
Vectors
Matrices
Arrays.

1



Matrix,vector,scalar

Originally MATLAB’s one and only data structure was an ordinary
2-dimensional matrix consisting of complex numbers.
Special cases:

• Column vector: (m,1)-matrix
• Row vector: (1,n)-matrix
• Scalar: (1,1)-matrix
• Empty: (m,0) or (0,n)-matrix

>> A=[1 2 3 4 ;5 6 7 8; 9 10 11 12]

>> [m,n]=size(A) % Matrix knows its size

>> v=-[1 2 3 4 ]

>> length(v), size(v)

>> 1:10 % [1,2,3,...,10]

>> size(ans) % ans:previous non-assigned result

>> who, whos % workspace variables 2



Transpose

Continue previous session:

>> A % Look into A.

>> A' % Transpose A

>> C=A+i*ones(size(A)) % Complex matrix

>> C' % In addition complex conjugation

>> C.' % Without conjugation

>> rowvect=[1 2 3 4]

>> % blank or (,) means: 'put beside me'

>> colvect=[1;2;3;4] % (;) means: 'put under me'

>> colvect' % Another way for column vector(if real)

Note: If A has complex entries, A’ contains their complex
conjugates. If you want to avoid that, use A.’

3



Functions for building vectors
colon(:),linspace,logspace

• v=a:b, w=a:h:b; default: h=1
• v=linspace(a,b,N); default: N=100
• v=logspace(a,b,N); 10a, . . . , 10b, N points

default: N=50

>> 0:10; 0:.1:1;

>> 10:-2:0

ans =

10 8 6 4 2 0

>> logspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000

>> 10.^linspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000

Note: Remember semicolon (;) for large N or small h.

4



Calculus with vectors

>> u = 0:0.1:10; % Remember semicolon (;)

>> length(u)

ans =

101

>> w = 5*sin(u); %

>> [u(1:10)' w(1:10)']

Alternatively, by ’misuse’ of Matlab:

>> for k=1:length(u)

z(k)=5*sin(u(k));

end;

5



Vector excercise

Make the following variables:

• aVec =
[
3.14 15 9 26]

]

• bVec =


2.71
8
28
182


• cVec= [5, 4.8, . . . ,−4.8,−5] (all the numbers from 5 to -5

with increments of -0.2)
• dVec = [100 100.01 . . . 100.99 101] logarithmically spaced

numbers between 1 and 10. (first without logspace, then
help logspace)

• eVec = ’Hello there’ (String is a vector of characters)
[’Hello ’ ’there’] Concatenate, need brackets.
n=4;figure;title([’Test nr. ’ num2str(n)]) 6



“Scalar functions” support vectorization

The previous example leads us to the following general idea:

• Functions which applied to a scalar produce a scalar result are
called scalar functions. When such functions are applied to a
vector, they operate on every element of the vector.

• Mathematical functions among others are of this type.
(help elfun, help specfun)

7



Scalar functions and pointwise arithmetic support vectorization

Assume we want to compute values of

y = e−x sin x

at a vector x . We need the vector
y = (e−x(1) sin(x(1)), e−x(2) sin(x(2)), . . . , e−x(n) sin(x(n)))
Here we need the pointwise product (.*) of two vectors:

>> x=-pi:.1:pi;

>> y=exp(-x).*sin(x);

This is just the data we need for plotting. >> plot(x,y)

8



Creating matrices

• Square brackets [...] to define matrices
• Spaces (and/or commas) to separate columns (elements of

row vector).
• Semi-colons (;) to separate rows (elements of column vector)
• >> [ 3 4 5 ; 6 7 8 ] is a 2-by-3 matrix
• If A and B are matrices with the same number of rows, then

>> C = [ A B ] is the array formed by stacking A and B
side by side

>> A=ones(2,2);B=2*ones(2,3);[A B]

ans =

1 1 2 2 2

1 1 2 2 2

9



Creating matrices, continued

• If A and B are matrices with the same number of columns,
then [ A ; B ] is the matrix formed by stacking A on top of
B.

• So, [[ 3 ; 6 ] [ 4 5 ; 7 8 ] ] is equal to
[ 3 4 5;6 7 8 ]

Next slide from: MIT’s Matlab-course
illustrates the building of arrays out of smaller pieces.

10

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-094-introduction-to-matlab-january-iap-2010/lecture-notes/


Matrices, visual summary [MIT: open courseware]

11



Some functions for building matrices

eye,vander,hilb,zeros,ones,diag,rand,reshape,magic

Complete list: help elmat

>> A = zeros(2,5)

>> B = ones(3) % or ones(3 ,3)

>> R = rand(3,2)

>> N = randn(3,2)

>> I = eye(3) % or eye(3,3)

>> D = diag(-2:2)

Compare rand and randn Try repeatedly
>> R = rand(3,2) Use (↑) in command window

Repeat : >> rng('default'); R = rand(3,2) or
>>s=rng; R = rand(3,2); rng(s);rand(3,2)

12



Matrices: reshape

reshape

• Forms a matrix of given size for given data.
• Data will be placed in “frame” of given size in column order.

(Matlab is column oriented.)
• Nr. of datapoints (numel(data)) has to match product of

dimensions.

>> A=reshape(1:6,2,3) % 2x3 matrix from data 1:6 ...

in column order

>> B=reshape(1:6,3,2)' % Row-order

>> C=reshape(A,1,6) % Back to vector 1:6

13



Visualization of matrices

Have fun with some commands of type:

>> mesh(ones(30));hold on;mesh(zeros(30));

>> mesh(eye(30));shg; hold off

>> imagesc(diag(-5:5)),colorbar;shg

>> surf(magic(10));colorbar;shg

>> surfc(vander(-1:.1:1));colorbar;shg

>> imagesc(reshape(0:24,5,5)),colorbar

Modify some parameters, and try to see what kind of matrices the
visualizations reveal to you.
In the figure-window you can click the "rotate-arrow" and rotate
your figure with the mouse.
Task: Explain:
V=vander(-1:.1:1);plot(V(:,end-1),V);help vander

14



“Vector functions” (also support vectorization)

• Let vector function f mean that f(vector)=scalar. Such
function operate on a matrix columnwise returnig a vector
whose length is the length of rows (= nr. of columns).
Examples are many that are classified under datafunction,
help datafun.

• Example: max,min,mean,sum,.... Also many functions of
type f(vector)=vector behave similarly, except they
applied to a matrix return a matrix “columnwise”. Examples:
sort,cumsum,cumprod, ...

• These functions can be called to operate rowwise: for example
min(A,2) forms a column vector of row-minimums. Similarly
for higher-dimensional arrays as well.

15



Selected “datafuns”, summary

• min,max,sum,prod,mean,std,diff,del2
These functions return scalar result for vectors, and operate
columnwise or row-wise for matrices, returnig a vector.

• cumsum,cumprod,sort
are examples that return a matrix of the same size as input.

• More: help datafun

16



Exercise on min,max,sum

1. How do you compute the min and max of all elements of a
matrix (two ways)?

2. l1 - norm and l∞ - norms of a matrix A are:

||A||1 = max
1≤j≤n

n∑
i=1
|aij |, ||A||∞ = max

1≤i≤n

n∑
j=1
|aij |

Form MATLAB-expressions for computing these.
3. Test with suitable matrices like: A=randi(5,5),

A=magic(6,6), A=reshape(1:16,4,4), ....
Check using Matlab’s norm-function.

17



Matrix- and array algebra

Often one needs to evaluate the “pointwise” product of two
vectors, as seen already in some examples.

u=1:5, v=[1 -1 1 -1 1], w=u.*v

x=linspace(0,2*pi,20); y=x.*sin(x);

plot(x,y), shg

More generally, matrices in MATLAB have two products:
- The ordinary matrix product
- Pointwise product

A=reshape(1:9,3,3), B=2*ones(size(A)), C=A.*B, D=A*B

[A B], [C D]

The next slide shows the general outline. 18



Matrix- and array algebra

A, B matrices, matching size, c scalar.
Matrix algebra

• A + B, A+c

• A*B matrix product
• A’ (conjugate) transpose
• A.’ transpose without

conjugation
• A^p (A*A*...A) Matrix

power (A square matrix.)
• A\b

Ax = b ⇐⇒ x = A\b (if
A is invertible)

Array algebra

• A + B, A+c

• A.*B Pointwise product
• A.^p, A.^B Pointwise

power, p scalar, A and B
of same size.

• A./B, c./A Pointwise
divide. Subtle 1.0/A,
1.0./A,1./A

• Note: c/A usually leads
to an error. 19



Indexing: Accessing single element of a vector

If A is a vector, then
• A(1) is its first element
• A(2) is its second element
• . . .

• A(end) is its last element

For matrices either columnwise linear indexing,
or

• A(1,1) is the element on the first row of
the first column

• A(2,1) is the element on the second row
of the first column

• A(3,4) is the element on the third row and
fourth column

• A(4,end) is the last element of the fourth
row

20



Example

>> A = [3 4.2 -7 10.1 0.4 -3.5 ];

>> A(3)

>> A(4) = log(8);

>> A

>> A(end)

>> A(end+1) % Error

>> A(end+1)=-1 % Matlab extends A

21



Indexing: Accessing multiple elements of a matrix

Index need not be a single number – you can index with a vector.

A = [ 3 4.2 -7 10.1 0.4 -3.5 ]

A([1 4 6]) % 1-by-3, 1st, 4th, 6th entry

Index = [3 2 3 5];

A(Index) % 1-by-4

A([4 3 2 1]) % Reverse order

A([1 2 2 3 3 3 4 4 4 4]) % Index vector can have ...

repetitions.

Index should contain integers. Shape of the index will define the
shape of the output matrix.

22



Exercise

Using MATLAB indexing, compute the perimeter sum of the
matrix “magic(8)”.

Perimeter sum adds together the elements that are in the first and
last rows and columns of the matrix. Try to make your code
independent of the matrix dimensions using end.

You can do it at least in 2 ways of thought:
1. Pick the rows and parts of the columns that exclude the corner
points, and use sum suitably.

2. Embed a zero-matrix of size n − 2× n − 2 inside magic(n)
(n=8) to produce, say Abd. Then do the summation either
sum(sum(...)) or sum(Abd(:))

Answer: 910
23



Exercise (Perhaps skip for now)

- 1. Use reshape to form the matrix A:

1 2 3 4
5 6 7 8
9 10 11 12

Hint: start with a 4× 3-matrix and transpose it.
- 2. Find the size [m,n] of A (pretend, you just forgot it.)
- 3. Embed A into a zero-matrix AA of size (m + 2)× (n + 2)
- 4. Replace the first row of AA by [1, 2, . . .m + 2] and the last
row with [m + 2,m + 1, . . . 1].Hint: step -1, or fliplr
- 5. replace the m “inner entries (zeros)” (2,...,end-1) of the
first column of AA by -1’s

24



Linear Systems

25



Linear systems of equations

Given the system of equations:
6x + 12y + 4z = 70
7x − 2y + 3z = 5
2x + 8y − 9z = 64

Solve it!

>> A=[6 12 4;7 -2 3;2 8 -9]

>> b=[70;5;64];

>> x=A\b; x'

ans =

3 5 -2

26



Linear systems of equations, continued

>> [A*x b] % Check by multiplication:

ans =

70 70

5 5

64 64

>> b=[70;5;64];

>> x=A\b; x'

ans =

3 5 -2

>> x=inv(A)*b % Alternatively multiply by inverse

• Backslash \ is recommended for efficiency and accuracy.
• Linear systems don’t always have a unique solution.
• det(A)==0 is not a numerically reliable way of testing

“almost singularity”. See help cond, rcond. 27



Excercises

Solve the system of equations2x + y = 3
x − 2y = −1

using the “backslash” operator, and check the result.

Using the same technique, solve below system, and check result.

35x1 + 0x2 + 14x3 + 16x4 + 2x5 = 67
27x1 + 7x2 + 14x3 + 4x4 +−7x5 = 45
−13x1 − 2x2 + 6x3 + 10x4 + 8x5 = 9
30x1 − 1x2 − 12x3 + 7x4 − 11x5 = 13
7x1 + 14x2 + 7x3 − 3x4 − 10x5 = 15

28



Basics of Graphics

29



Basic 2d-graphics, plot

• "Matlab has excellent support for data visualization and
graphics with over 70 types of plots currently available. We
won’t be able to go into all of them here, nor will we need to,
as they all operate in very similar ways. In fact, by
understanding how Matlab plotting works in general, we’ll be
able to see most plot types as simple variations of each other.
Fundamentally, they all use the same basic constructs."

• Links:
- https://se.mathworks.com/help/matlab/ref/plot.html
- http://ubcmatlabguide.github.io/html/plotting.html

30

https://se.mathworks.com/help/matlab/ref/plot.html
http://ubcmatlabguide.github.io/html/plotting.html


Basic 2d-graphics

• If x is a 1-by-N (or N-by-1) vector, and y is a 1-by-N (or
N-by-1) vector, then
>> plot(x,y)

creates a figure window, and plots the data points with joining
line segments in the axes. The points are:
(x(1),y(1)), (x(2),y(2)),..., (x(N),y(N))

• The axes are automatically chosen so that all data just fits
into the figure window. This can be changed by the
axis, xlim, ylim-commands.

31



Basic 2d-graphics, plot

Function plot can be used for simple "join-the-dots" xy-plots.

>> x=[1.5 2.2 3.1 4.6 5.7 6.3 9.4];

>> y=[2.3 3.9 4.3 7.2 4.5 6.1 1.1];

>> plot(x,y);grid on

32



Basic 2d-graphics, general form

Continue keeping the previous plot:

>> hold on % Keep the previous lines.

>> plot(x,y,'or') % Mark datapoints with ...

'o'-marker, r='red'

>> shg % show graphics

• General form:
plot(x1,y1,'string1',x2,y2,'string2', ...)

The 'string'-parts may be missing.
• plot(x,y,’r*--’)

Use red *-markers, join with red dashed line segments.

33



help plot -> table of markers

Various line types, plot symbols and colors: plot(X,Y,S)
S is a character string made from one element from any or all of
the following 3 columns:

b blue . point - solid

g green o circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star (none)no line

y yellow s square

k black d diamond

w white v triangle (down)

^ triangle (up)

< triangle (left)

> triangle (right)

p,h pentagram, hexagram
34



Plotting graphs of functions

Just take enough points to get smoothness.

>> x=linspace(0,3*pi); % Default: 100 points

>> y=sqrt(x).*sin(x); % Note again: (.*)

>> plot(x,y)

>> figure % Open a new graphics window.

>> x1=linspace(0,pi,1000); % More points.

>> y1=cos(4*x1).*sin(x1);

>> m=mean(y1);

>> plot(x1,y1,[0 pi],[m m],'r--') % "red" dashed

>> legend('Function','mean'); grid on

Refrences in Finnish:
http://math.aalto.fi/∼apiola/matlab/opas/mini/vektgraf.html

http://math.aalto.fi/∼apiola/matlab/opas/lyhyt/grafiikka.html
35

http://math.aalto.fi/~apiola/matlab/opas/mini/vektgraf.html
http://math.aalto.fi/~apiola/matlab/opas/lyhyt/grafiikka.html


Excercise

Let’s do some plotting. Do the following:

a) Graph the function f (x) = sin(x) on the interval x ∈ [0, 1]. Try
changing the plot colour, and observe your discretization by
using different plotting styles.

b) Graph the function f (x) = 1
4x sin(x) on the interval x ∈ [0, 40]

in the same plot with y1 = 1
4x and y2 = −1

4x . Plot the lines
with red dashes, and change the line width of f to 3.

c) Plot a curve with x coordinate of cos(t) and y coordinate of
sin(t) when t ∈ [0, 2π].

d) Plot a parametric curvex = cos(t)
(
ecos(t) − 2 cos(4t)− sin

( t
12
))

y = sin(t)
(
ecos(t) − 2 cos(4t)− sin

( t
12
))

Some plots will probably not look like you expect: try using axis
equal or axis square.

36


