
Lecture x: MATLAB - advanced use cases
Parallel computing with Matlab’s toolbox

Heikki Apiola and Juha Kuortti
February 22, 2018

Aalto University
juha.kuortti@aalto.fi, heikki.apiola@aalto.fi

Parallel Computing Toolbox

General concepts

The PCT (Parallel Computing Toolbox) allows exploitation of
multicore processors, and it supports the use of computer clusters
and graphics processing units (GPUs).

Goals of parallel computing

• Efficiency: Gain remarkable speedup distributing a
computational task between several computing units, which
work simultaneously with parts of the task. (Decompose your
task into independent parts that may or may not
communicate with each other.)

• Memory: Solve larger problems than can be done in one
computational unit.

Difficulties with parallel computing

• Computer architectures evolve ⇒ programming techniques
have to evolve as well.

• How the data has to be stored and shared between
computational resources

• In some cases it may be difficult to achive satisfactory speed
improvements, especially when there’s need to communicate
between different computational units.

• Writing and debugging parallel code is often difficult

What Matlab’s PCT is good for

• Relatively easy to write parallel programs using just minor
extensions of the language.

• Limitations: Special parallel computing languages provide
more flexibility (but require more programming effort).

• Prototype parallel code by working on your local (at least two
kernel) computer before running on a remote cluster.

Note: The cluster on which you run jobs must be running the
MATLAB Distributed Computing Server, such as our Triton.

Parallel pool, workers, client

Terminology:

• Client: Matlab-session running on your laptop or remote
computer (like Triton).

• Workers are MATLAB computational engine processes
running on laptop or remote cluster. Workers don’t have a
MATLAB desktop, they can communicate between themselves
and the client.

• Pool: A set of workers forms a parallel pool. A pool can be
started with the command >>parpool and closed with
>>delete(gcp)

Example: Open pool, doc parallel.Pool

>> p=parpool

Starting parallel pool (parpool) using the 'local' ...

profile ...

connected to 2 workers.

p =

Pool with properties:

Connected: true

NumWorkers: 2

Cluster: local

AttachedFiles: {}

AutoAddClientPath: true

IdleTimeout: 30 minutes (30 minutes remaining)

SpmdEnabled: true

>> p.NumWorkers

ans =

2

Controlling pool, profile

• parpool - Open parallel pool with default profile.
• parpool(n) - Open parallel pool with n workers.
• delete(gcp) - Close pool (deault idle time: 30 min).

Most of the parallel computing constructs (parfor,spmd,etc.) to
be discussed, will automatically open a pool with default profile.

Note: The parallel profile can also be viewed and edited by
opening the “Parallel”-tab at the bottom right part of the
“home”-view of the desktop. For more, see the Mathworks’ pages
which lead us to our next topic:

https://se.mathworks.com/help/distcomp/spmd.html and
https://se.mathworks.com/help/distcomp/run-code-on-parallel-
pools.html

https://se.mathworks.com/help/distcomp/spmd.html
https://se.mathworks.com/help/distcomp/run-code-on-parallel-pools.html
https://se.mathworks.com/help/distcomp/run-code-on-parallel-pools.html

Parallel computing constructs

spmd,parfor,...

We will be concerned with

• spmd : Single program multiple data
• parfor : parallel for-loop
• parfeval (possibly) : parallel evaluation

The spmd-construct gives the user full control and understanding
of the parallelization process. It allows the same code to be run on
multiple workers with each worker using different data, which
might for example be different parts of the same array. parfor is
technically simplest, just replace for by parfor. MATLAB
decides how to distribute the computation among the workers.
Some limitations compared to for: nested loops are not allowed
and some loop index limitations exist, etc.

Toolbox specific parallelization tools

Some toolboxes, like the optimization toolbox provide support for
parallel computation, provided that the PCT is installed (like with
us).

There the user just needs to turn a “parallel switch on”, and
observe the difference in performance.

For example, in the Optimization Toolbox there is a setting
'UseParallel',true in the options structure passed to the
solver. (Compare to ODE-solvers for a similar structure for
controlling tolerances etc.)

Single program, multiple data – spmd

The spmd statement defines a block of code to be run
simultaneously on multiple workers that should be reserved using
parpool.

The first couple of slides contain quotations of the text in:

https://se.mathworks.com/help/distcomp/spmd.html

The general form of an spmd (single program, multiple data)
statement is:

% nlabs=2 % on laptop

% parpool(nlabs) % Open pool if not open already

spmd

statements

end

https://se.mathworks.com/help/distcomp/spmd.html

Open pool, parpool,labindex,myPool.NumWorkers

MATLAB executes the spmd body statements on nlabs workers
simultaneously.

First open a pool of MATLAB workers using parpool or have
your parallel prefences allow the automatic start of a pool.

Inside the body of the spmd statement, each MATLAB worker has
a unique value of labindex.

Opening the pool by >>myPool=parpool uses the default number
of workers stored in myPool.NumWorkers.
Alternatively one can start by
>>nlabs=16; parpool(nlabs)

in case there are nlabs workers available in the pool.

Communication functions such as labSend and labReceive can
transfer data between the workers.

Examples of spmd

nlabs=2; % laptop

% nlabs=24; % Triton (default 24)

parpool(nlabs) % Opening the pool takes some time.

spmd

% build magic squares in parallel

q = magic(labindex + 2);

end

The variable q is a Composite object. The value q{k} is the value
stored in the kth worker, whereas q(k) is the cell array of values
stored in the kth worker.
Note: The indexing of a composite object is exactly similar to that
of a cell array.

for ii=1:length(q);figure,imagesc(q{ii});end

Composite objects

Note: As the last line showed us, the composite object q remains
available even outside the spmd-block as long as the pool is open.

>> q

q =

Lab 1: class = double, size = [3 3]

Lab 2: class = double, size = [4 4]

>> q{1:nlabs}

ans =

8 1 6

3 5 7

4 9 2

ans =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Composite objects to cell arrays, results from workers to client

As noted above, the variable q “behaves” like a cell array. After
closing the pool it isn’t available (the workers are gone). Here’s
how to store the contents of q “permanently” into the client:

Q=cell(1,nlabs); % Create a cell array Q.

Q(1:nlabs)=q(1:nlabs); % Copy q into cell array Q.

% Q=q; % Not allowed.

delete(gcp) % q no more available, Q remains.

cellplot(Q), figure

surf(Q{nlabs}) % Plot (surf) the last (largest) magic.

Run the same script in Triton

slogin -X -lscip triton.aalto.fi
Mat...xLab...y2018
$ cd $WRKDIR
$ mkdir USER_OWN_DIR
module load matlab

>>parpool

Pool with properties:

Connected: true

NumWorkers: 24

Cluster: local

...

>>spmd

>> q = magic(labindex + 2);

>>end

>> q(1:6:24)
ans =

1×4 cell array
{3×3 double}{9×9 double}{15×15 double}{21×21 double}

>> surf(q{24})

Note: The “protype code” (on laptop) and the remote computer
code (on Triton) need no change, the latter, using Triton default
uses 24 workers.

>> Q=cell(1,24);

>> Q(1:24)=q(1:24);

>> delete(gcp) % close pool

% q is gone, Q remains.

Spmd-example: Numerical integration

Task: Integrate numerically:
∫ 1

0
4

1+x2 dx ,
decomposing the interval of integration “Labwise”.

Define the variables a and b on all the workers, but let their values
depend on labindex so that the intervals [a, b] correspond to the
subintervals shown in the figure.
Note: The code in the body of the spmd statement is executed in
parallel on all the workers in the parallel pool.

p=parpool % If not open. (Take a while.)

numlabs=p.NumWorkers

spmd

a = (labindex - 1)/numlabs;

b = labindex/numlabs;

fprintf('Subinterval: [%-4g, %-4g]\n', a, b);

end

Let’s work on this both on Laptop and Triton:
spmd_example1_numint.m (Link doesn’t work here, use index.html)

p = parpool; % Start parallel pool.

numlabs=p.NumWorkers

%%

spmd

a = (labindex - 1)/numlabs;

b = labindex/numlabs;

fprintf('Subinterval: [%-4g, %-4g]\n', a, b);

end

More examples on spmd

• Find all local min/max and/or zeros of a univariate function.
Exercise on this.

• Multivariate optimization, “domain decomposition”
• “Method of lines” for certain PDE’s, semidiscretization, uses a

large number of calls to ODE-solvers. (Matlab-demo exists.)
• “Parameter sweep” on differential equations, optimization and

many others. (One example on diff, equ. included as a link.)

Some of the above may be well (or better) suited to parfor

Parallel for – parfor

The easiest way to use the parallel toolbox is to replace for by
parfor. A parfor-loop splits the computation inside the loop
among available workers in an automatic way, in an unspecified
order.

Restrictions:

1. The loop variable must increase in steps 1.
2. No data dependencies between different iterations. Example:

s=ones(10,1);

parfor i=1:10,s(i)=i^2 % Allowed

parfor i=2:10, s(i)=s(i-1)^2+i^2 % Not allowed

3. A parfor-loop can’t contain another for-loop, but it can
contain a call to a function that contains a parfor loop

	Parallel Computing Toolbox
	Parallel computing constructs

