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1. Introduction

In addition to their theoretical significance in complex analysis, conformal mappings are important in classical
engineering applications, such as electrostatics and aerodynamics [1], but also in novel areas such as computer graphics
and computational modeling [2,3]. In this paper we study numerical computation of conformal mappings f of a domain
Ω ⊂ C into C. We assume that the domain is bounded and that there are either one or two simple (and non-intersecting)
boundary curves, i.e., the domain Ω is either simply or doubly connected. It is usually convenient to map the domains
conformally onto canonical domains, which are in our case rectangles Rh = {z ∈ C : 0 < Re z < 1, 0 < Im z < h} or annuli
Ar = {z ∈ C : e−r < |z| < 1}. While the existence of such conformal mappings is expected because of Riemann’s mapping
theorem, it is usually not possible to obtain a formula or other representation for the mapping analytically.

Several different algorithms for numerical computation of conformalmappings have been described in the literature. One
popular method involves the Schwarz–Christoffel formula, which can also be generalized for doubly connected domains. A
widely used MATLAB implementation of this method is due to Driscoll [4] and a FORTRAN version for the doubly connected
case is due to Hu [5]. For theoretical background concerning these methods, see [6–8]. In addition, there are several
approaches which do not involve the Schwarz–Christoffel formula, e.g., the Zipper algorithm of Marshall [9] and Marshall
and Rohde [10]. A method involving the harmonic conjugate function is presented in [11, pp. 371–374], but this method
is different from ours as it does not use quadrilaterals. For an overview of numerical conformal mappings and moduli of
quadrilaterals, see [12]. Historical remarks and an outline of development of numerical methods in conformal mappings is
given in [6,13,14].

In this paper, we present a new method for constructing numerical conformal mappings. The method is based on
the harmonic conjugate function and properties of quadrilaterals, which together form the foundation of our numerical
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algorithm. The algorithm is based on solving numerically the Laplace equation subject to Dirichlet–Neumann mixed-type
boundary conditions, which is described in [15]. To the best of our knowledge, this is the first attempt to construct conformal
mappings by using hp-FEM. It should be noted, that the presented method is not restricted to polygonal domains, and can
be used with domains with curvilinear boundary as well.

The outline of the paper is as follows. First the preliminary concepts are introduced and then the new algorithm is
described in detail. Before the numerical examples, the computational complexity and some details of our implementation
are discussed. The numerical examples are divided into three sections: validation against the Schwarz–Christoffel toolbox,
the analytic example, simply connected domains, and finally ring domains.

2. Foundations of the conjugate function method

In this section we introduce the required concepts from function theory, and present a proof of a fundamental result
leading to a numerical algorithm.

Definition 2.1 (Modulus of a Quadrilateral). A Jordan domainΩ in C with marked (positively ordered) points z1, z2, z3, z4 ∈

∂Ω is called a quadrilateral, and is denoted by Q = (Ω; z1, z2, z3, z4). Then there is a canonical conformal map of the
quadrilateral Q onto a rectangle Rh = (Ω ′

; 1 + ih, ih, 0, 1), with the vertices corresponding, where the quantity h defines
themodulus of a quadrilateral Q . We write

M(Q ) = h.

Note that the modulus h is unique.

Definition 2.2 (Reciprocal Identity). It is clear by the geometry [16, p. 15] or [12, pp. 53–54] that the following reciprocal
identity holds:

M(Q )M(Q̃ ) = 1, (1)

where Q̃ = (Ω; z2, z3, z4, z1) is called the conjugate quadrilateral of Q .

For basic properties of modulus of quadrilaterals, we refer the reader to [16] and [12, Chapter 2].

Remark. The identity (1) leads to amethod for estimating the numerical accuracy of themodulus. For discussion and several
numerical examples, see [15].

2.1. Dirichlet–Neumann problem

It is well known that one can express themodulus of a quadrilateral Q in terms of the solution of the Dirichlet–Neumann
mixed boundary value problem [11, p. 431].

LetΩ be a domain in the complex plane whose boundary ∂Ω consists of a finite number of regular Jordan curves, so that
at every point, except possibly at finitely many points of the boundary, a normal is defined. Let ∂Ω = A∪ Bwhere A, B both
are unions of regular Jordan arcs such that A ∩ B is finite. Let ψA, ψB be real-valued continuous functions defined on A, B,
respectively. Find a function u satisfying the following conditions:

1. u is continuous and differentiable inΩ .
2. u(t) = ψA(t), forall t ∈ A.
3. If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψB(t), forall t ∈ B.

The problem associated with the conjugate quadrilateral Q̃ is called the conjugate Dirichlet–Neumann problem.
Let γj, j = 1, 2, 3, 4 be the arcs of ∂Ω between (z1, z2), (z2, z3), (z3, z4), (z4, z1), respectively. Suppose that u is the

(unique) harmonic solution of the Dirichlet–Neumann problemwithmixed boundary values of u equal to 0 on γ2, equal to 1
on γ4, and ∂u/∂n = 0 on γ1, γ3. Then by Ahlfors [17, Theorem 4.5] or Papamichael and Stylianopoulos [12, Theorem 2.3.3]:

M(Q ) =


Ω

|∇u|2 dx dy. (2)

Suppose that Q is a quadrilateral, and u is the harmonic solution of the Dirichlet–Neumann problem and let v be a conjugate
harmonic function of u such that v(Re z3, Im z3) = 0. Then f = u + iv is an analytic function, and it maps Ω onto a
rectangle Rh such that the image of the points z1, z2, z3, z4 are 1 + ih, ih, 0, 1, respectively. Furthermore by Carathéodory’s
theorem [18, Theorem 5.1.1], f has a continuous boundary extension which maps the boundary curves γ1, γ2, γ3, γ4 onto
the line segments γ ′

1, γ
′

2, γ
′

3, γ
′

4, see Fig. 1.
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Fig. 1. Dirichlet–Neumann boundary value problem. Dirichlet and Neumann boundary conditions are marked with thin and thick lines, respectively.

Lemma 2.3. Let Q be a quadrilateral with modulus h, and let u be the harmonic solution of the Dirichlet–Neumann problem.
Suppose that v is the harmonic conjugate function of u, with v(Re z3, Im z3) = 0. If ũ is the harmonic solution of the
Dirichlet–Neumann problem associated with the conjugate quadrilateral Q̃ , then v = hũ.

Proof. It is clear that v, ũ are harmonic. Thus ṽ = hũ is harmonic, and v and ṽ are both constant on γ1, γ3. By
Cauchy–Riemann equations, we obtain ⟨∇u,∇v⟩ = 0. We may assume that the gradient of u does not vanish on γ2, γ4.
In particular, on γ4, we have n = ∇u/|∇u|, where n is the exterior normal of the boundary. On the other hand, on γ2, we
have n = −∇u/|∇u|. Therefore, we have

∂v

∂n
= ⟨∇v, n⟩ = ±

1
|∇u|

⟨∇v,∇u⟩ = 0.

By the definition of ũ, we get

∂ṽ

∂n
= h

∂ ũ
∂n

= 0,

on γ2, γ4. Thus v and ṽ satisfy the same boundary conditions on γ2, γ4. Then by (1) and the uniqueness theorem for harmonic
functions [19, p. 166], we conclude that v = ṽ. �

Suppose that f = u+ iv, where u and v are as in Lemma 2.3. Then it is easy to see that the image of equipotential curves
of the functions u and v are parallel to the imaginary and the real axis, respectively.

Finally, we note that the function f constructed this way is univalent. To see this, suppose that f is not univalent. Then
there exists points z1, z2 ∈ Ω and z1 ≠ z2 such that f (z1) = f (z2). Thus Re f (z1) = Re f (z2), so z1 and z2 are on the same
equipotential curve C of u. Similarly for imaginary part, z1 and z2 are on the same equipotential curve C̃ of v. Then by the
above fact of equipotential curves, it follows that z1 = z2, which is a contradiction.

2.2. Ring domains

Let E and F be two disjoint and connected compact sets in the extended complex plane C∞ = C ∪ {∞}. Then one of the
sets E, F is bounded and without loss of generality we may assume that it is E. Then a set R = C∞ \ (E ∪ F) is connected
and is called a ring domain. The capacity of R is defined by

capR = inf
u


R
|∇u|2 dx dy,

where the infimum is taken over all non-negative, piecewise differentiable functions uwith compact support in R ∪ E such
that u = 1 on E. Suppose that a function u is defined on R with 1 on E and 0 on F . Then if u is harmonic, it is unique and it
minimizes the above integral. The conformal modulus of a ring domain R is defined by M(R) = 2π/capR. The ring domain
R can be mapped conformally onto the annulus Ar , where r = M(R). In [20] numerical computation of modulus of several
ring domains is studied.

3. Conjugate function method

Our aim is to construct a conformal mapping from a quadrilateral Q = (Ω; z1, z2, z3, z4) onto a rectangle Rh, where h is
the modulus of the quadrilateral Q . Here the points zj will be mapped onto the corners of the rectangle Rh. In the standard
algorithm the required steps are the following:

Algorithm 3.1 (Conformal Mapping).
1. Find a harmonic solution for a Dirichlet–Neumann problem associated with a quadrilateral.
2. Solve the Cauchy–Riemann differential equations in order to obtain an analytic function thatmaps our domain of interest

onto a rectangle.
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The Dirichlet–Neumann problem can be solved by using any suitable numerical method. One could also solve the
Cauchy–Riemann equations numerically (see e.g. [21]) but it is not necessary. Insteadwe solve v directly from the conjugate
problem,which is usually computationallymuchmore efficient, because themesh and the discretized systemused in solving
the potential function u can be used for solving v as well.

This new algorithm is as follows:

Algorithm 3.2 (Conjugate Function Method).
1. Solve the Dirichlet–Neumann problem to obtain u1 and compute the modulus h.
2. Solve the Dirichlet–Neumann problem associated with Q̃ to obtain u2.
3. Then f = u1 + ihu2 is the conformal mapping from Q onto Rh such that the vertices (z1, z2, z3, z4) are mapped onto the

corners (1 + ih, ih, 0, 1).

In the case of ring domains, the construction of the conformal mapping is slightly different. The necessary steps are
described below and in Fig. 2.

Algorithm 3.3 (Conjugate Function Method for Ring Domains).
1. Solve the Dirichlet problem to obtain the potential function u and the modulusM(R).
2. Cut the ring domain through the steepest descent curve which is given by the gradient of the potential function u and

obtain a quadrilateralwhere theNeumann condition is on the steepest descent curve and theDirichlet boundaries remain
as before.

3. Use Algorithm 3.2.

Note that the choice of the steepest descent curve is not unique due to the implicit orthogonality condition.

4. Implementation aspects

The hp-FEM implementation we are using is described in detail in [15]. For elliptic problems, the superior accuracy of the
higher order methods with relatively small number of unknowns has to be balanced against the much higher integration
cost and the cost of evaluating the solution at any given point in the domain. It should be emphasized though, that the
conjugate function method is not dependent on any particular numerical PDE solution technique. Indeed, we fully expect
that similar results could be obtained with, for instance, fine-tuned integral equation solvers.

In the context of solution of the conjugate pair problems, it is obvious that we have to integrate only once. Moreover, the
factorization of the resulting discretized systems can be, for the most part, used in both problems without any extra work.
Therefore, although in principle two problems are solved, in practice the work is almost proportional to that of one.

However, the computation of the contour lines necessarily involves a large number of evaluations of the solution, that
also become more expensive as the order of the method increases.

4.1. hp-FEM

Here we give a short overview of the hp-FEM following closely to the one in [15]. In the p-version of the FEM the
polynomial degree p is used to control the accuracy of the solution while keeping themesh fixed in contrast to the h-version
or standard finite element method, where the polynomial degree is constant but the mesh size varies. Thus, the p-version
is often referred to as the p-extension. The hp-method simply combines the h- and p-refinements.

These different refinement strategies also imply different sets of unknowns or degrees of freedom: In the h-version or the
standard finite elementmethod, the unknowns or degrees of freedom are associatedwith values at specified locations of the
discretization of the computational domain, that is, the nodes of the mesh. In the p-method, the unknowns are coefficients
of some polynomials that are associated with topological entities of the elements, nodes, sides, and the interior.

For optimal hp-convergence one should refine the mesh geometrically toward corners and let the degree of polynomial
shape functions increasewith distance from the corners. For an example of such amesh see Fig. 4. In the examples computed
below, we have used a constant value of the order over the whole mesh.

In the following oneway to construct a p-type quadrilateral element is given. The construction of triangles follows similar
lines. First of all, the choice of shape functions is not unique. We use the so-called hierarchic integrated Legendre shape
functions.

Legendre polynomials of degree n can be defined by a recursion formula
(n + 1)Pn+1(x)− (2n + 1)xPn(x)+ nPn−1(x) = 0,

where P0(x) = 1 and P1(x) = x.
The derivatives can similarly be computed by using the recursion
(1 − x2)P ′

n(x) = −nxPn(x)+ nPn−1(x).
The integrated Legendre polynomials are defined for x ∈ [−1, 1] as

φn(ξ) =


2n − 1

2

 ξ

−1
Pn−1(t) dt, n = 2, 3, . . . ,
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(a) Ring domain with Dirichlet data 0, and 1, on
the outer and inner boundaries, respectively.

(b) Ring domain: solution of the Dirichlet
problem with contour lines.

(c) Conjugate problem for the cut domain with
new Dirichlet data along the both sides of the
cut.

(d) Conjugate problem: solution of the
conjugate problem with contour lines.

(e) Mapped annulus.

Fig. 2. Conjugate function method for ring domains.

and can be rewritten as linear combinations of Legendre polynomials

φn(ξ) =
1

√
2(2n − 1)

(Pn(ξ)− Pn−2(ξ)) , n = 2, 3, . . . .

The normalizing coefficients are chosen so that 1

−1

dφi(ξ)

dξ
dφj(ξ)

dξ
dξ = δij, i, j ≥ 2.

Using these polynomials we can now define the shape functions for a quadrilateral reference element over the domain
[−1, 1] × [−1, 1]. The shape functions are divided into three categories: nodal shape functions, side modes, and internal
modes.
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There are four nodal shape functions.

N1(ξ , η) =
1
4
(1 − ξ)(1 − η), N2(ξ , η) =

1
4
(1 + ξ)(1 − η),

N3(ξ , η) =
1
4
(1 + ξ)(1 + η), N4(ξ , η) =

1
4
(1 − ξ)(1 + η),

which taken alone define the standard four-node quadrilateral finite element. There are 4(p−1) sidemodes associatedwith
the sides of a quadrilateral (p ≥ 2), with i = 2, . . . , p,

N (1)i (ξ , η) =
1
2
(1 − η)φi(ξ), N (2)i (ξ , η) =

1
2
(1 + ξ)φi(η),

N (3)i (ξ , η) =
1
2
(1 + η)φi(η), N (4)i (ξ , η) =

1
2
(1 − ξ)φi(ξ).

For the internal modes we choose the (p − 1)(p − 1) shape functions

N0
i,j(ξ , η) = φi(ξ)φj(η), i = 2, . . . , p, j = 2, . . . , p.

The internal shape functions are often referred to as bubble-functions.
Note that some additional book-keeping is necessary. The Legendre polynomials have the property Pn(−x) = (−1)nPn(x).

Thismeans that every edgemust be globally parameterized in the sameway in both elements towhere it belongs. Otherwise
unexpected cancellation in the degrees of freedom associated with the odd edge modes could occur.

4.2. Solution of linear systems

Let us divide the degrees of freedomof a discretized quadrilateral into five sets, internal and boundary degrees of freedom.
The sets are denoted B,D0,D1,N0, and N1, for internal, Dirichlet u = 0, Dirichlet u = 1, Neumann with Dirichlet u = 0 in
the conjugate problem, and Neumann with Dirichlet u = 1 in the conjugate problem, degrees of freedom, respectively.

The discretized system is

A =


ABB ABN1 ABN0 ABD1 ABD0
AN1B AN1N1 AN1N0 AN1D1

AN1D0
AN0B AN0N1 AN0N0 AN0D1

AN0D0
AD1B AD1N1 AD1N0 AD1D1 AD1D0
AD0B AD0N1 AD0N0 AD0D1 AD0D0

 .
Taking the Dirichlet boundary conditions into account, we arrive at the following system of equations, using xD1 = 1, ABB ABN1 ABN0

AN1B AN1N1 AN1N0

AN0B AN0N1 AN0N0

 xB
xN1

xN0


= −

 ABD11
AN1D1

1
AN0D1

1

 .
For the conjugate problem, simply change the roles of D1 ↔ N1 and D0 ↔ N0. Note that ABB is present in both systems and
thus has to be factored only once.

4.3. Evaluation of contour lines

Let u and v be solutions of the Dirichlet–Neumann problem and its conjugate problem, respectively. In computing the
contour lines, the solutions and their gradients have to be evaluated at many points (x, y). Evaluation of the solution in hp-
FEM is more complicated than in the standard FEM. In a reference-element-based system such as ours, in order to evaluate
the solution at point (x, y) one must first find the enclosing element and then the local coordinates of the point on that
element. Then every shape function has to be evaluated at the local coordinates of the point. This is outlined in detail in
Algorithm 4.1. Similarly evaluation of the gradient of the solution requires two polynomial evaluations per one geometric
search.

Algorithm 4.1 (Evaluation of u(x, y)).
1. Find the enclosing element of (x, y).
2. Find the local coordinates (ξ , η) on the element.
3. Evaluate the shape functions φi(ξ , η).
4. Compute the linear combination of the shape functions


i ciφi(ξ , η), where ci are the coefficients from the solution

vector.

Finding the images of the canonical domains is equivalent to finding the corresponding contour lines of u and v. Since
both solutions have been computed on the same mesh, evaluating the solutions and their gradients at the same point is
straightforward. In Algorithm 4.2 the two-level line search is described in detail.
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Table 1
Effect of p and ϵ on contour line computations. In geometry of Fig. 10, ten contours of (radial)
u(x, y) = cu and (circular) v(x, y) = cv have been computed with σ = 1/4. Times are
normalized so that for p = 8, ϵ = 1/100, time = 1. The time units are thus 1 and 46 s for radial
and circular contours, respectively. (Apple Mac Pro 2009 Edition 2.26 GHz, Mathematica
8.0.4).

p ϵ Time for u(x, y) = cu Time for v(x, y) = cv

4 1/100 0.44 0.43
4 1/1000 0.41 0.77
4 1/10000 1.51 1.19
8 1/100 1 1
8 1/1000 1.00 1.82
8 1/10000 0.99 2.66

12 1/100 2.29 2.31
12 1/1000 2.26 4.16
12 1/10000 2.26 6.07

Table 2
Summary of the tests on simply connected domains. Accuracy is given as ⌈log10 |1 − M(Q )M(Q̃ )|⌉. For the
first two cases the moduli are known due to symmetry.

Example ID M(Q )/M(Q̃ ) Accuracy Figure

Unit disk 5.1 1 / 1 −13 6
Flower 5.2 1 / 1 −10 7
Circular quadrilateral 5.3 0.63058735108478 / 1.585823119159254 −13 8
Asteroid cusp 5.4 0.68435408764536 / 1.4612318657235575 −9 9

Algorithm 4.2 (Tracing of Contour Lines: u(x, y) = c = const.).
1. Find the solutions u(x, y) and v(x, y).
2. Set the step size σ and the tolerance ϵ.
3. Choose the potential c.
4. Search along the Neumann boundary for the point (x, y) such that u(x, y) = c.
5. Take a step of length σ along the contour line of u(x, y) in the direction of ∇v(x, y) to a new point (x̂, ŷ).
6. Correct the point (x̂, ŷ) by searching in the orthogonal direction, i.e., ∇u(x̂, ŷ), until |u(x̂, ŷ)− c| < ϵ is achieved.
7. Set (x, y) = (x̂, ŷ) and repeat until the opposite Neumann boundary has been reached.

4.4. On computational complexity

The solution time of a single problem can be divided into three parts, the setting up of the problem, the solution of the
Dirichlet–Neumann and its conjugate problem, and the evaluation of themappings. In short, in the absence of fully automatic
mesh generators for this class of problems, the setting up of the problem remains the most time consuming part. We have
implemented the algorithm using Mathematica 8.

The time and memory requirements, in terms of degrees of freedom, have been reported for the Dirichlet–Neumann
problems in [15]. In the examples below, the solution times vary from few seconds to at most two minutes on
standard hardware (as defined in Table 1). It should be noted that for comparable accuracy on polygonal domains, the
Schwarz–Christoffel toolbox is superior to our implementation.

Estimating the computational complexity of the mappings is complicated, since in the end, the chosen resolution of the
image is the dominant factor for the time required. In Table 1, the effects of the polynomial degree and the chosen tolerance
on the overall execution time are described. As a test case, a grid similar to one in Fig. 10, has been computed by using
σ = 0.25 and ϵ = 1/100, 1/1000, 1/10000, for p = 4, 8, 12. Note that for the radial contours the effect of ϵ is not as
noticeable as for the circular ones due to contours and gradients being aligned.

5. Numerical experiments

Our numerical experiments are divided into three different categories. First we validate the algorithm against the results
obtained by the Schwarz–Christoffel toolbox and the analytic formula. Thenwe study several examples of using ourmethod
to construct conformal mappings from simply (see Figs. 6–9) or doubly connected (see Figs. 11–15) domains onto canonical
domains, see Fig. 3, with the main results summarized in Tables 2 and 3, respectively.

5.1. Setup of the validation test

Validation of the algorithm for the conformal mapping will be carried out in two cases, first we compare our algorithm
with SC Toolbox in a convex and a non-convex quadrilateral. In the second test we parameterized themodulus of a rectangle
and map it onto the unit disk.
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Table 3
Summary of the tests on ring domains. Accuracy is given as ⌈log10 |1−M(Q )M(Q̃ )|⌉, where the quadrilaterals
are the cut domains.

Example ID M(R) Accuracy Figure

Disk in regular pentagon 5.5 See Table 5. 10
Cross in square 5.6 0.2862861647287473 −9 11
Circle in square 5.7 0.9920378629010557 −13 12
Flower in square 5.8 0.6669554623348065 −8 13
Circle in L 5.9 1.0935085836560234 −9 14
Droplet in square 5.10 0.8979775098918368 −9 15

Fig. 3. Canonical domains Rh and Ar on the left- and right-hand side, respectively.

Fig. 4. Geometric mesh of the convex (left-hand side) and the non-convex (right-hand side) quadrilateral used in computing the potential functions.

The comparison to the SC Toolbox is carried out in the following quadrilaterals: convex quadrilateral (Ω; 0, 1, 1.5 +

1.5i, i) and non-convex quadrilateral (Ω; 0, 1, 0.3 + 0.3i, i), and line-segments joining the vertices as the boundary arcs.
Then comparisons of the results obtained by the conjugate function method, presented in this paper, and SC Toolbox by
Driscoll [4] are carried out. All SC Toolbox tests were carried with the settings precision = 1e-14. Comparison is done
by using the following test function

test(z) = |f (z)− g(z)|, (3)

where f and g are obtained by the conjugate function method and SC Toolbox, respectively. The mesh setup of the
quadrilaterals and the results of the test function (3) are shown in Figs. 4 and 5, respectively.

All our examples are carried out in the same fashion using the reciprocal identity (1) and a quadrilateral Q . The test
function is

rec(Q ) = |M(Q )M(Q̃ )− 1|,

which vanishes identically. See also [15, Section 4].
In the second validation test, we parameterized a rectangle with respect to the modulus M(Q ) and map the rectangle

onto the unit disk. The mapping is given by a composite mapping consisting of a Jacobi’s elliptic sine function and a Möbius
transformation.

For every point (xj, yj) in the grid on the rectangle Rh, where xj = j/10 and yj = jh/10, j = 0, 1, 2, . . . , 10, we compute
the error ∥ej∥ which is simply the Euclidean distance of the image of the initial point (xj, yj) computed by the conjugate
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Fig. 5. Comparison of the convex (left-hand side) and non-convex (right-hand side) quadrilateral between the conjugate functionmethod and SC Toolbox.
Results are obtained by taking the logarithm (with base 10) of the test function (3).

Table 4
The values of rec(Q ), max(∥ej∥) and mean(∥ej∥) for a given M(Q ).

M(Q ) Rec(Q ) Max(∥ej∥) Mean(∥ej∥)

1 8.08242 · 10−14 1.87409 · 10−8 5.56947 · 10−10

1.2 6.35048 · 10−14 7.97889 · 10−9 7.49315 · 10−10

1.4 5.52891 · 10−14 1.21851 · 10−8 6.90329 · 10−10

1.6 8.85958 · 10−14 1.10001 · 10−8 7.90840 · 10−10

1.8 9.72555 · 10−14 1.19005 · 10−8 7.31645 · 10−10

2 9.41469 · 10−14 8.56068 · 10−9 7.67815 · 10−10

function method and the analytical mapping. For a given modulus M(Q ) the values rec(Q ), max(∥ej∥), and mean(∥ej∥),
where the latter two represent the maximal and the mean error over the grid are presented in Table 4.

Note that our test function rec(Q ) effectively measures the error in energy. Given the very high accuracy of the results
obtained, we are confident that even though no a priori guarantees for pointwise convergence can be given, the second test
is a valid indication of the global convergence behavior.

5.2. Simply connected domains

In this section we consider a conformal mapping of a quadrilateral Q = (Ω; z1, z2, z3, z4) with curved boundaries
γ1, γ2, γ3, γ4 onto a rectangle Rh such that the vertices z1, z2, z3, z4 maps to 1 + ih, ih, 0, 1, respectively, and the boundary
curves γ1, γ2, γ3, γ4 maps onto the line segments γ ′

1, γ
′

2, γ
′

3, γ
′

4. We give some examples and applications with illustrations.
Simple examples of such domains are domains, where four or more points are connected with circular arcs. Some examples
related to numerical methods and the Schwarz–Christoffel formula for such domains can be found in the literature, e.g.,
[22–24].

Example 5.1 (Unit Disk). Let Ω be the unit disk. We consider a quadrilateral Q = (Ω; z1, z2, z3, z4), where zj = eiθj ,
θj = (j − 1)π/2. Note that, because of the symmetry, it follows from (1) that the modulus is 1. The reciprocal error of
the conformal mappings is 4.34 · 10−14. This example was first given by Schwarz in 1869 [25].

Example 5.2 (Flower). LetΩ be the domain bounded by the curve

r(θ) = 0.8 + t cos(nθ), (4)

where 0 ≤ θ ≤ 2π , n = 6 and t = 0.1.We consider a quadrilateralQ = (Ω; z1, z2, z3, z4), where zj = r(θj), θj = (j−1)π/2;
see Fig. 7. As in Example 5.1, the modulus of Q is 1. The reciprocal error of the conformal mappings is 3.74 · 10−11. Several
other examples of flower shaped quadrilaterals are given in [15, Section 8.5].

Example 5.3 (Circular Quadrilateral). In [15] several experiments of circular quadrilaterals are given. Let us consider a
quadrilateral whose sides are circular arcs of intersecting orthogonal circles, i.e., angles are π/2. Let 0 < a < b < c < 2π
and choose the points {1, eia, eib, eic} on the unit circle. Let QA stand for the domain which is obtained from the unit disk
by cutting away regions bounded by the two orthogonal arcs with endpoints {1, eia} and {eib, eic}, respectively. Then QA
determines a quadrilateral (QA; eia, eib, eic, 1). Then for the triple (a, b, c) = (π/12, 17π/12, 3π/2), the modulusM(QA) =

0.630587351084775 andM(Q̃A) = 1.5858231191592544. The reciprocal error of the conformal mapping is 1.68 · 10−13.
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Fig. 6. Example of the conformal map of a square onto a disk, first obtained by Schwarz in 1869 [25].

Fig. 7. Illustration of the flower domain and the visualization of the pre-image of the rectangular grid (Fig. 3).

Fig. 8. The quadrilateral (QA; eiπ/12, ei17π/12, ei3π/2, 1) and the visualization of the pre-image of the rectangular grid (Fig. 3).

Example 5.4 (Asteroid Cusp). Asteroid cusp is a domainΩ given by a

Gc = {(x, y) : |x| < c, |y| < c}, (5)

where c = 1 and the left-hand side vertical boundary line-segment is replaced by the following curve

r(t) = −1 + cos3 t + i sin3 t, t ∈ [−π/2, π/2].

We consider a quadrilateral Q = (Ω; 1 − i, 1 + i, −1 + i, −1 − i). The reciprocal error of the conformal mappings is of
the order 10−10. The modulus M(Q ) = 0.68435408764536 and M(Q̃ ) = 1.4612318657235575. The domain is illustrated
in Fig. 9.
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Fig. 9. Asteroid cusp domain with the pre-image of the rectangular grid (Fig. 3).

Table 5
The values M(R) and eM(R) .

r M(R) Exp(M(R)) [20, Example 5]

0.1 2.35372035858745 10.524652459913115 10.5246525
0.4 0.9674246001764809 2.631159438480101 2.631159439
0.9 0.15070188000332954 1.1626499971978235 1.1626499972
0.99 0.03276861064365647 1.0333114143138304 1.03331141431
0.999 0.00934656029871744 1.0093903757950962 1.00939037579

Fig. 10. Disk in pentagon (r = 0.4)with the pre-image of the annular grid (Fig. 3).

5.3. Ring domains

In this section we shall give several examples of conformal mapping from a ring domain R onto an annulus Ar . It is also
possible to use the Schwarz–Christoffelmethod, see [5]. For symmetrical ring domains a conformalmapping can be obtained
by using Schwarz’ symmetries.

Example 5.5 (Disk in Regular Pentagon). Let Ω be a regular pentagon centered at the origin and having short radius
(apothem) equal to 1 such that the corners of the pentagon are zk = sec(π/5)e2π ik/5, k = 0, 1, 2, 3, 4. Let D(r) = {z ∈

C : |z| ≤ r}. We consider a ring domain R = Ω \ D(r) and compute the modulusM(R) and the exponential of the modulus
eM(R). Results are reported in Table 5 with the values eM(R) from [20, Example 5] in the fourth column.

Example 5.6 (Cross in Square). Let Gab = {(x, y) : |x| ≤ a, |y| ≤ b}∪{(x, y) : |x| ≤ b, |y| ≤ a}, and Gc as in (5), where a < c
and b < c . Then the domain cross in square is a ring domain R = Gc \ Gab, see Fig. 11. The reciprocal error of the conformal
mapping is of the order 10−10. The modulusM(R) = 0.2862861647287473.

Example 5.7 (Circle in Square). Let Ω be the unit disk. Then we consider a ring domain R = Gc \ Ω , where c = 1.5, see
Fig. 12. The reciprocal error of the conformal mapping is of the order 10−14. The modulus M(R) = 0.9920378629010557.
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Fig. 11. The ring domain Gc \ Gab , where a = 0.5, b = 1.2, c = 1.5, with the pre-image of the annular grid (Fig. 3).

Fig. 12. Disk in a square domain with the pre-image of the annular grid (Fig. 3).

Fig. 13. Flower in a square domain with the pre-image of the annular grid (Fig. 3).

Example 5.8 (Flower in Square). LetΩ be a domain bounded by the curve (4). Then we consider a ring domain R = Gc \Ω ,
where Gc is given by (5) and c = 1.5. See Fig. 13 for the illustration. The reciprocal error of the conformal mapping is of the
order 10−9. The modulus M(R) = 0.6669554623348065.

Example 5.9 (Circle in L). Let L1 = {z ∈ C : 0 < Re(z) < a, 0 < Im(z) < b} and L2 = {z ∈ C : 0 < Re(z) <
d, 0 < Im(z) < c}, where 0 < d < a, 0 < b < c. Then L(a, b, c, d) = L1 ∪ L2 is called an L-domain. Suppose that
D(z0, r) = {z ∈ C : |z − z0| < r}. We consider a ring domain R = L(a, b, c, d) \ D(z0, r), where (a, b, c, d) = (3, 1, 2, 1),
z0 = 8/5 + 2i/5, and r = 1/5. See Fig. 14.
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Fig. 14. L-shaped domain with a circular hole with the pre-image of the non-uniform annular grid of Example 5.9.

Fig. 15. Droplet in square with the pre-image of the annular grid (Fig. 3).

In order to better illustrate the details of the mapping, a non-uniform grid has been used. For the real component the
points x are

x = {k/10 : k = 0, 1, . . . , 9} ∪ {99/100, 999/10000, 9999/10000, 1}.

For the imaginary component the points y are chosen on purely aesthetic basis as:

y = {k/10 : k = 1, 2, . . . , 9} ∪ {0.316225, 0.324008, 0.327831, 0.329278, 0.331005, 0.687482}.

The reciprocal error of the conformal mapping is of the order 10−10. The modulusM(R) = 1.0935085836560234.

Example 5.10 (Droplet in Square). Let QD be bounded by a Bezier curve:

r(t) =
1

640


45t6 + 75t4 − 525t2 + 469


+

15
32

t

t2 − 1

2
i, t ∈ [−1, 1].

Then the domain droplet in square is a ring domain R = Gc \ QD, where Gc in given in the first example concerning ring
domains. For visualization, see Fig. 15. The reciprocal error of the conformal mapping is of the order 10−10. The modulus
M(R) = 0.8979775098918368.
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