Introduction to MATLAB

HOMEWORK 3/Batted baseball.

Compute the fly path $s(t)$ of a batted baseball from the equation

$$
F=m a(t), \quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

How long can a batted baseball fly with a given initial speed?
Let v_{0} be the intial velocity, e.g. $v_{0}=50 \mathrm{~m} / \mathrm{s}$. Let α be the angle between the ground and the initial direction of the ball. The force in the equation consists of:

- Gravitational force downwards $m g, g=9,81 m / s^{2}$.
- Air resistance (drag) directed opposite to the velocity v :

$$
D(v)=c(v) m v^{2},
$$

where

$$
c(v) \approx 0,004+0,006 /(1+\exp ((v-35) / 5)),[v]=m / s
$$

by [Computational Physics, Fitzpatrick, webpages].

Programming

- Write a code for the 1 st order system

$$
\begin{array}{cc}
s_{x}^{\prime}(t)=v_{x}(t), & s_{y}^{\prime}(t)=v_{y}(t) \\
v_{x}^{\prime}(t)=F_{x}(v, t), & v_{y}^{\prime}(t)=F_{y}(v, t)
\end{array}
$$

and solve it with ode23 with the given initial values. Use $s=(0,0)$ for the initial position. Mass ($m=0,14 \mathrm{~kg}$) of the ball cancels.

- Write a function that computes the length of the fly with given initial angle α. Use ode23. You can compute the fly long time enough and then find the solution for $s_{y}(t)=0$ to get the length of the fly.
- Optimize α by calling fminsearch.
- Visualize!

