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ABSTRACT. This article studies an integral representation of func-
tionals of linear growth on metric measure spaces with a doubling
measure and a Poincaré inequality. Such a functional is defined
through relaxation, and it defines a Radon measure on the space.
For the singular part of the functional, we get the expected inte-
gral representation with respect to the variation measure. A new
feature is that in the representation for the absolutely continuous
part, a constant appears already in the weighted Euclidean case.
As an application we show that in a variational minimization prob-
lem related to the functional, boundary values can be presented as
a penalty term.

1. INTRODUCTION

Let f: R, — R, be a convex, nondecreasing function that satisfies
the linear growth condition

mt < f(t) < M(1+1)

with some constants 0 < m < M < oo. Let 2 be an open set on
a metric measure space (X,d,u). Throughout the work we assume
that the measure is doubling and that the space supports a Poincaré
inequality. For u € L{ .(£2), we define the functional of linear growth
via relaxation by

F(u, )

= inf {lirginf/ f(gu,) dpe = u; € Lipy, (), u; — u in L}OC(Q)} :
1—> 00 QO

where g,, is the minimal 1-weak upper gradient of ;. For f(t) = t, this

is the definition of functions of bounded variation, or BV functions, on

metric measure spaces, see [1], [3] and [18]. For f(t) = v/1 + t2, we get

the generalized surface area functional, see [14]. Our first result shows

that if F(u, ) < oo, then F(u, ) is a Borel regular outer measure on Q.
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INTEGRAL REPRESENTATION FOR FUNCTIONALS 2

This result is a generalization of [18, Theorem 3.4]. For corresponding
results in the Euclidean case with the Lebesgue measure, we refer to
2], [7], [10], [11], and [12].

Our second goal is to study whether the relaxed functional F(u, -)
can be represented as an integral. To this end, let u € L{ _(Q) with
F(u,§) < oo. Then the growth condition implies that v € BV(Q).
We denote the decomposition of the variation measure ||Dul| into the
absolute continuous and singular parts by d||Du|| = adu + d||Dul|?,
where a € L'(Q). Similarly, we denote by F%(u,-) and F*(u,-) the
absolutely continuous and singular parts of F(u,-) with respect to p.
For the singular part, we obtain the integral representation

F2(u, ) = fool [ Dul[*(£2),

where fo, = lim;_,o f(¢)/t. This is analogous to the Euclidean case.
However, for the absolutely continuous part we only get an integral
representation up to a constant

/ fla)du < F(u, Q) < / f(Ca)dp,
Q Q

where C' depends on the doubling constant of the measure and the
constants in the Poincaré inequality. Furthermore, we give a coun-
terexample which shows that the constant cannot be dismissed. We
observe that working in the general metric context produces signifi-
cant challenges that are already visible in the FEuclidean setting with
a weighted Lebesgue measure. In overcoming these challenges, a key
technical tool is an equi-integrability result for the discrete convolution
of a measure. As a by-product of our analysis, we are able to show that
a BV function is actually a Newton-Sobolev function in a set where the
variation measure is absolutely continuous.

As an application of the integral representation, we consider a min-
imization problem related to functionals of linear growth. First we
define the concept of boundary values of BV functions, which is a deli-
cate issue already in the Euclidean case. Let 2 € ©2* be bounded open
subsets of X, and assume that h € BV(Q*). We define BV, (Q2) as the
space of functions v € BV(Q*) such that u = h p-almost everywhere
in Q*\ Q. A function u € BV,(£2) is a minimizer of the functional of
linear growth with boundary values h, if

F(u, *) = inf F(v,Q"),

where the infimum is taken over all v € BV,(Q). It was shown in [14]
that this problem always has a solution. By using the integral repre-
sentation, we can express the boundary values as a penalty term. More
precisely, under suitable conditions on the space and (), we establish
equivalence between the above minimization problem and minimizing
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the functional
Fu, Q) + fa / Tt — Txohlfo dH
a0

over all u € BV(Q). Here Tou and T'x\qu are boundary traces and g is
a strictly positive density function. This is the main result of the paper,
and it extends the Euclidean results in [11, p. 582] to metric measure
spaces. A careful analysis of BV extension domains and boundary
traces is needed in the argument.

2. PRELIMINARIES

In this paper, (X,d,u) is a complete metric measure space with
a Borel regular outer measure p. The measure p is assumed to be
doubling, meaning that there exists a constant c¢; > 0 such that

0 < p(B(x,2r)) < cqgu(B(z,r)) < 00

for every ball B(z,r) with center x € X and radius r > 0. For brevity,
we will sometimes write AB for B(z, Ar). On a metric space, a ball
B does not necessarily have a unique center point and radius, but we
assume every ball to come with a prescribed center and radius. The
doubling condition implies that

(2.1) HBW,") o (L)Q
u(B(z, R)) R

for every r < R and y € B(z, R), and some Q > 1 and C' > 1 that
only depend on c¢;. We recall that a complete metric space endowed
with a doubling measure is proper, that is, closed and bounded sets are
compact. Since X is proper, for any open set 2 C X we define Lip,,.(£2)
as the space of functions that are Lipschitz continuous in every ' € )
(and other local spaces of functions are defined similarly). Here {2 € 2
means that Q' is open and that € is a compact subset of Q.

For any set A C X, the restricted spherical Hausdorff content of
codimension 1 is defined as

. o A(B (7)) ~
Hr(A) = inf — 2 AC B(x;,r), s <R,
R()ln{; - i:le(xr)r_
where 0 < R < oo. The Hausdorff measure of codimension 1 of a set
AC X is
H(A) = lim Hgr(A).
R—0
The measure theoretic boundary 9*F is defined as the set of points
x € X in which both E and its complement have positive density, i.e.
B E B E
lim sup (B(x,r) N B) >0 and limsup w(B(z,r) \ E)
r—0 /L(B(I,T)) r—0 M(B(%T))
A curve 7 is a rectifiable continuous mapping from a compact interval
to X. The length of a curve 7 is denoted by £,. We will assume every

> 0.
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curve to be parametrized by arc-length, which can always be done (see
e.g. [13, Theorem 3.2]).

A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function v on X if for all curves v in X, we have

22) ule) ~u(w)| < [ gds
gl
whenever both u(z) and wu(y) are finite, and f7 gds = oo otherwise.
Here x and y are the end points of v. If ¢ is a nonnegative p-measurable
function on X and (2.2) holds for 1-almost every curve, then g is a 1-
weak upper gradient of u. A property holds for 1-almost every curve
if it fails only for a curve family with zero 1-modulus. A family I" of
curves is of zero 1-modulus if there is a nonnegative Borel function
p € LY(X) such that for all curves v € T, the curve integral fv,ods is
infinite.
We consider the following norm

lullvrr ) = lullzr oo + nf llglz o,

where the infimum is taken over all upper gradients g of u. The New-
tonian space is defined as

Nl’l(X) = {u: lul|nrax) < 00} /~,

where the equivalence relation ~ is given by u ~ v if and only if
lu — v||nr1x)y = 0. In the definition of upper gradients and Newto-
nian spaces, the whole space X can be replaced by any p-measurable
(typically open) set Q2 C X. It is known that for any u € Nli’cl (Q),
there exists a minimal 1-weak upper gradient, which we always denote
Ju, satistying g, < g p-almost everywhere in (), for any 1-weak upper
gradient g € LL _(Q) of u [4, Theorem 2.25]. For more on Newtonian
spaces, we refer to [20] and [4].

Next we recall the definition and basic properties of functions of
bounded variation on metric spaces, see [1], [3] and [18]. For u €

Li .(X), we define the total variation of u as
[ Dull(X)
= inf {liminf/ Gu; At 2 u; € Lipy (X)), u; = u in Llloc(X)} :
11— 00 X

where g, is the minimal 1-weak upper gradient of u;,. We say that a
function v € L'(X) is of bounded variation, and write u € BV(X), if
|| Dul|(X) < co. Moreover, a p-measurable set £ C X is said to be of
finite perimeter if ||Dxg|/(X) < co. By replacing X with an open set
2 C X in the definition of the total variation, we can define || Du||(€2).
For an arbitrary set A C X, we define

| Dul|(A) = inf{|| Du||(£2) : A C £, Q C X is open}.
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If u € BV(Q), || Dul|(+) is a finite Radon measure on €2 by [18, Theorem
3.4]. The perimeter of F in €2 is denoted by

P(E,Q) = [ Dxell(2).

We have the following coarea formula given by Miranda in [18, Propo-
sition 4.2]: if Q C X is an open set and u € L} (), then

(2.3) | Dull(©) = /_oo P({u> t},0) dt.

For an open set ) C X and a set of locally finite perimeter £ C X, we
know that

(2.4) IDxll(Q) = / O A7,
0*ENQ

where 0 : X — [a,¢q], with a = a(cq,cp) > 0, see [1, Theorem
5.3] and [3, Theorem 4.6]. The constant c¢p is related to the Poincaré
inequality, see below.

The jump set of a function u € BVi,.(X) is defined as

Su={z € X: u'(z) <u'(x)},

where " and u" are the lower and upper approximate limits of u

defined as

u(x) = sup {t €ER: lglg) u({u;;}(;ggx,r)) = 0}

and

o)<t {1 B gy 4> 0050 )

Outside the jump set, i.e. in X'\ S,, H-almost every point is a Lebesgue
point of u [16, Theorem 3.5], and we denote the Lebesgue limit at = by

We say that X supports a (1, 1)-Poincaré inequality if there exist
constants cp > 0 and A > 1 such that for all balls B(x,r), all locally

integrable functions u, and all 1-weak upper gradients g of u, we have

][ U — up(er | dp < cP?"/ gdp,
B(z,r) B(z,\r)

where

1
UB(z,r) :f wdp = —/ wdps.
B(z,r) M(B(JI, T)) B(z,r)

If the space supports a (1, 1)-Poincaré inequality, by an approximation

argument we get for every u € L (X)

|Dull(Blz, Ar))
U—u x,r d:u S cpr )
]{g@,ﬂ o= waenldi < cor =g )
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where the constant ¢p and the dilation factor A are the same as in the
(1,1)-Poincaré inequality. When u = xg for E C X, we get the relative
isoperimetric inequality

(25) min{u(B(z,r) 0 E), u(Bz,r) \ E)} < 2epr| Dxsl| (B, Ar)).
Throughout the work we assume, without further notice, that the mea-

sure p is doubling and that the space supports a (1,1)-Poincaré inequal-
1ty.

3. FUNCTIONAL AND ITS MEASURE PROPERTY

In this section we define the functional that is considered in this
paper, and show that it defines a Radon measure. Let f be a convex
nondecreasing function that is defined on [0, 00) and satisfies the linear
growth condition

(3.1) mt < f(t) < M(1+1)

for all t > 0, with some constants 0 < m < M < oo. This implies that
f is Lipschitz continuous with constant L > 0. Furthermore, we define

foo:supwz hmwz lim&

>0 t t—o0 t t—oo ’

where the second equality follows from the convexity of f. From the
definition of f.,, we get the simple estimate

(3.2) f(t) < f(0) + 1w

for all ¢ > 0. This will be useful for us later.
Now we give the definition of the functional. For an open set {2 and
u € NYH(Q), we could define it as

u~+Lﬂ%MM

where g, is the minimal 1-weak upper gradient of u. For u € BV(Q), we
need to use a relaxation procedure as given in the following definition.

Definition 3.1. Let  C X be an open set. For u € L (), we define
F(u, Q)

= inf {lim inf/ f(gu;) dp = w; € Lipo (), w; — w in L%OC(Q)} :
Q

1—00

where g,, is the minimal 1-weak upper gradient of w;.

Note that we could equally well require that g, is any 1-weak upper
gradient of u;. We define F(u, A) for an arbitrary set A C X by

(3.3) F(u, A) = inf{F(u, ) : Q is open, A C Q}.
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In this section we show that if u € L _(Q) with F(u,) < oo, then

loc
F(u,-) is a Borel regular outer measure on €, extending [18, Theorem

3.4]. The functional clearly satisfies
(3.4) m|| Dul|(A) < F(u, A) < M(u(A) + || Dul|(A))

for any A C X. This estimate follows directly from the definition of
the functional, the definition of the variation measure, and (3.1). It is
also easy to see that
F(u, B) < F(u, A)

for any sets B C A C X.

In order to show the measure property, we first prove a few lemmas.
The first is the following technical gluing lemma that is similar to [2,
Lemma 5.44].

Lemma 3.2. Let U’, U, V', V be open sets in X such that U' € U and
V' C V.. Then there exists an open set H C (U\U')NV', with H € U,
such that for any € > 0 and any pair of functions u € Lip,,.(U) and
v € Lip,.(V), there is a function ¢ € Lip, (U) with 0 < ¢ < 1 and
¢ = 1 in a neighborhood of U', such that the function w = ¢u + (1 —
¢)v € Lip,,.(U' U V') satisfies

/ f(gw)duﬁ/f(gu)dwr/f(gv)du+0/ u—vldp+e.
UtV U v H
Here C = C(U,U", M).
Proof. Let n = dist(U’, X \ U) > 0. Define
2

H= {xe Unv': g < dist(z, U') < E”}
Now fix u € Lip,..(U), v € Lip,..(V) and € > 0. Choose k € N such
that
(35 M [ (1 g g du < e

H

if the above integral is finite — otherwise the desired estimate is triv-
ially true. For i =1,...,k, define the sets

o /‘(k—i_i_l)n . / (k+i)77
HZ_{xEUﬂV.—Sk < dist(z,U") < % ,

so that H D UF_| H;, and define the Lipschitz functions

, dis.t(x, U > %n, |
((k +i)n — 3kdist(z,U")), =ty < dist(z, U") < By,
, dist(z, U’) < &=y,

Now gy, = 0 p-almost everywhere in U NV’ \ H; [4, Corollary 2.21].
Let w; = ¢g;u+ (1 — ¢;)v on U U V'. We have the estimate

¢i(x) =

— 3= O

u — v,
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see [4, Lemma 2.18]. By also using the estimate f(¢) < M (1 +t), we
get

[ tarins [ seoan+ [ seans [ o) d
< / F(gu) du + / F(g0) di
U 1%

3ME

Now, since H D U¥_| H;, we have

1 k
E;//leﬂgwi)dﬂ
M
< [ s+ [ s@)an+ 3 [ 0+ a+0)dn

3M
+—/ lu —v|dp
n Ju

< [ rwddn+ [ Ha)aurc [ pu—oldue.

In the last inequality we used (3.5). Thus we can find an index ¢ such
that the function w = w; satisfies the desired estimate. O

In the following lemmas, we assume that u € L{, (AU B).
Lemma 3.3. Let A C X be open with F(u, A) < co. Then
F(u, A) = sup F(u, B).
BeA

Proof. Take open sets By € By € Bs € A and sequences u; € Lipy,.(B3),
v; € Lip,,.(A\ By) such that u; — win L. (Bs), v; = win Li (A\ By),

F(u, Bs) = hm f(gu,) du,

B3
and
]:(U,A\E): .hm 7f<gw)d/i
i—00 A\B;
By using Lemma 3.2 with U = B3, U = By, V = V' = A\ B,
and € = 1/i, we find a set H C Bs \ By, H € B3, and a sequence
w; € Lipy,.(A) such that w; — u in L _(A), and

/f(w)dué F(gu) dps + f(gm)duw/ s — vi] dyp + &
A B3 )

for every 7 € N. In the above inequality, the last integral converges to
zero as i — 00, since H € By and H € A\ B;. Thus

A\By

i—00

F(u, 4) < liminf / F(gu) dt < Flu, By) + Flu, A\ B).
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Exhausting A with sets B; concludes the proof, since then F(u, A\
B1) — 0 by (3.4). O

Lemma 3.4. Let A, B C X be open. Then
F(u,AUB) < F(u,A) + F(u, B).

Proof. First we note that every C € AU B can be presented as C' =
A"U B, where A’ €@ A and B’ € B. Therefore, according to Lemma
3.3, it suffices to show that

F(u, AU B") < F(u, A) + F(u, B)

for every A’ € A and B’ € B. If F(u,A) = oo or F(u, B) = oo, the
claim holds. Assume therefore that F(u, A) < oo and F(u, B) < o0
Take sequences u; € Lip,,.(A) and v; € Lip,,.(B) such that u; — u in
Li (A), v = uin L (B),

loc loc

Flu.4) = m | (o) d

i—00

and
F(u,B) = lim / f(gv;) dpe.
71— 00 B

By using Lemma 3.2 with U’ = A", U = A, V' = B, V = B and
e =1/i, we find aset H @ A, H C B’ € B, and a sequence w; €
Lipy,. (4’ U B’) such that w; — v in Ll (A’ U B’), and

loc

[ sowan< [ steas [ stodnsc [ - ulanr

for every i € N. By the properties of H, the last integral in the above
inequality converges to zero as ¢ — 0o, and then

F(u, AU B") < F(u, A) + F(u, B).

Lemma 3.5. Let A, B C X be open and let AN B = (. Then
F(u,AUB) > F(u, A) + F(u, B).

Proof. If F(u, AU B) = oo, the claim holds. Hence we may assume
that F(u, AU B) < o0o. Take a sequence u; € Lip,,.(A U B) such that
; —win LL (AU B) and

loc

F(u, AU B) = lim f(gu,) du

1—00 AUB
Then, since A and B are disjoint,

F(u, AU B) = lim f(gu;) dp

1—00 AUB

>11m1nf/f Gu, d,u—i—hmmf/ fgu,)d
> F(u, A) + F(u, B).
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U

Now we are ready to prove the measure property of the functional.

Theorem 3.6. Let Q C X be an open set, and let u € Li (Q) with

loc
F(u,) < oo. Then F(u,-) is a Borel reqular outer measure on Q.

Proof. First we show that F(u, ) is an outer measure on 2. Obviously
F(u,0) = 0. As mentioned earlier, clearly F(u, A) < F(u, B) for any
A C B C Q. Take open sets A; C Q, 71 =1,2,.... Let ¢ > 0. By
Lemma 3.3 there exists a set B € U2, A; such that

F (u,UAZ) < F(u,B) + ¢.
i=1

Since B C U, A; is compact, there exists n € N such that B C B C
U ;A;. Then by Lemma 3.4,

F(u,B) < F <U7OAi> < i-ﬂ%/‘h%

and thus letting n — oo and € — 0 gives us

(3.6) f<u, Gl Ai> < f; Flu, Ay).

For general sets A;, we can prove (3.6) by approximation with open
sets.

The next step is to prove that F(u,-) is a Borel outer measure. Let
A, B C Q satisfy dist(A, B) > 0. Fix € > 0 and choose an open set
U D AU B such that

F(u, AUB) > F(u,U) —e.
Define the sets

dist(A, B
Vi = {a:EQ: dist(z, A) < %}HU,

dist(A, B
VB:{:(;EQ: dist(a:,B)<%’)}ﬂU.

Then V4, Vg are open and A C V4, B C V. Moreover V, N Vg = 0.
Thus by Lemma 3.5,

Flu,AUB) > F(u,VaUVg) —¢

> F(u,Va) + F(u,Vp) — €

> F(u,A) + F(u, B) —e.

Now letting ¢ — 0 shows that F(u,-) is a Borel outer measure by
Carathéodory’s criterion.
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The measure F(u, ) is Borel regular by construction, since for every
A C Q we may choose open sets V; such that A C V; C Q and

Flu, V) < Flu, A)+ 1,

and by defining V' = N2, V;, we get F(u, V) = F(u, A), where VD A
is a Borel set. U

As a simple application of the measure property of the functional,
we show the following approximation result.

Proposition 3.7. Let Q C X be an open set, and let u € L (Q) with

F(u,) < oo. Then for any sequence of functions u; € Lip,.(Q2) for
which u; — w in L () and

loc
/Q F(gu) dpt — Flu, ),

we also have f(gy,)dp = dF(u,-) in Q.

Proof. For any open set U C (), we have by the definition of the func-
tional that

(3.7) F(u,U) < hmmf/ f(gu,)d

1— 00

On the other hand, for any relatively closed set F' C ) we have

F(u,Q) —hmsup/fguz dpu

1—00

> lim sup / f(gu,) dp + lim inf f(gu,) dp
F

1—00 1—00 Q\F
> timsup [ flgu) dp-+ Flu. 2\ F).
1—00 F

The last inequality follows from the definition of the functional, since
Q\ F is open. By the measure property of the functional, we can
subtract F(u, Q2 \ F') from both sides to get

fimsup [ f(g.) dn < Fu )
i—>00 F

According to a standard characterization of the weak* convergence of

Radon measures, the above inequality and (3.7) together give the result

8, p. 54]. O

4. INTEGRAL REPRESENTATION

In this section we study an integral representation for the functional
F(u,-). First we show the estimate from below. Note that due to (3.4),
F(u, ) < oo always implies || Dul|(Q) < oc.
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Theorem 4.1. Let 2 be an open set, and let u € L (Q) with F(u, Q) <
oo. Let d||Du|| = adup + d||Dul|® be the decomposition of the varia-
tion measure into the absolutely continuous and singular parts, where
a € L'(Q) is a Borel function and ||Dul|* is the singular part. Then
we have

Flu, Q) > / Fla)dp+ fol Dull*(92).

Proof. Pick a sequence u; € Lip,..(2) such that u; = u in L

loc

(Q) and
(4.1) /Qf(gui)du—)}"(u,ﬂ) as i — 00.

Using the linear growth condition for f, presented in (3.1), we estimate

1—00 1—00

limsup/gu dp < —hmsup/f Gu;) dp < oo.
Q

Picking a suitable subsequence, which we still denote g,,, we have
Gu, dp = dv in Q, where v is a Radon measure with finite mass in
Q). Furthermore, by the definition of the variation measure, we neces-
sarily have v > ||Dul|, which can be seen as follows. For any open set
U c Q and for any ¢ > 0, we can pick an open set U’ € U such that
| Dul||(U) < ||Dul|(U’) + €; see e.g. Lemma 3.3. We obtain

|Dul|(U) < |Dul|(U7) + & < liminf / Gt e

< limsup/ Gu,dpp+e <v(U)+e<vU) +e.
1—»00 /

On the first line we used the definition of the variation measure, and
on the second line we used a property of the weak* convergence of
Radon measures, see e.g. [2, Example 1.63]. By approximation we get
v(A) > || Du||(A) for any A C .

The following lower semicontinuity argument is from [2, p. 64-66].
First we note that as a nonnegative nondecreasing convex function, f
can be presented as

f(t) =sup(d;t +e;), t>0,
jeN
for some sequences dj,e; € R, with d; > 0, j = 1,2,..., and fur-
thermore sup; d; = f [2, Proposition 2.31, Lemma 2.33]. Given any

pairwise disjoint open subsets of €2, denoted Aq,...,Ag, £ € N, and
functions ¢; € C.(A4;) with 0 < ¢; <1, we have

/ (djgu; + €5)p; dué/ f(9u;) du
A A;

J
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for every j = 1,...,k and ¢ € N. Summing over j and letting i — oo,
we get by the weak™ convergence g,, du — dv

k

>(f

J=1

djp; d;/+/ €j¢P; du) <hmmf/f Gu:)
A

i j
Since we had v > ||Dul|, this immediately implies

k
> (/ djp; d||DU||+/ €% dM) <11m1nf/f Gu;) d
A A

j=1 J Y

We recall that d||Dul|| = adu + d||Dul|®. It is known that the singular
part || Du||® is concentrated on a Borel set D C ) that satisfies u(D) =
0 and || Dul|*(©2\ D) = 0, see e.g. [8, p. 42]. Define the Radon measure
o =+ ||Dul|*, and the Borel functions

b = dja + e;, on Q\ D,
! dj, on D

forj=1,...,k, and

) fla), on 2\ D,
¢= foo, on D.

As mentioned above, we now have sup; ¢; = ¢, and we can write the
previous inequality as

k
j=1 74 e

Since the functions ¢; € C.(4;), 0 < ¢; < 1, were arbitrary, we get

k
> [ 6ydo <timint | fg.)du
oA isoo o

Since this holds for any pairwise disjoint open subsets Ay, ..., A, C ,
by [2, Lemma 2.35] we get

/gbda<hm1nf/f(gui)d,u
Q 11— 00

However, by the definitions of ¢ and o, this is the same as
[ r@dn+ £ Dl () < timint [ (g do
0 71— 00 Q

Combining this with (4.1), we get the desired estimate from below. O

It is worth noting that in the above argument, we only needed the
weak™ convergence of the sequence g,, du to a Radon measure that
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majorizes ||Dul|. Then we could use the fact that the functional for
measures

ur—>/f(d)du+foou5(9), dv =adp + dv°,
Q

is lower semicontinuous with respect to weak™® convergence of Radon
measures. This lower semicontinuity is guaranteed by the fact that f is
convex, but in order to have upper semicontinuity, we should have that
f is also concave (and thus linear). Thus there is an important asym-
metry in the setting, and for the estimate from above, we will need
to use rather different methods where we prove weak or strong L!-
convergence for the sequence of upper gradients, instead of just weak™*
convergence of measures. To achieve this type of stronger convergence,
we need to specifically ensure that the sequence of upper gradients is
equi-integrable. The price that is paid is that a constant C' appears in
the final estimate related to the absolutely continuous parts. An exam-
ple that we provide later shows that this constant cannot be discarded.

We recall that for a y-measurable set F' C X, the equi-integrability of
a sequence of functions g; € L'(F), i € N, is defined by two conditions.
First, for any € > 0, there must be a p-measurable set A C F with
1(A) < oo such that

/ gidp < e forallieN.
F\A

Second, for any £ > 0 there must be § > 0 such that if A C F is
p-measurable with p(A) < ¢, then

/gid,u<5 for all 7 € N.
A

We will need the following equi-integrability result that partially
generalizes [9, Lemma 6]. For the construction of Whitney coverings
that are needed in the result, see e.g. [5, Theorem 3.1].

Lemma 4.2. Let 2 C X be open, let F C Q be u-measurable, and let v
be a Radon measure with finite mass in ). Write the decomposition of
v into the absolutely continuous and singular parts with respect to p as
dv = adp + dv®, and assume that v*(F) = 0. Take a sequence of open
sets F; such that F C F; C Q and v*(F;) < 1/i, i € N. For a given
7 > 1 and every i € N, take a Whitney covering { B} = B(z},75)}52,
of F; such that r;- < 1/i for every j € N, TB;'- C F; for every j € N,
every ball T By, meets at most ¢, = ¢,(cq,T) balls TB;-, and if TB;- meets
7By, then vt < 2rj. Define the functions

> V(TB}) .
9i = Xgi— 5, €N
Z B M(Bj)

j=1
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Then the sequence g; is equi-integrable in F. Moreover, a subsequence
of g; converges weakly in L*(F) to a function a that satisfies a < c,a
u-almost everywhere in F.

Remark 4.3. If the measure v is absolutely continuous in the whole
of €, then we can choose F' = F; = () for all + € N.

Proof. To check the first condition of equi-integrability, let £ > 0 and
take a ball B = B(zo, R) with zp € X and R > 0 so large that
v(Q\ B(xg, R)) < €/c,. Then, by the bounded overlap property of the
Whitney balls, we have

/ gidp < cov(F; \ B(zg, R)) < &
F\B(zo,R+27)

for all 7 € N.

To check the second condition, assume by contradiction that there
is a sequence of p-measurable sets A; C F with p(4;) — 0, and
Ju 9idp > n > 0 for all i € N. Fix ¢ > 0. We know that there is
6 > 0 such that if A C Q and p(A) < 4, then [, adu < e. Note that by
the bounded overlap property of the Whitney balls, we have for every
teN

- IU,(A@ N B;) i
[ =3B

7 ]:1

< u(A; N B
<car(R) + S MU [ aan
J 7B;

Fix k € N. We can divide the above sum into two parts: let I; consist
of those indices j € N for which u(A4; N B})/u(Bj) > 1/k, and let I,
consist of the remaining indices. We estimate

(4.2)

j=1

m (U TB§?> <CY u(B) < CkY (AN By) < Chpu(A;) <6,

Jjeh jel jely

when i is large enough. Now we can further estimate (4.2):

/ gidp < e,V (F;) + %/ adp+ c.e
A F;
for large enough ¢ € N. By letting first ¢ — oo, then £k — oo, and
finally ¢ — 0, we get a contradiction with [ 4, i dp > n > 0, proving
the equi-integrability.

Finally, let us prove the weak convergence in L!'(F). Possibly by
taking a subsequence which we still denote g;, we have g; — a weakly
in L'(F) for some a € L'(F), by the Dunford-Pettis theorem (see
e.g. [2, Theorem 1.38]). By this weak convergence and the bounded
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overlap property of the Whitney balls, we can estimate for any = € F
and 0 <7 <r

/ adp = lim Sup/ gi dp
B(z,7)NF i—00 B(z,7)NF

= (BN Bz, )N F)

= limsup - v(TBY)
< limsup Z v(7Bj)

JEN: B;. NB(z,7)NF#D

< limsup c,v(B(z,7)).

1—00

By letting ¥ 7 r, we get

/ adp < cov(B(z,r)).
B(z,r)NF

By the Radon-Nikodym theorem, p-almost every x € F' satisfies
(B

lim dp=a(x) and lim v(Bl,r))

r—0 B(z,r)NF r—0 [I,(B(ZE, T))

By using these estimates as well as the previous one, we get for p-almost
every r € F'

=0.

Q¢

a(x) = lim adu
r—0 B(z,r)NF

(B
< ¢, lim sup][ adp + ¢, lim sup M,
=0 J B(z,r) r—0 H(B(z,r))
where the first term on the right-hand side is c,a by the Radon-Nikodym
theorem, and the second term is zero. Thus we have a < c,a p-almost
everywhere in F. O

Now we are ready to prove the estimate from above.

Theorem 4.4. Let Q be an open set, and letw € L () with F(u,Q) <
0o. Let d||Du|| = adp+ d||Dul||® be the decomposition of the variation
measure, where a € LY(Q) and ||Du||® is the singular part. Then we

have
ﬂmms/ﬂmmwwmmwmx
Q
with C' = C(cq, cp, N).

Proof. Since the functional F(u, -) is a Radon measure by Theorem 3.6,
we can decompose it into the absolutely continuous and singular parts
as F(u, ) = F*(u,-) + F*(u,-). Again, the singular parts |[Dul|* and
F*(u,-) are concentrated on a Borel set D C €2 that satisfies (D) = 0
and

|Dull*(2\ D) = 0 = F*(u, 2\ D),
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see e.g. [8, p. 42].

First we prove the estimate for the singular part. Let ¢ > 0. Choose
an open set G with D C G C Q, such that u(G) < € and ||Dul|(G) <
|Dul|(D) 4+ . Take a sequence u; € Lip,,.(G) such that u; — u in
Li .(G) and

loc
/ Gu; A — || Du||(G) as i — oo.
a

Thus for some @ € N large enough, we have

/G Gu dpt < || Dull(G) + ¢
and
F.G) < [ fln)dne.
G

The last inequality necessarily holds for large enough ¢ by the definition
of the functional F(u,-). Now, using the two inequalities above and
the estimate for f given in (3.2), we can estimate

Flu.D) < F(u,G) < /G F(gu) dn + ¢

s/Gf<0>du+foo/Gguidu+e

< FOR(G) + foo Dull(G) + froe + €
< F(0)e + Sl Dull(D) + €) + fro + &

In the last inequality we used the properties of the set G given earlier.
Letting ¢ — 0, we get the estimate from above for the singular part,
ie.

(4.3) Fo(u, ) = F(u, D) < foo| Dull(D) = foo| Dul|*(€2).

Next let us consider the absolutely continuous part. Let D be defined
as above, and let ' = Q\ D. Let € > 0. Take an open set G such that
FCGCQ,and ||Du||(G) < ||Du||(F) + ¢.

For every i € N, take a Whitney covering { B} = B(z},75)}52, of G
s.t. ré < 1/iforeveryj € N, 5)\B§» C G for every j € N, every ball 5AB;,
meets at most C' = C(cq, A) balls 5AB, and if 5AB} meets 5AB;, then
7% < 2r}. Then take a partition of unity {¢%}52, subordinate to this
cover, such that 0 < ¢% < 1, each ¢ is a C(cq)/7}-Lipschitz function,
and supp(¢}) C 2B for every j € N (see e.g. [5, Theorem 3.4]). Define
discrete convolutions with respect to the Whitney coverings by

o0
U; = E uB;;gb;-, 1€ N.
J=1
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We know that u; — u in L'(G) as ¢ — oo, and that each u; has an
upper gradient

> | Dul|(5AB;)

CZ Bl—)

with C'= C(cq, cp), see e.g. the proof of [16, Proposition 4.1]. We can
of course write the decomposition g; = g + ¢;, where

—CZXBl

f sagi ¢ d”

and
- IIDUII (5ABY)

CZXBL )

By the bounded overlap property of the coverings, we can easily esti-
mate

(4.4) / g: dp < O\ Dul]*(G) < Os
G

for every i € N, with C = é(cd, cp, A). Furthermore, by Lemma 4.2 we
know that the sequence g{ is equi-integrable and that a subsequence,
which we still denote g¢, converges weakly in L'(G) to a function a <
Ca, with C' = C(cq, A). By Mazur’s lemma we have for certain convex
combinations, denoted by a hat,

gi = Zd,-Jg? —a in LYG) as i — oo,

j=i

where d; ; > 0 and Zj\f:l d;; = 1 for every ¢ € N [19, Theorem 3.12].
We note that @; € Lip,,.(G) for every i € N (the hat always means
that we take the same convex combinations), 4; — w in Ly, (G), and
ga; < g; p-almost everywhere for every ¢ € N (recall that ¢, always
means the minimal 1-weak upper gradient of u). Using the definition

of F(u,-), the fact that f is L-Lipschitz, and (4.4), we get

]-"(u, F) < ]-"(u,G < hmmf/ f gul

1—00

< liminf/ f(g:) dp < liminf </ f(gA;‘)d/L—i—/ Lg}fdu)
11— 00 G 1— 00 G G

< lim inf (/ f(gAg)dquLéa) —/f(a)du+L55

1—00

/fCa du+LCa</f d/L—i-LCeE
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By letting ¢ — 0 we get the estimate from above for the absolutely
continuous part, i.e.

Fo(u,Q) = F(u, F) < /Q F(Ca) du

By combining this with (4.3), we get the desired estimate from above.
Il

Remark 4.5. By using Theorems 4.1 and 4.4, as well as the definition
of the functional for general sets given in (3.3), we can conclude that
for any p-measurable set A C Q C X with F(u, Q) < oo, we have

F*(u, A) = fool Dul|*(A)
and

/ Fla)du < Fo(u, A) < / f(Ca)d,
A A

where F%(u,-) and F*(u,-) are again the absolutely continuous and
singular parts of the measure given by the functional.

Since locally Lipschitz functions are dense in the Newtonian space
NYHQ) with Q open [4, Theorem 5.47], from the definition of total
variation we know that if w € N (Q), then v € BV(Q) with || Dul|
absolutely continuous, and more precisely

| Dull(©) < / gudpi.

We obtain, to some extent as a by-product of the latter part of the proof
of the previous theorem, the following converse, which also answers a
question posed in [16]. A later example will show that the constant C'
is necessary here as well.

Theorem 4.6. Let Q@ C X be an open set, let u € BV(Q), and let
d||Du|| = adp+d||Dul|® be the decomposition of the variation measure,
where a € LY(Q) and ||Dul|* is the singular part. Let F C Q be a p-
measurable set for which |Du||*(F) = 0. Then, by modifying u on a
set of p-measure zero if necessary, we have u|p € NY(F) and g, < Ca
p-almost everywhere in F', with C' = C(cq, cp, A).

Proof. We pick a sequence of open sets F; such that F' C F; C
and || Dul]*(F;) < 1/i, i =1,2,.... Then, as described in Lemma 4.2,
we pick Whitney coverings {B; JO‘;I of the sets F;, with the constant
T =>5\.

Furthermore, as we did in the latter part of the proof of Theorem 4.4
with the open set GG, we define for every ¢ € N a discrete convolution w;
of the function u with respect to the Whitney covering {B; 321 Every
u; has an upper gradient

> | Dul|(5AB;)

CZ BZ—)
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in F;, with C = C(cq,cp), and naturally g; is then also an upper
gradient of u; in F. We have u; — u in L'(F) (see e.g. the proof of [16,
Proposition 4.1]) and, according to Lemma 4.2 and up to a subsequence,
gi — a weakly in L'(F), where a < Ca p-almost everywhere in F. We
now know by [13, Lemma 7.8] that by modifying u on a set of y-measure
zero, if necessary, we have that a is a 1-weak upper gradient of u in F'.
Thus we have the result. O

Remark 4.7. As in Lemma 4.2, if ||Dul| is absolutely continuous on
the whole of €2, we can choose simply F' = €2, and then we also have
the inequality

/%MMSCMMWW
Q

with C' = C(cq,cp, ). Note also that the proof of [13, Lemma 7.8],
which we used above, is also based on Mazur’s lemma, so the techniques
used above are very similar to those used in the proof of Theorem 4.4.

Finally we give the counterexample which shows that in general, we
can have

Pwm>éﬂ@MaM|wwm<A%w

The latter inequality answers a question raised in [18] and later in [3].

Example 4.8. Take the space X = [0, 1], equipped with the Euclidean
distance and a measure p, which we will next define. First we construct
a fat Cantor set A as follows. Take Ay = [0, 1], whose measure we
denote gy = LY(Ay) = 1, where L' is the 1-dimensional Lebesgue
measure. Then in each step i € N we remove from A;_; the set B;,
which consists of 2°=! open intervals of length 272 centered at the
middle points of the intervals that make up A;,_1. We denote «; =
L'(A;), and define A = N2, A;. Then we have

a=L'(A) = lima; =1/2.
1—00
Now, equip the space X with the weighted Lebesgue measure dy =
wdL, where w=21in A and w=11in X \ A. Define

1 1 '
g:aXAZQXA and 9i = ————XBi> 1€ N.

The unweighted integral of g and each g; over X is 1. Next define the
function

u() :/:gdcl.

Now u is in NM'(X) and even in Lip(X), since g is bounded. The
minimal 1-weak upper gradient of u is g — this can be seen e.g. by the
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representation formulas for minimal upper gradients, see [4, Theorem
2.50]. Approximate u with the functions

ul(x):/ g;dL', i€eN.
0

The functions u; are Lipschitz, and they converge to w in L'(X) and
even uniformly. This can be seen as follows. Given i € N, the set A;
consists of 2¢ intervals of length «; /2%, If I is one of these intervals, we
have

(45) 277; = /gd£1 :/gi+1 dﬁl,
I I

and also
/ gdﬁl =0= / gi+1 dﬁl

Hence u;y1 = u at the end points of the intervals that make up A;, and
elsewhere |u;11 — u| is at most 27 by (4.5).

Clearly the minimal 1-weak upper gradient of u; is g;. However, we
have

1 1
| odu=2>1=tm [ gidu= | Dul 0. 1)
0 71— 00 0

Thus the total variation is strictly smaller than the integral of the mini-
mal 1-weak upper gradient, demonstrating the necessity of the constant
C in Theorem 4.6. On the other hand, any approximating sequence
u; — u in L'(X) converges, up to a subsequence, also pointwise p- and
thus £!-almost everywhere, and then we necessarily have for some such
sequence

1
(4.6) | Du||([0,1]) = llm/ Gu; A > hmsup/ Gu, LY > 1.

i—00 0
Hence we have ||Du||([0,1]) = 1. Let us show that more precisely,

d||Du|| = adp with a = xa. The fact that w is Lipschitz implies that
|| Dul| is absolutely continuous with respect to p. Since u; converges to
u uniformly, for any interval (d, e) we must have

lim g dl! :/ gdLl!,
(dse) (d,e)

1— 00

and since for the weight we had w = 1 where g; > 0, and w = 2 where
g > 0, we now get

1
lim gidp = —/ g dp.
=00 J(de) 2 J(de)

By the definition of the variation measure, we have at any point z € X
for r > 0 small enough

1
| Dull((z — 7.z + 7)) < lim inf / gdp— / odu.
(x—ra+r) (z—r,z+7)

1—00 2
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Now, if z € A, we can estimate the Radon-Nikodym derivative

|Du|(B(x.r)
e = B, )

<1,

and when x € X \ A, we clearly have that the derivative is 0. On the
other hand, if the derivative were strictly smaller than 1 in a subset
of A of positive p-measure, we would get ||[Dul|(X) < 1, which is a
contradiction with the fact that ||Dul[(X) = 1. Thus d||Du|| = adu
with a = ya. !

To show that we can have F%(u,X) > [, f(a)dy — note that
F(u, X) = F(u, X) — assume that f is given by

£(t) = {t, t €[0,1],

2 —1, t>1.

(We could equally well consider other nonlinear f that satisfy the earlier
assumptions.) Since a = x4, we have

/Xf(a)du:/Xadu:2/XXAd£1:1.

On the other hand, for some sequence of Lipschitz functions v; — u in
L'(X), we have

1— 00

F(u, X) = lim [ f(gy)dp
(4.7) *
A X\A

i—00

By considering a subsequence, if necessary, we may assume that v; — u
pointwise u- and thus £!'-almost everywhere. By Proposition 3.7, we
have for any closed set ' C X \ A

lim sup /F Flgo) dn < Flu, F) < Fu, X\ A) < [ Flgu)du=0,

i—»00 X\A

which implies that

1—00 1—00

lim | f(g,,)dC' =0=lim [ g, dC".
F F

'We can further show that g; dp = adp in X, but we do not have g; — a
weakly in L'(X), demonstrating the subtle difference between the two types of
weak convergence.
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Applying these two equalities together with the inequality f(t) > 2t—1,
we obtain

lim sup f(gy,)dL" = lim sup/ f(gy,)dC
X\(AUF)

1—00 X\A i—00

> lim sup/ (2g,, — 1) dL*
X\(AUF)

1—00

i—00

> lim sup/ 20y, AL — LY (X \ (AU F))
X\(AUF)

= limsup/ 29y, AL — LY (X \ (AU F)).
1—00 X\A

The last term on the last line can be made arbitrarily small. Inserting

this into (4.7), we get

F(u, X) = limsup (Q/Af(gvi) act + " f(gv,) dﬁl)

1—>00

> 2lim inf/ f(g,,)dLt + 21im Sup/ Go, AL
A X\A

100 i—00

1

> 2lim inf/ Go, ALY > 2.
1—00 0

The last inequality follows from the pointwise convergence of v; to u

L'-almost everywhere.

Roughly speaking, we note that the total variation |Dul|(X) is
found to be unexpectedly small because the growth of the approxi-
mating functions u; is concentrated outside the Cantor set A, where it
is “cheaper” due to the smaller value of the weight function. However,
when we calculate F(u, X), the same does not work, because now the
nonlinear function f places “extra weight” on upper gradients that take
values larger than 1.

5. MINIMIZATION PROBLEM

Let us consider a minimization problem related to the functional of
linear growth. First we specify what we mean by boundary values of
BV functions.

Definition 5.1. Let 2 and Q* be bounded open subsets of X such
that Q € Q*, and assume that h € BV(Q*). We define BV,,(Q2) as the

space of functions v € BV(Q*) such that u = h p-almost everywhere
in O\ Q.

Now we give the definition of our minimization problem.

Definition 5.2. A function v € BV,(2) is a minimizer of the func-
tional of linear growth with the boundary values h € BV(Q*), if

F(u, %) = inf F(v,Q"),
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where the infimum is taken over all v € BV, (Q).

Note that if v € LL (Q*) and v = h in Q*\ ©, then u € L'(Q*).
Furthermore, if F(u, *) < oo, then || Dul|(2*) < oo by (3.4). Thus it
makes sense to restrict u to the class BV(Q*) in the above definition.
Observe that the minimizers do not depend on 2*, but the value of the
functional does. Note also that the minimization problem always has

a solution and that the solution is not necessarily continuous, see [14].

Remark 5.3. We point out that any minimizer is also a local minimizer
in the following sense. A minimizer v € BV,(Q) of F(-,Q*) with
the boundary values h € BV(§2*) is a minimizer of F(-, Q") with the
boundary values u € BV, () for every ' € Q" C Q*, with Q' C Q.
This can be seen as follows. Every v € BV, (') can be extended to
Q" by defining v = w in Q* \ 2”. The minimality of v and the measure
property of the functional (Theorem 3.6) then imply that

Flu, 0\ Q) + Flu, ) < Fo, 0\ Q) + Flo, Q).

Since u = v p-almost everywhere in Q* \ €', the first terms on both
sides of the inequality cancel out, and we have

F(u, Q") < F(v,Q").

Now we wish to express the boundary values of the minimization
problem as a penalty term involving an integral over the boundary.
To this end, we need to discuss boundary traces and extensions of BV
functions.

Definition 5.4. An open set (2 is a strong BV extension domain, if for
every u € BV(Q) there is an extension Eu € BV(X) such that Ful|g =
u, there is a constant 1 < cq < oo such that || Eullgv(x) < collullsve)
and ||D(Eu)||(0€2) = 0.

Note that our definition differs from the conventional definition of a
BV extension domain, since we also require that ||D(Ew)|[(092) = 0.
This can be understood as an additional regularity condition for the
domain.

Definition 5.5. We say that a p-measurable set () satisfies the weak
measure density condition if for H-almost every = € €2, we have

lim inf pB(x,m) N9
B )

> 0.

These are the two conditions we will impose in order to have satisfac-
tory results on the boundary traces of BV functions. Based on results
found in [6], we prove in the upcoming note [17] that every bounded
uniform domain is a strong BV extension domain and satisfies the weak
measure density condition. An open set {2 is A-uniform, with constant
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A > 1, if for every x,y € Q) there is a curve v in ) connecting z and y
such that ¢, < Ad(z,y), and for all t € [0, /,], we have

dist(y(t), X \ Q) > A~ min{t, £, — t}.
Now we give the definition of boundary traces.

Definition 5.6. For a y-measurable set (2 and a pg-measurable function
u on ), a real-valued function Tqu defined on 052 is a boundary trace
of w if for H-almost every x € 02, we have

lim |u — Tou(z)|du = 0.
r—=0 QNB(z,r)
Often we will also call Tou(x) a boundary trace if the above condition
is satisfied at the point x. If the trace exists at a point = € 02, we
clearly have

Tou(z) = lim udp = aplim u(y),
r—0 B(z,r)NQ yeQ, y—w
where ap lim denotes the approximate limit. Furthermore, we can show
that the trace is always a Borel function.

Let us recall the following decomposition result for the variation
measure of a BV function from [3, Theorem 5.3]. For any open set
Q C X, any u € BV(Q), and any Borel set A C 2 that is o-finite with
respect to H, we have

w ()
51 1Dul@) = 10ul@\ A+ [ [ oyt o)

The function 6 and the lower and upper approximate limits v” and "
were defined in Section 2. In particular, by [3, Theorem 5.3] the jump
set S, is known to be o-finite with respect to H.

The following is our main result on boundary traces.

Theorem 5.7. Assume that ) is a strong BV extension domain that
satisfies the weak measure density condition, and let u € BV(Q). Then
the boundary trace Tqu exists, that is, Tou(z) is defined for H-almost
every x € 0S).

Proof. Extend u to a function Fu € BV(X). By the fact that
ID(Ew)||(02) =0
and the decomposition (5.1), we have H(Sg, N OQ) = 0 — recall that
the function € is bounded away from zero. Here
Spu ={zx € X : (Eu)"(z) < (Eu)"(1)},

as usual. On the other hand, by [16, Theorem 3.5] we know that
H-almost every point z € 9*Q \ Sg, is a Lebesgue point of Eu. In
these points we define Thu(z) simply as the Lebesgue limit Eu(z). For
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H-almost every xz € 02 the weak measure density condition is also
satisfied, so that

0 u(B(z,)

Thus for H-almost every z € 02 we can estimate

lim sup][ lu — Tqu(x)|du
B(z,r)NQ

r—0

< lim sup |Eu — Eu(z)| dp = 0.

r—0 ILL -E / r
‘:’

Due to the Lebesgue point theorem [16, Theorem 3.5], we have in
fact
lim sup][ lu — Tou(z)|¥ @V dy =0
B(z,r)NQ

r—0

for H-almost every = € 92, where (Q > 1 was given in (2.1). However,
we will not need this stronger result.
Let us list some general properties of boundary traces.

Proposition 5.8. Assume that €0 is a p-measurable set and that u
and v are p-measurable functions on 2. The boundary trace operator
enjoys the following properties for any x € 02 for which both Tou(x)
and Tou(x) exist:

(1) To(au+ pv)(z) = aTou(z) + S Tou(x) for any a, B € R.

(i1) If w > v p-almost everywhere in Q, then Tou(x) > Tou(x). In
particular, if u = v p-almost everywhere in ), then Tou(xr) =
Tov(z).

(111) To(max{u,v})(z) = max{Tqu(x), Tou(x)} and To(min{u, v})(z) =
min{Tqou(x), Tou(z)}.

(iv) Let h > 0 and define the truncation w, = min{h, max{u, —h}}.
Then Toup(z) = (Tou(zx)).

(v) If QY is a p-measurable set such that both 2 and its complement sat-
1sfy the weak measure density condition, and w s a p-measurable
function on X, then for H-almost everywhere x € 02 for which
both traces Tow(x) and Tx\ow(x) exist, we have

{Tow(z), Tx\ow(2)} = {w" (), w”(x)}.

Proof. Assertions (i) and (éi) are clear. Since minimum and maximum
can be written as sums by using absolute values, property (iii) follows
from (7) and the easily verified fact that Tq|u|(x) = |[Tqu(x)|. Assertion
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(1v) follows from (iii). In proving assertion (v), due to the symmetry
of the situation we can assume that Tow(z) > Tx\ow(z). By using
the definition of traces and Chebyshev’s inequality, we deduce that for
every € > 0,

p{jw — Tow(x)| > e} N B(z,r)NQ)

}«igcl) w(B(x,r)NQ) =0
and
e = Togu(@)] > 10 B\ )

r—=0 u(B(z,r)\ Q)
To determine the lower and upper approximate limits, we use these
results to compute

p{w >t} 0 B(z,r))

lim su
ol p(B(w.r)
B Q B Q
oy [EL02 B0 > 0 B\
r—0 u(B(z,r)) w(B(z,r))
(=0+0, if t > Tquw(z),
= lim sup,_, % + 0, if TX\QU)(Z') <t < Tgw(:v),

wBannQ) | pBe\)]
= limsup,_,, [ ZBar) T aBen) ] if t < Tx\ow(w),

(=0, if t > Tqw(x),
€ (0,1), if Txy\ow(z) <t < Tow(z),
(=1, if t < Tx\ow(x).

To obtain the result “€ (0,1)” above, we used the weak measure density
conditions. We conclude that w"(z) = Tqw(z), and since “lim sup” can
be replaced by “liminf” in the above calculation, we also get w”(x) =

A minor point to be noted is that any function that is in the class
BV(X), such as an extension Fu for u € BV(2), is also in the class
BV(Q), and thus ToFu = Tqu.

Eventually we will also need to make an additional assumption on
the space, as described in the following definition which is from [3,
Definition 6.1]. The function §r was introduced earlier in (2.4).

Definition 5.9. We say that X is a local space if, given any two sets
of locally finite perimeter £y C Ey C X, we have 0, (v) = 0p,(z) for
‘H-almost every = € 0*FE; N 0*Fs.

For some examples of local spaces, see [3] and the upcoming note [17].
The assumption F; C E, can, in fact, be removed as follows. Note that
for a set of locally finite perimeter E, we have |[Dxg|| = | Dxx\g/, i-e.
the two measures are equal [18, Proposition 4.7]. From this it follows
that 0g(r) = Ox\g(x) for H-almost every x € 0*E. Now, if £ and
E5 are arbitrary sets of locally finite perimeter, we know that E; N Es
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and E; \ E, are also sets of locally finite perimeter [18, Proposition
4.7). For every x € 0*F; N 0*Ey we have either z € 0*(FE; N Ey) or
x € 0*(Ey \ Ey). Thus by the locality condition, we have for H-almost
every x € 0*FEy N 0*FEsy either

Op, (ZE) =0pnE, (Z‘) = 0, (ZE)
or
O, (v) = Op\5, () = Ox\5, (1) = O, (7).
Thus we have 0g, = 0p, for H-almost every x € 0*F; N 0*E,.
In a local space the decomposition (5.1) takes a simpler form, as
proved in the following lemma.

Lemma 5. 10 If X is a local space, €2 is a set of locally finite perimeter,
u € BV(X), and A C 0*Q is a Borel set, then we have

//wx Ousty(z) dt dH(x) = /( V() — u(2))0q dH(z).

Note that since €2 is a set of locally finite perimeter, A C 0*(Q) is
o-finite with respect to H.

Proof. We have
u’ (x)
// 9{u>t}($)dtd7'[($)
A JuN(x)
= / / X{(w @) (@)} () Ousey () di dH ()
[ Xm0 DN (0 Dby o) )
[ e D (0 @)y o) K () .
—o00 J ANO* {u>t)

On the third line we used Fubini’s theorem. On the fourth line we used
the fact that if u"(z) < ¢t < u”(z), then x € 9*{u > t}. This follows
from the definitions of the lower and upper approximate limits. By the
locality condition we see that the right-hand side above equals to

L o @) (0" () o) ()
ANno*{u>t}
/ / (o) (0 ()X (00 (0" (2)0a() dH ()
_ / (u¥(2) — u(2))fa(z) dH ().
A
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Now we prove two propositions concerning boundary traces that are
based on [2, Theorem 3.84] and [2, Theorem 3.86].

Proposition 5.11. Let Q2 and Q* be open sets such that Q and Q*\
satisfy the weak measure density condition, 2 C 2, and ) is of finite

perimeter. Let uw,v € BV(QY*), and let w = uxa + vxao~q. Then
w € BV(Q*) if and only if

(5.2) ., [ Tou — Toug vl dH < co.

In the above characterization, we implicitly assume that the integral is
well-defined — in particular, this is the case if Q and Q* \ Q are also
strong BV eztension domains, due to Theorem 5.7. Furthermore, if X
s a local space, we then have

[IDwl[(27) = [[Dul|() + [|Dv]|(2"\ Q) + /m Tou — To\g v|fo dH.

Proof. First note that by the weak measure density conditions, we have

H(OQ\ 0*Q) = 0, and thus H(I2) < oo. This further implies that
1(092) = 0 [15, Lemma 6.1], and by this and the weak measure density
conditions again,

To prove one direction, let us assume (5.2). In particular, we assume
that Tou(z) and To.go(z) exist for H-almost every x € 0f2. For
h > 0, define the truncated functions

up, = min{h, max{u, —h}} and vy, = min{h, max{v, —h}}.
Clearly u, vp, X, Xo\o € BV(Q*) N L>(Q*). Then
Wp = UpXa + UnXQ*\Q < BV(Q*) N LOO(Q*),

see e.g. [16, Proposition 4.2]. Based on the decomposition of the
variation measure given in (5.1),

(5.3)
| Dun ()
- wy! (x)
— [ Dun |(9) + | Do} 2\ @) + / ) / B () diaH(z)
< | Dufl () + | D]} (27 \ ) + / cdu(x) — w(e) dH ()

By Proposition 5.8 (iv), the boundary traces T of u, up, wy, and
Tong of v, vp, wy, exist H-almost everywhere on the boundary 0.
For wy, this fact follows from the definition of boundary traces, by
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which we have that Tqw, = Tqup, and similarly T g Wh = TQ*\Q Vp,.
Proposition 5.8 (v) now gives
(5.4)

{wp (), wy (2)} = {Tawn(z), Toeg wa(@)} = {Toun(z), Tong va(x)}
for H-almost every = € 9€2. Using Proposition 5.8 (iv) again, for H-
almost every x € 0f) we have
Toup(z) = min{h, max{Tou(z), —h}},

Tog vn(z) = min{h, max{To.q v(x), —h}}.
By the lower semicontinuity of the total variation as well as (5.3), (5.4)
and (5.5), we now get

[Dwl|(€27) < Tim inf [| Dwy,[[(27)

(5.5)

< | Dull Q) + [ Doll(@\ Q) +liminfea | [Toun — Tog vl dH

= || Dul|(Q) + || Dv||(Q*\ Q) + cd/ Tou — Tougv|dH < oo.
o9
Thus w € BV(Q*).
To prove the converse, assume that w € BV(Q*). Here we can simply

again write the decomposition of the variation measure
00 > [[Dwl|(27) = || Dull(Q) + | Dv]|("\ ) + 04/ w” —w"dH,
o0

where oo = a(cq, cp) > 0, and just as earlier, note that
(5.6) Jw”(z)—w"(2)] = [Tow(z)—Tong w(z)| = |Tou(z) —Toag v(z)|

for H-almost every x € 9€). This combined with the previous estimate
gives the desired result. If X is a local space, we combine the decompo-
sition of the variation measure (5.1), Lemma 5.10, and (5.6) to obtain
the last claim. O

Next we show that if a set A (which could be e.g. the boundary
0?) is in a suitable sense of codimension one, traces of BV functions
are indeed integrable on A. Let us first recall the following fact from
the theory of sets of finite perimeter. Given any set of finite perimeter
E C X, for H-almost every x € 0*E we have

.. MENB(x,r) .. w(E N B(xz,r))
BT <t ey S B S

where v € (0,1/2] only depends on the doubling constant and the
constants in the Poincaré inequality [1, Theorem 5.4].

Proposition 5.12. Let Q* C X be open, let u € BV(Q*), and let
A C Q* be a bounded Borel set that satisfies dist(A, X \ ) > 0 and

p(B(x,r))

r

(5.8) H(AN B(x,r)) <ca
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for every x € A and r € (0, R], where R € (0,dist(A, X \ Q%)) and
ca > 0 are constants. Then

(5.9) / () + [4¥]) dH < Cllulsvian).
A

where C'= Cl(cg,cp, N\, A, R, ca).
Proof. We may assume that u > 0. Let

¢ = inf p(B(z, R));
by the doubling property of u we have ¢ = ¢(A, R,cq) > 0. First
consider a set £ C X that is of finite perimeter in 2* and satisfies
w(E) < 9, where 6 > 0 is a constant that will be determined later.

Define
E"=<2€Q": liminf wEO B(z, ) > e,
=0 p(B(x,r))

where v = y(cq,cp, A) > 0 is the constant from (5.7). Pick any z €
E7" N A. We note that

WENB@R) _  pE) 6
W(B.R) ~mB@R) <

By choosing ¢ > 0 small enough, we have

p(E N Bz, B/(5))))
p(B(x, B/(5A)))

Thus we have § = §(cq, A, ¢,7), and consequently § = §(cq, cp, A, A, R).
By the definition of E?, we can find a number r € (0, R/5] that satisfies

<2
=2

7 wENB(z,r/A)
2¢q u(B(z,r/A))

<7
-2
This can be done by repeatedly halving the radius R/5 until the right-
hand side of the above inequality does not hold, and picking the last

radius for which it did hold. From the relative isoperimetric inequality
(2.5) we conclude that

p(B(z,r/X)
r/A

2cq p(E N B(x,r/\)) < QP(E, B(z,r)).

< ¢
Ty /A v

(5.10)

Using the radii chosen this way, we get a covering { B(z,7(x)) }reaner
of the set AN E”. By the 5-covering lemma, we can select a countable
family of disjoint balls { B(z;, ;) }52, such that the balls B(z;, 5r;) cover
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AN E7. By using (5.8) and (5.10), we get

H(E' N A) < ZH (E" N AN B(z;,574))

=1

- /1'( IL’Z,5’I"Z ,u J:zarz/)\ )
(5.11) < CA; CZ Y

< CY P(E,B(x;,r:)) < CP(E,Q),
=1

where C' = (cq,cp, A, ca).

Then we consider the function w. Assume that x € AN S, and
u(z) + u¥(x) > t, with t > 0. By the definitions of the lower and
upper approximate limits, we know that z € 9*{u > s} for all s €
(u"(z),u’(x)). By the coarea formula (2.3), the sets {u > s} are of
finite perimeter in * for every s € T, where T is a countable dense
subset of R. Thus, outside a H-negligible set, (5.7) holds for every
x € 0*{u > s} and s € T. Assuming that z is outside this H-negligible
set, we can find s € ((u"(x) +u”(2))/2,u"(x)) NT and estimate

. opfu>t2ynB(x,r) .. . op({u>stnB(x,r))
T BE ) YT By

which means that € {u > t/2}7. By Chebyshev’s inequality we get

[l 1)
>t/2}) < ————- <6
> 1/2p) < 4
if t > to, where tg = C(cq, cp, A\, A, R)||u||1(o+) due to the dependencies
of § given earlier. By the coarea formula again, {u > t/2} is of finite
perimeter in Q* for a.e. t € R, and Cavalieri’s principle and (5.11) then
imply that

/ (uA—iruv)d’H:/oo’H({xeAﬂSu culN(z) +uY(x) > t})dt
ANS., 0
g/)HGu>U%WL®ﬁ

[e.e]

< toH(A) + C(ca,cp, Ay ca)P({u > t/2},Q%) dt

to

< Clcas cp, A A, R)||ul| o H(A) + Clea, cp, A, ca) [ Dul| (7).

This gives the estimate for AN S,. For A\ S,, we simply note that if
x € A\ S, and u"(z) = u"(x) > t, then the approximate limit of u at
x is larger than ¢, which easily gives z € {u > t}7, and then we can
use Cavalieri’s principle as above. O

Finally we get the desired representation for the minimization prob-
lem.
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Theorem 5.13. Assume that X is a local space, and let Q € Q* be
bounded open sets such that  and Q* \ Q satisfy the weak measure
density condition, ) is a strong BV extension domain, and 0S) satisfies
the assumptions of Proposition 5.12. Assume also that h € BV(Q¥)
and that the trace Tx\gh(z) exists for H-almost every x € 02, which

in particular is true if Q* \ Q is also a strong BV extension domain.

Then the minimization problem given in Definition 5.2, with boundary
values h, can be reformulated as the minimization of the functional

(5.12) JT"(U, Q) + foo ) ’TQ'U/ — TX\ﬁhyeg dH
Q

over all u € BV(Q).
Note that this formulation contains no reference to Q2*.

Proof. First note that due to the conditions of Proposition 5.12, we
have H(02) < oo, and thus p(0€2) = 0 and €2 is a set of finite perimeter,
see e.g. [15, Lemma 6.1, Proposition 6.3]. By the weak measure density
conditions,

Now, for any v € BV,(Q2), we have u € BV(Q2*) by definition, and
F(u,2*) < oo by (3.4). Then

F(u, 27)
— F(u, Q) + F*(u, 09) + F(h, "\ Q)

1y T IRl 0N
. :.F(U,Q)+foo ‘u\/_u/\|99d7'[—|—‘/’-'(h79*\§)
[2}9]

— F(u.Q) + fu / To — Togrhlf dH + F(h, 0\ Q).
o0

where the first equality follows from the measure property of F(u,-) as
well as the fact that p(092) = 0, the second equality follows from the
integral representation of the functional (see Remark 4.5), the third
equality follows from the decomposition (5.1) and Lemma 5.10, and
the fourth equality follows from Proposition 5.8 (v). Now, the term
F(h,Q*\ Q) does not depend on u, so in fact we need to minimize
(5.12).

Conversely, assume that v € BV(Q2). Then we can extend u to
Eu € BV(Q*). By Proposition 5.8 (v) we have

{Tah(z), Tx\q h(x)} = {h"(x), h*(2)}

for H-almost every x € 0€2. By the proof of Theorem 5.7 we have that
ToFu(x) is the Lebesgue limit of Eu for H-almost every x € 0f). By
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Proposition 5.12, we now get

/8 [TaBu = Tyghla# < C(| Bulloviar) + [illaviar) < o

By Proposition 5.11 we deduce that w = (Eu)xa + hxona € BV(Q2*),
and in fact we have w = uxq + hxa~\o € BV,(£2). This completes the

proof.

g

Remark 5.14. Note that in the latter part of the above proof we
showed that, under the assumptions on the space and on €2, the spaces
BV(Q2) and BV, (£2) C BV(£2*) can be identified.
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