmd,etc.) to
be discussed, will automatically open a pool with default profile.

Note: The parallel profile can also be viewed and edited by
opening the “Parallel”-tab at the bottom right part of the
“home”-view of the desktop. For more, see the Mathworks’ pages
which lead us to our next topic:

https://se.mathworks.com/help/distcomp/spmd.html and
https://se.mathworks.com/help/distcomp/run-code-on-parallel-
pools.html

https://se.mathworks.com/help/distcomp/spmd.html
https://se.mathworks.com/help/distcomp/run-code-on-parallel-pools.html
https://se.mathworks.com/help/distcomp/run-code-on-parallel-pools.html

Parallel computing constructs

spmd,parfor,...

We will be concerned with

• spmd : Single program multiple data
• parfor : parallel for-loop
• parfeval (possibly) : parallel evaluation

The spmd-construct gives the user full control and understanding
of the parallelization process. It allows the same code to be run on
multiple workers with each worker using different data, which
might for example be different parts of the same array. parfor is
technically simplest, just replace for by parfor. More on this!
MATLAB decides how to distribute the computation among the
workers. Some limitations compared to for: nested loops are not
allowed and some loop index limitations exist, etc.

Toolbox specific parallelization tools

• Some toolboxes, like the (Global) optimization toolbox
provide support for parallel computation.

• For example there is a setting 'UseParallel',true in the
optimoptions structure passed to the solver. We will look
at these more closely in our examples.

Single program, multiple data – spmd

The spmd statement defines a block of code to be run
simultaneously on multiple workers that should be reserved using
parpool.

The first couple of slides contain quotations of the text in:

https://se.mathworks.com/help/distcomp/spmd.html

The general form of an spmd (single program, multiple data)
statement is:

spmd

<statements>

end

MATLAB executes the spmd body statements on nlabs workers
simultaneously.

https://se.mathworks.com/help/distcomp/spmd.html

Open pool, parpool,labindex,myPool.NumWorkers

• Open a pool of MATLAB workers using parpool or have your
parallel prefences allow the automatic start of a pool.

• Inside the body of the spmd statement, each MATLAB worker
has a unique value of labindex.

• Opening the pool by myPool=parpool uses the default
number of workers stored in myPool.NumWorkers.
Alternatively one can start by
nlabs=16; parpool(nlabs)

in case there are nlabs workers available in the pool.
• Communication functions such as labSend and labReceive

can transfer data between the workers.

Examples of spmd

nlabs=4; % Or 2 on a 2-kernel laptop

% nlabs=16; % Triton (default: 20, may vary)

parpool(nlabs) % Opening the pool takes some time.

spmd

% build magic squares in parallel

q = magic(labindex + 2);

end

for ii=1:length(q);figure,imagesc(q{ii});end

% q is ``alive'' even outside the spmd-block.

• The variable q is a Composite object. The value q{k} is the
value stored in the kth worker, whereas q(k) is the cell array
of values stored in the kth worker.

• The indexing of a composite object is exactly similar to that
of a cell array.

Composite objects

Note: As the last line showed us, the composite object q remains
available even outside the spmd-block as long as the pool is open.

>> q

q =

Lab 1: class = double, size = [3 3]

Lab 2: class = double, size = [4 4]

>> q{1:nlabs}

ans =

8 1 6

3 5 7

4 9 2

ans =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Composite objects to cell arrays, results from workers to client

As noted above, the variable q “behaves” like a cell array. Here’s
one way of copying the contents of q from workers to the client:

Q=cell(1,nlabs); % Create a cell array Q.

Q(1:nlabs)=q(1:nlabs); % Copy q into cell array Q.

% Q=q; % Not allowed.

delete(gcp) % q no more available, Q remains.

cellplot(Q), figure

surf(Q{nlabs}) % Plot (surf) the last (largest) magic.

Hands on spmd

Exercise:Experiment spmd basics in MATLAB.

Rules on pools and spmd blocks

• If you started a pool for nlabs=20 (eg.), you have to close it
before changing to parpool(4) (eg.)

• If you have a pool open, you can do several spmd-blocks one
after another. So the end statement of your spmd-block
doesn’t close the pool. Also the composite objects remain as
long as the pool is open.

• Do that
• spmdex1.m
• spmdExamplesLIVE.pdf
• spmdExamples.m
• LH

https://math.aalto.fi/opetus/MatOhjelmistot/2019spring/Heikki/Lecture4/spmdex1.m
https://math.aalto.fi/opetus/MatOhjelmistot/2019spring/Heikki/Lecture4/spmdExamplesLIVE.pdf
https://math.aalto.fi/opetus/MatOhjelmistot/2019spring/Heikki/Lecture4/spmdExamples.m
https://math.aalto.fi/opetus/MatOhjelmistot/2019spring/Heikki/Lecture4/

Run the same script in Triton

slogin -X -lscip triton.aalto.fi
Mat...xLab...y2018
$ cd $WRKDIR
$ mkdir USER_OWN_DIR
module load matlab

>>parpool

Pool with properties:

Connected: true

NumWorkers: 20

Cluster: local

...

>>spmd

>> q = magic(labindex + 2);

>>end

Continued ...

>> q(1:6:24)
ans =

1×4 cell array
{3×3 double}{9×9 double}{15×15 double}{21×21 double}

>> surf(q{24})

Note: The “prototype code” (on laptop) and the remote computer
code (on Triton) needs no change, the latter, using Triton default
uses 20 workers.

>> Q=cell(1,20);

>> Q(1:24)=q(1:20);

>> delete(gcp) % close pool

% q is gone, Q remains.

Spmd-example: Numerical integration

Task: Integrate numerically:
∫ 1

0
4

1+x2 dx ,
decomposing the interval of integration “Labwise”.

Figure from MatkWork’s documents

Define the variables a and b on all the workers, but let their values
depend on labindex so that the intervals [a, b] correspond to the
subintervals shown in the figure.
Note: The code in the body of the spmd statement is executed in
parallel on all the workers in the parallel pool.

p=parpool % If not open. (Takes a while.)

numlabs=p.NumWorkers

f=@(x) 4./(1+x.^2)

spmd

a = (labindex - 1)/numlabs;

b = labindex/numlabs;

%fprintf('Subinterval: [%-4g, %-4g]\n', a, b);

Int=integral(f,a,b)

S=gop(@plus,Int)

end

More examples on spmd

• Find all local min/max and/or zeros of a univariate function.
Exercise on this.

• Multivariate optimization, “domain decomposition”
• “Method of lines” for certain PDE’s, semidiscretization, uses a

large number of calls to ODE-solvers. (Matlab-demo exists.)
• “Parameter sweep” on differential equations, optimization and

many others. (One example on diff, equ. included as a link.)

Some of the above may be well (or better) suited to parfor

Parallel for – parfor

The easiest way to use the parallel toolbox is to replace for by
parfor. A parfor-loop splits the computation inside the loop
among available workers in an automatic way, in an unspecified
order.

Restrictions:

1. The loop variable must increase in steps 1.
2. No data dependencies between different iterations. Example:

s=ones(10,1);

parfor i=1:6,s(i)=i^2,end % Allowed

parfor i=2:6, s(i)=s(i-1)^2+i^2,end % Not ...

allowed (try)

3. A parfor-loop can’t contain another for-loop, but it can
contain a call to a function that contains a parfor loop

	Parallel Computing Toolbox
	Parallel computing constructs

