
Basics:
vectors,
matrices,

arrays

Basics: vectors, matrices, arrays

October 30, 2016

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Vectors, matrices, arrays

Basic data structure: Matrix (array), elements: complex
numbers. Let’s limit ourselves at first to two-dimensional arrays.

>> rowvect=[1 2 3 4] % List of elements
>> 1:4 % Same with colon(:)-operator
ans = 1 2 3 4

% ans:previous non-assigned result
>> colvect=[1;2;3;4]
>> rowvect'== colvect % Transpose of row-vector

% NOTE lhs == rhs -> true/false
>> length(rowvect) % Nr. of elements

ans = 4

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Vectors, matrices,arrays (continued)

>> A=[1 2 3 4 ;5 6 7 8; 9 10 11 12]
>> [m,n]=size(A) % --> m=3, n=4
>> [size(A,1) size(A,2)]
ans =

3 4
>> v=-[1 2 3 4]
>> length(v)
ans =

4
>> who, whos % show workspace variables

Column vector: (m,1)-matrix
Row vector: (1,n)-matrix
Scalar: (1,1)-matrix
Empty: (m,0) or (0,n)-matrix

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Creating arrays from smaller parts

Square brackets [...] to define arrays
Spaces (and/or commas) to separate columns (elemnts of
row vector).
Semi-colons (;) to separate rows (elements of column
vector)
>> [3 4 5 ; 6 7 8] is a 2-by-3 matrix
If A and B are arrays with the same number of rows, then
>> C = [A B] is the array formed by stacking A and B
side by side

>> A=ones(2,2);B=2*ones(2,3);[A B]
ans =

1 1 2 2 2
1 1 2 2 2

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Creating arrays..., continued

If A and B are arrays with the same number of columns,
then >> [A ; B] is the array formed by stacking A on
top of B.
So, [[3 ; 6] [4 5 ; 7 8]] is equal to
[3 4 5;6 7 8]

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Calculus with vectors

The numbers 0, 0.1, 0.2, . . . , 10 can be assigned to the
variable u by typing u = 0:0.1:10;

length(u) reveals us that there are 101 elements in u.
To compute w = 5 sin u for u = 0, 0.1, 0.2, . . . , 10, the
session is;

>>u = 0:0.1:10; % By 'misuse' of Matlab:
>>w = 5*sin(u); >>for k=1:length(u)
%'Implied for-loop', w(k)=5*sin(u(k));
% vectorization end;

This was our first acquaintance with “vectorization”.

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

“Scalar functions” support vectorization

The previous example leads us to the following general idea:
Functions which applied to a scalar produce a scalar result are
called scalar functions. When such functions are applied to an
array, they operate on every element of the array. Mathematical
functions help elfun, specfun among others are of this
type.

>> t = [-1 0 1];
>> y = exp(t)
y =

0.3679 1.0000 2.7183
>> [exp(-1) exp(0) exp(1)]
ans =

0.3679 1.0000 2.7183

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

“Scalar functions” support vectorization (contnd.)

Assume we want to compute values of

y = e−x sin x

at a vector x . We need the vector
y = (e−x(1) sin(x(1)), e−x(2) sin(x(2)), . . . , e−x(n) sin(x(n)))
Here we need the pointwise product (.*) of two vectors:

>> x=-pi:.1:pi;
>> y=exp(-x).*sin(x);

This is just the data we need for plotting. >> plot(x,y)

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

“Vector functions” (also support vectorization)

Let vector function f mean that f(vector)=scalar.
Such function operate on a matrix columnwise returnig a
vector whose length is the length of rows (= nr. of
columns). Examples are many that are classified under
datafunction, help datafun.
Example: max,min,mean,sum,.... Also many functions
of type f(vector)=vector behave similarly, except they
applied to a matrix return a matrix “columnwise”.
Examples: sort,cumsum,cumprod, ...

These functions can be called to operate rowwise: for
example min(A,2) forms a column vector of
row-minimums. Simlarly for higher-dimensional arrays as
well.

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Functions for building vectors
colon(:),linspace,logspace

v=a:b, w=a:h:b; default: h=1
v=linspace(a,b,N); default: N=100
v=logspace(a,b,N); 10a, . . . , 10b, N points

>> 0:10; 0:.1:1;
>> 10:-2:0
ans =

10 8 6 4 2 0
>> logspace(0,1,4)

ans =
1.0000 2.1544 4.6416 10.0000

>> 10.^linspace(0,1,4)
ans =
1.0000 2.1544 4.6416 10.0000

Note: Remember semicolon (;) for large N or small h.
Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Some functions for building matrices

eye,vander,hilb,zeros,ones,diag,rand,reshape,magic

Complete list: help elmat

>> A = zeros(2,5)
>> B = ones(3) % or ones(3,3)
>> R = rand(3,2)
>> N = randn(3,2)
>> D = diag(-2:2)

Compare rand and randn Try repeatedly
>> R = rand(3,2) Use (↑) in command window
Repeat : >>rand('twister',0); R = rand(3,2)

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Matrices: building, parts, decomposing

reshape
Forms a matrix of given size for given data.
Data will be placed in “frame” of given size in column
order. (Matlab is column oriented.)
Nr. of datapoints (numel(data)) has to match product
of dimensions.

>> A=reshape(1:6,2,3) % 2x3 matrix from data ...
1:6 in column order

>> B=reshape(1:6,3,2)' % Row-order
>> C=reshape(A,1,6) % Back to vector 1:6

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Matrices, building blocks

>> A=reshape(1:6,2,3); B=ones(2,2),C=diag(1:3)
>> [A B] % Side by side.
%ans =

1 3 5 1 1
2 4 6 1 1

>> [A;C] On top of each other.
ans =

1 3 5
2 4 6
1 0 0
0 2 0
0 0 3

>> cumsum(ones(3,4)) % What happens here?
% One of many ways to duplicate a column.

Basics: vectors, matrices, arrays

Basics:
vectors,
matrices,

arrays

Matrix- and array algebra

A, B matrices, matching size, c scalar.

Matrix algebra

A + B, A+c

A*B matrix product
A’ (conjugate) transpose
A.’ transpose without
conjugation
A^p (A*A*...A) Matrix
power (A square matrix.)
A\b
Ax = b ⇐⇒ x = A\b (if
A is invertible)

Array algebra
“scalar extension”

A + B, A+c

A.*B Pointwise product
A.^p, A.^B Pointwise
power, p scalar, A and B
of same size.
A./B, c./A Pointwise
divide. Subtle 1.0/A,
1.0./A,1./A

Note: c/A usually leads to
an error.

Basics: vectors, matrices, arrays

