

Relational operators
and Logical Flow

UC Berkeley
Fall 2004, E77

http://jagger.me.berkeley.edu/~pack/e77

Copyright 2005, Andy Packard. This work is licensed under the Creative Commons Attribution-ShareAlike
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://jagger.me.berkeley.edu/~pack/e77
http://creativecommons.org/licenses/by-sa/2.0/

Relational Operators (pg 151-154)

Relational operators are used to compare variables.

There are 6 comparisons

–“equal to”, using ==

–“not equal to”, using ~=

–“less than”, using <

–“less than or equal to”, using <=

–“greater than”, using >

–“greater than or equal to”, using >=

The result of a comparison is either TRUE (1) or FALSE (0)

Array comparisons

Suppose A and B are double arrays of the same size. Let op

be any of the 6 relational operators (==, ~=, <, <=, >, >=)

Then the expression

A op B
is a logical array of the same size. The relational operator is
applied elementwise, comparing A(i,j) to B(i,j).

Example

>> A = rand(2,4);

>> B = 0.5*ones(2,4);

>> A<B

LOGICAL arrays

The result of a relational operation is a logical array
–A logical array contains only 0’s and 1’s.

– It cannot contain any other numerical values

–Internal representation in MATLAB is different than for double arrays.

You can use a logical array in any numerical calculation as
though it is a double array –the 0’s and 1’s behave normally.

>> A = [1 0 1 1];

>> B = logical(A);

>> whos

>> A==B

>> isequal(A,B)

Indexing with LOGICAL arrays

In a typical row/column reference,

M(RowIndex,ColIndex)

both RowIndex and ColIndex are double arrays, whose
positive, integer values specify which rows and columns of the
array M are being referenced.

If RowIndex and ColIndex are logical arrays, the
locations of the 1’s specify which rows and columns of the
array M are being referenced

>> M = rand(4,5);

>> Ridx = logical([1 0 0 1]);

>> Cidx = logical([0 0 1 1 1]);

>> M(Ridx,Cidx) %same as M([2 4],[3 4 5])

Scalar/Array comparisons

Suppose A is a scalar, and B is a double array. Let op be any

of the 6 relational operators (==, ~=, <, <=, >, >=)

Then the expression

A op B

is an array of the same size as B. The relational operator is

applied comparing the scalar A to each element of B.

Example

>> A = 2.5;

>> B = [0 3 4;-1 -2 1;6 2.5 2.4];

>> C = A<=B;

Array/Scalar comparisons

Suppose A is a double array, and B is a scalar. Let op be any

of the 6 relational operators (==, ~=, <, <=, >, >=)

Then the expression

A op B

is an array of the same size as A. The relational operator is

applied comparing each element of A to the scalar B.

Example

>> A = sin(linspace(0,pi,20));

>> B = 0.5

>> C = A>B;

find

The command find returns the indices of the nonzero entries.

>> m = rand(6,1);

>> m(find(m<0.5)) = 0;

But logical indexing also work, so you can just do

>> m = rand(6,1);

>> m(m<0.5) = 0;
For arrays, find returns the indices in a single-index form, using
the well-defined ordering for the elements in an array.

>> m = rand(4,5);

>> idx = m<0.5;

>> m(idx) = -m(idx);

logical

Care in using == on numeric data

In finite precision arithmetic (MATLAB has about 17 digits of
precision), it is not true that

(a+b)+c is equal to a+(b+c)

What happens
– in computing a+b, some roundoff error may occur, and then in

computing the additional sum with c, additional roundoff occurs.

– in computing b+c, some different roundoff error may occur, and then in
computing the additional sum with a, additional roundoff occurs.

Imagine 2-digit arithmetic

1.2 + .74 + .24
1.9 + .24

2.1

1.2 + .74 + .24

1.2 + .98

2.2

Logical Operators (pg 155-156)

Logical operators are used to combine variables.

There are 3 binary operations

–“logical AND”, using &
–“logical OR”, using |

–“logical exclusive OR”, using xor
Along with unary negation

–“logical NOT”, using ~

For arrays, the operators are applied elementwise, and the
results have logical values of TRUE (1) or FALSE (0)

Logical Operators

If A and B are scalars (double or logical), then

A&B is TRUE (1) if A and B are both nonzero, otherwise it
is FALSE (0)

A|B is TRUE (1) if either A or B are nonzero, otherwise it
is FALSE (0)

xor(A,B) is TRUE (1) if one argument is 0 and the
other is nonzero, otherwise it is FALSE (0)

~A is TRUE if A is 0, and FALSE if A is nonzero.

For arrays, the operations are applied elementwise, so A and

B must be the same size, or one must be a scalar.

if, end (page 168-171)

To conditionally control the execution of statements, you can
use

if expression

 statements

end

If the real part of all of the entries of expression are

nonzero, then the statements between the if and end will be
executed. Otherwise they will not be.

Execution continues with any statements after the end.

expression should be a
numeric or logical array.

From now on, refer to this as:

 “expression is TRUE”

if, else, end

if exp_1

 statements1

else

 statements2

end

One of the sets of statements will be executed

–If exp_1 is TRUE, then statements1 are executed

–If exp_1 is FALSE, then statements2 are executed

if, elseif, end

if exp_1

 statements1

elseif exp_2

 statements2

elseif exp_3

 statements3

end

Evaluate exp_1

Evaluate exp_2

Evaluate exp_3

true

Continue after end

true

true

false

false

false

Execute

statements1

Execute

statements2

Execute

statements3

Could also have an else before the end

Illegal stuff

if exp_1

 statements1

elseif exp_2

 statements2

else

 statements3

elseif exp_4

 statements4

end

if exp_1

 statements1

else

 statements2

else

 statements3

end

Piecewise linear function

TASK: Create a m-file function for the mathematical function
Y = F(X) shown below.

Simple example with IF/ELSEIF

function y = plinear(x)
if isscalar(x) & isa(x,'double') & isreal(x)
 if x<-1
 y = -1;
 elseif x<2
 y = x;
 elseif x<5
 y = 3-x;
 else
 y = -2;
 end
else
 error('x should be a real scalar');
end

	Relational operators and Logical Flow UC Berkeley Fall 2004, E77 http://jagger.me.berkeley.edu/~pack/e77 Copyright 2005, Andy Packard. This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
	Relational Operators (pg 151-154)
	Array comparisons
	LOGICAL arrays
	Indexing with LOGICAL arrays
	Scalar/Array comparisons
	Array/Scalar comparisons
	find
	Care in using == on numeric data
	Logical Operators (pg 155-156)
	Logical Operators
	if, end (page 168-171)
	if, else, end
	if, elseif, end
	Illegal stuff
	Piecewise linear function
	Simple example with IF/ELSEIF

