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Chapter 1

Introduction

The theory of conformal mappings are studied because of their close relation to
physical applications in, for example, electrostatisticsand aerodynamics, as well
as their theoretical significance in mathematics. In applications numerical com-
putations are usually required. For example, the analytical computation of the
capacitance can be carried out only for few condensers. Thisis illustrated by the
following simple example. Let us consider a cylindrical condenser, see Figure 1.1.
Then the capacitance per unit length is given by

C

L
=

2πε

ln (R/r)
,

whereε is the permittivity factor andL is the length of the cylinder. The con-
nection between the capacitance and the conformal modulus of a quadrilateral is
shown in Example 4.1.2.

We consider mappings that map conformally simply connecteddomains onto
simplier domains like the unit disk, the upper half plane, orrectangles. In physical
applications partial differential equations usually arise

−a∆u + b∇u+ cu = f.

By mapping the domain onto simplier one, the computational advantage is clear.
In particular, the Laplace equation∆u = 0 is one of the the most important partial
differential equations in engineering mathematics. For Laplace equations, we may
use the complex analysis to representf(x+iy) = u(x, y)+iv(x, y), whereu(x, y)
andv(x, y) are harmonic functions.

There are many old and new applications of conformal mappings, for example
in cartography. Historically, Mercator’s cylindrical mapprojection was the first

1



2 1. INTRODUCTION

r

R

Figure 1.1: The cross-section of the cylinder.

conformal mapping studied because of this property. It mapsconformally the
Earth’s surface onto the plane. The projection distort the area and length near the
poles, for example Greenland and Africa have approximatelythe same size at the
projection, but in the real world, Africa is about10 times as large as Greenland is.
Furthermore, in the last century conformal mappings have been used in wide range
of applications such as integrated and printed circuits, nuclear reactors, airfoils,
pattern recognitions, and condensers [SL]. Applications on vortex dynamics have
been studied in [SC] and further applications to fluids and flows are described in
[Cro1, Cro2, Cro3, TD].

In this thesis we are interested on a quantity called the conformal modulus of
a quadrilateral. For computations we use mainly two different approaches

1. Schwarz–Christoffel mappings,

2. finite element methods.

The former methods give the conformal modulus as well as the auxiliary confor-
mal mapping of the quadrilateral onto a rectangle.

Schwarz–Christoffel mappings are closely related to the Riemann mapping
theorem which states that any simply connected domain except the whole complex
plane can be map onto the unit disk. It is noteworthy that evensimply connected
domains with, for example, fractal boundaries such as Koch’s snowflake (Figure
1.2) can be conformally mapped onto the unit disk [Pom]. Another important
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result is a theorem of Carathéodory, which gives a conditionfor the continuous
boundary extensions. This is crucial in our applications.

Figure 1.2: Koch’s snowflake with4 consecutive iterations.

The other technique we will be using, finite element methods,does not im-
mediately arise from the complex analysis. They can be used for solving partial
differential equations by decomposing the domain of interest into elements and
approximating the solution on each of the elements. In this thesis, finite element
methods are used for solving the conformal modulus of quadrilaterals. This is
possible because the conformal modulus can be characterized by means of the
Laplace equation with Dirichlet–Neumann boundary conditions. By this methods
we minimize the Dirichlet integral

∫

Ω

|∇u|2 dx dy,

the value, which equals the capacitance of a condenser, where Ω is a domain in
the complex plane. This approach gives another way to characterize the conformal
modulus of a quadrilateral.

Besides the Schwarz–Christoffel mapping, there exists many other numeri-
cal methods that can be used for obtaining conformal mappings. Some of these
techniques are overviewed in [Por] and for more details, see[Hen2].



4 1. INTRODUCTION

This thesis is organized as follows. In Chapter 2 we give background material
to understand this thesis. In Chapter 3 we state the Riemann mapping theorem and
give a proof through a normal family argument. Definitions and properties of the
conformal modulus of quadrilaterals are given in Chapter 4.In Chapter 5 we study
the Schwarz–Christoffel mappings which can be used for mapping a polygonal
domain onto the unit disk, the upper half plane, or a rectangle. The theory of finite
element methods is developed in Chapter 6. Numerical methods related to the
Schwarz–Christoffel mapping and finite element methods arestudied in Chapter
7. Finally, in Chapter 8, we consider examples of quadrilaterals and compute the
modulus by both the Schwarz–Christoffel toolbox [Dri] andhp-version of finite
element methods. The results are compared to each other and to known reference
results. In Chapter 9 we discuss about the results obtained in Chapter 8 and we
give some ideas for further research.

This thesis is closely related to earlier work in the same research group, see
for example theses [Num, Vuo, Yrj] and research papers [BSV,DuVu, HRV, RV].



Chapter 2

Preliminaries

In this chapter we give basic definitions and results used in the theory of conformal
mappings. Presented results are well known, so the reader familiar with the topic
may glance through it quickly and begin with the next chapter, referring to this
chapter when necessary.

2.1 Curves and domains

Definition 2.1.1. (Curve)
A curve is a continuous functionγ : [a, b] → Ĉ, whereĈ = C ∪ {∞} is the
extended complex plane, the so called one point compactification of C.

A curve is said to besmoothif it is continuously differentiable andγ(t) 6= 0.
We denote a set of curves byΓ and call it acurve family.

Definition 2.1.2. (Length of a curve)
Let γ be a curve,γ : [a, b] → Ĉ, and letTk : a = t0 < t1 < · · · < tk = b be
a partition of the closed interval[a, b]. The setγ([a, b]) is called thelocusof γ.
Then, by denotingγi = γ(ti), thelengthof the curveγ is defined by the supremum
of sums

l(γ) = sup
Tk

k∑

i=1

|γi − γi−1| .

If the curveγ is piecewise differentiable, then we can define, alternatively, the
length of the curve by

l(γ) =

∫ b

a

|y′(t)| dt.

5



6 2. PRELIMINARIES

A curveγ is said to berectifiableif its length is finite. A curveγ with para-
metric interval[a, b] such thatγ(a) = γ(b) is called aclosed curve. That is, the
starting point and the end point ofγ are the same. Furthermore,γ is said to be
simpleif it does not intersect itself, that is, ifγ(c) 6= γ(d), for all c 6= d, where
c, d ∈ (a, b). Note that the exceptionγ(a) = γ(b) is allowed. Ifγ is both simple
and closed, then it is called aJordan curve[Pon, p. 117].

Simple, closed Not simple, closed Simple, open Not simple, open

Figure 2.1: Different types of curves.

Definition 2.1.3. (Domain)
A domainΩ is a non-empty open connected set inC. In particular, a domainΩ is
path-wise connected, that is for each pair of pointsz1 andz2 in Ω can be connected
with a curveγ such that theγ lies entirely inΩ.

A domain together with some, none, or all of its boundary points is called a
region. The closure of a domainΩ is denoted byΩ and is the union of the domain
Ω and the boundary curve∂Ω. A domainΩ is said to besimply connectedif
its complement with respect to the extended plane is connected. For reasons of
convenience we do not consider the whole complex planeC as simply connected.
If Ω is not simply connected, then we say thatΩ is multiply connected. A domain
Ω bounded by a Jordan curve is called aJordan domain. Note that every Jordan
domain is simply connected.

Definition 2.1.4. (Generalized quadrilateral)
A generalized quadrilateralis a Jordan domainΩ with four separate boundary
pointsz1, z2, z3, andz4 given in positive order on the boundary curve∂Ω of Ω.
These points are called vertices of the generalized quadrilateral. They divide∂Ω
into four curvesγ1, γ2, γ3, andγ4 which are called the sides of the generalized
quadrilateral and denoted by(z1, z2), (z2, z3), (z3, z4), and(z4, z1), respectively.
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Simply connected Not a domain Multiply connected

Figure 2.2: Different types of sets.

In this case, when we traverse∂Ω such thatΩ is on the left-hand side, the
pointsz1, z2, z3, andz4 occur in this order. We denote a generalized quadrilateral
byQ(Ω; z1, z2, z3, z4).

γ4

γ1

γ2

γ3

Ω

z1

z2

z3

z4

Figure 2.3: A generalized quadrilateralQ(Ω; z1, z2, z3, z4).

If the sidesγk, wherek = 1, 2, 3, 4, are line segments, then the generalized
quadrilateral will be a quadrilateral in the usual geometric sense. In what fol-
lows the word quadrilateral is used to describe both geometric and generalized
quadrilaterals.

2.2 Complex analysis

The origin of complex numbers lies in the problem of finding roots of polynomial
equations. Already in the early16th century Cardano, Tartaglia, and Ferro found
a long sought general solution for the cubic equation. In some cases Cardano–
Tartaglia–Ferro formula gives a solution which seemingly looks like a complex
number even though the solution is, for example a positive real number. This
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puzzled Cardano who acknowledged the existence of these bizarre numbers even
though he could not make any use of them. Bombelli showed in1572 that the roots
of a negative number have a great utility by manipulating a seemingly complex
solution obtained by Cardano–Tartaglia–Ferro formula into a real number solu-
tion. In the18th century Euler introduced the modern notationi =

√
−1 [Lau, pp.

64–69].
We assume that the reader is familiar with complex numbers. If this is not the

case, please see, for example, [Ahl1, Gam, MH, NP, Pon] for basic concepts of
complex numbers.

2.2.1 Derivative

Suppose that for every valuez in a domainΩ there corresponds a definite complex
valuew. Then the functionf : z 7→ w is said to be a complex function defined in
Ω. A functionf(z) is said to besingle-valuedif f(z) satisfies

f(z) = f(z(r, ϕ)) = f(z(r, ϕ + 2π)).

Otherwise,f(z) is said to bemultiple-valued.

Definition 2.2.1. (Derivative)
A complex functionf(z) defined in a domainΩ is differentiableat a pointz0 ∈ Ω

if the limit

lim
z→z0

f(z) − f(z0)

z − z0
= lim

∆z→0

f(z0 + ∆z) − f(z0)

∆z

exists and is independent of the path along which∆z → 0. The limit is denoted
by f ′(z0) and is called the complex derivative of the functionf(z) at the pointz0.

The complex derivative shares many of the properties of the real derivative.
See [Ahl1] for a further reference.

Definition 2.2.2. (Analytic function)
A function f(z) is said to beanalytic, or holomorphic, at a pointz0 ∈ C if it is
differentiable at every point of some neighborhood of the point z0. Similarly, a
functionf(z) is said to be analytic in a setE if it is differentiable at every point
of some open setΩ such thatE ⊂ Ω.

A function f(z), which is analytic in the whole complex planeC is called an
entire function. Suppose that a functionf(z) is analytic in a neighborhood of a
point z0, except perhaps atz0 itself. If lim

z→z0

f(z) = ∞, the pointz0 is said to
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be apole of f(z), and we setf(z0) = ∞. A function f(z) which is analytic
in a domainΩ, except for poles, is said to bemeromorphicin Ω. Furthermore,
a meromorphic functionf(z) at a pointz0 is said to have an orderN at z0 if
f(z) = (z − z0)

Ng(z) for some analytic functiong(z) at z0 such thatg(z0) 6= 0.

Determining whether a given functionf(z) is analytic or not directly from the
definition is not usually practical. Fortunately, theCauchy–Riemann equations
give us a convenient characterization of analytic functions.

Theorem 2.2.3.(Cauchy–Riemann equations)
Let a functionf(z) = u(x, y)+ iv(x, y) be defined and continuous in some neigh-
borhood of a pointz0 = x0 + iy0 and differentiable atz0. Thenf(z) is analytic
if partial derivatives1 of u(x, y) andv(x, y) exists atz0 and satisfy the Cauchy–
Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(2.1)

in the neighborhood ofz0.

Furthermore, iff(z) is analytic in a domainΩ, thenf(z) satisfies the Cauchy–
Riemann equations for every pointz ∈ Ω.

Definition 2.2.4. (Harmonic function) [Ahl1, p. 162]
A real-valued functionu(z) = u(x, y) defined and single-valued in a domainΩ,
is said to beharmonicin Ω if it is continuous together with its partial derivatives
of the first two orders and satisfiesLaplace’s equation

∆u = uxx + uyy = 0.

It is easy to see that for analytic function ,f(z) = u(z) + iv(z), f : Ω → C,
the functionsu(z) and v(z) are harmonic inΩ. A function v(z) = v(x, y) is
called aconjugate harmonic functionfor a harmonic functionu(z) in Ω whenever
f(z) = u(z) + iv(z) is analytic inΩ.

To construct a conjugate harmonic functionv(z), we use the information that
f(z) is analytic. In particular,f(z) satisfies the Cauchy-Riemann equations (2.1).
Sov(z) can be expressed by

v(x, y) =

∫

ux(x, y) dy + C(x), (2.2)

1Notation:ux(x, y) = ∂u

∂x
(x, y).
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whereC(x) is a function ofx alone to be determined. Differentiating (2.2) with
respect tox, we will get

vx(x, y) =
∂

∂x

∫

ux(x, y) dy +
d

dx
C(x)

C-R⇒ −uy(x, y) =
∂

∂x

∫

ux(x, y) dy +
d

dx
C(x).

The functionC(x) can now be solved from the last equation by integrating with
respect ofx. Note that the conjugate harmonic functionv(z) is unique up to an
addition of a real constant.

We also use the following result:

Theorem 2.2.5.(Liouville’s Theorem) [Ahl1, p. 122]
A bounded and entire function is constant.

2.2.2 Integral

Arithmetic operations and calculus of differentiations generalize from the real to a
complex variable without difficulties. But defining acomplex integral, also known
ascontour integral, the transition is not as straightforward as it could be imagined.
For some historical remarks see [Lau, pp. 73–75].

Let a curveγ and a partitionTk of an interval[a, b] be as in Definition 2.1.2.
For each interval(ti−1, ti), wherei = 1, · · · , k, we choose an arbitrary point
t = τi. Suppose thatf(z) is defined and continuous onγ. Settingξi = γ(τi) and
γi = γ(ti), we consider the expression

ΣTk
=

k∑

i=1

f(ξi)(γi − γi−1). (2.3)

Suppose that the length of each interval(ti−1, ti) of the partitionTk is bounded,
then the sum (2.3) will tend to a finite limit when the partitionTk is refined so that
k → ∞ and the length of the longest interval|ti − ti−1|, i = 1, 2, · · · , k, tends to
zero. ΣTk

tends to a limit which is called the integral off(z) along the curveγ

and denoted by
∫

γ

f(z) dz. Thus,

∫

γ

f(z) dz = sup
Tk

k∑

i=1

f(ξi)(γi − γi−1).
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The value of the integral is independent of the way the refining process ofTk

is carried out [Neh, pp. 81–83], [NP, pp. 108–109]. For a proof, see [NP, pp.
109–110].

| | | | | | |a b|
ti−1 ti

|
τi γ

|

| |
|

|
| |

|

γ
a

γ
b

γ i−
1
γi|

ξi

Figure 2.4: Partition of a curve in a complex integral.

If the curveγ is a line segment[a, b] of the real line, then the integral of the
continuous complex valued functionf(t) = u(t) + iv(t) is defined by

∫ b

a

f(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt.

Suppose that a curveγ is piecewise differentiable with a parametrizationγ = γ(t),
a ≤ t ≤ b. If the functionf(z) is defined and continuous onγ thenf(γ(t)) is
continuous as well. Then we define the integral off(z) over the curveγ by

∫

γ

f(z) dz =

∫ b

a

f(γ(t)) γ′(t) dt.

The complex integral has the usual properties of the real integral. For further
reference see [Ahl1].

For analytic functions we have following theorem.

Theorem 2.2.6.(Cauchy’s integral theorem) [Ahl1, p. 109]
Let Ω be simply connected domain and suppose thatf(z) is analytic onΩ. Then

∫

∂Ω

f(z) = 0.

By Theorem 2.2.6, the contour integral of the analytic function f(z) is path
independent.
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2.2.3 Winding number and Argument principle

The concepts of winding numbers and argument principles tell us how many times
the given curveγ wind up a given pointz. The theory is based on calculus of
residues and Cauchy theorems. We will only give the necessary definitions and
theorems to understand the proof of Theorem 4.1.3.

Definition 2.2.7. (Branch) [Pon, p. 105]
SupposeF (z) is a multiple-valued function defined inΩ. A branchof F (z) is a
single-valued analytic functionf(z) in some domainU ⊂ Ω obtained fromF (z)

in such a way that at each point ofU , f(z) assumes exactly one of the possible
values ofF (z).

Definition 2.2.8. (Winding number) [Ahl1, p. 115]
Let γ be a piecewise smooth closed curve. Suppose a pointa 6∈ γ. Then the
winding numberof the pointa respect to the curveγ is given by

n(γ, a) =
1

2πi

∫

γ

dz

z − a
.

The winding number can be interpreted intuitively as the number of timesγ
wraps around the pointa in positive order. The following theorem states all the
possible winding numbers for a Jordan curve.

Theorem 2.2.9.(Jordan curve theorem) [NP, pp. 178–179]
A Jordan curveγ separates the complex plane into two domainsΩ1 andΩ2, both
of which are bounded byγ. One of the domains is bounded and the other is
unbounded. Without loss of generality we may assume thatΩ1 is bounded andΩ2

is unbounded.
Then the winding number of each pointa ∈ Ω2 respect ofγ is zero and the

winding number of each pointa ∈ Ω1 respect ofγ is either+1 or −1 depending
on the orientation ofγ, positive or negative, respectively.

In calculations of the argument principle, we will be using the above property
of the winding number.

Theorem 2.2.10.(Argument principle) [Gam, pp. 224–225]
Let Ω be bounded domain with a piecewise smooth boundary∂Ω, and letf(z) be
a meromorphic function onΩ that extends analytically on∂Ω, such thatf(z) 6= 0

on∂Ω. Then
1

2πi

∫

∂Ω

f ′(z)

f(z)
dz = N0 −N∞,
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whereN0 andN∞ denote, respectively, the numbers of zeros and poles off(z) in
Ω, counted according the orders.

The integral in Theorem 2.2.10 is often referred to as alogarithmic integralof
f(z) alongγ. In case of a Jordan curve the Argument principle can be stated as
following theorem:

Theorem 2.2.11.(Argument principle for a Jordan curve) [Hen1, p. 278]
Let f(z) be analytic in a simply connected domainΩ and letγ be a positively
oriented Jordan curve inΩ not passing through any zero off(z). Then the number
of zeros off(z) in the interior ofγ, each zero counted according to its multiplicity,
equals the winding number of the image curvef(γ) with respect to0.

2.3 Conformal mappings

The history of conformal mappings can be dated back to the 16th century. In1569

Mercator presented a cylindrical map projection which is a conformal mapping
from a sphere onto the plane. It was not until1820 that Gauss gave the formal
definition to conformal mappings. Thus, Mercator preceded Gauss by nearly three
centuries.

A heuristic way to define a conformal mapping is the following. A mapping
f : z 7→ w is said to beconformalat z0 if it preserves angles and their orientation
between smooth curves throughz0. Obviously, such mappings are very useful in
cartography.

More precisely, letf be an analytic function in the domainΩ and letz0 be a
point inΩ. If f ′(z0) 6= 0, thenf can be expressed by

f(z) = f(z0) + f ′(z0)(z − z0) + η(z)(z − z0),

whereη(z) → 0 asz → z0. Wheneverz is in a sufficiently small neighborhood
of z0, the transformationw = f(z) can be approximated by

S(z) = f(z0) + f ′(z0)(z − z0)

= f(z0) − f ′(z0)z0 + f ′(z0)z.

Here the mappingS(z) can be represented as a following composite map. First
apply a rotation of the plane through the angleArgf ′(z0), then a scaling by the
factor|f ′(z0)|. Finally use the translationf(z0) − f ′(z0)z0.
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Let γ(t) be a smooth curve that passes through a pointz0 andf ′(z0) 6= 0.
Then the tangent to the curve

γ̃(t) = (f ◦ γ)(t),

atw0 = f(z0) is given by

(f ◦ γ)′(t0) = f ′(z0)γ
′(t0).

A mappingf : Ω → C is said to be conformal atz0 ∈ Ω if, for any two parameter-
ized curvesγ1 andγ2 intersecting at the pointz0 = γ1(t0) = γ2(t0) with non-zero
tangents, the following conditions hold:

(i) the transformed curves̃γ1 = f ◦ γ1 andγ̃2 = f ◦ γ2 have non-zero tangents
at the pointt0, and

(ii) the angle betweeñγ′1(t0) = (f ◦ γ1)
′(t0) andγ̃′2(t0) = (f ◦ γ2)

′(t0) is same
as the angle betweenγ′1(t0) andγ′2(t0).

If the functionf(z) is conformal at each point of a domainΩ, thenf(z) is said to
be locally conformal inΩ [Pon, pp. 194–195]. Iff(z) is also a bijection,f(z) is
a conformal mapping inΩ.

y

x
γ′1

γ′2

α

z0

z–plane

v

u

γ̃′1

γ̃′2
α

w0

w–plane

f(z)

Figure 2.5: An illustration of a conformal map.

Example 2.3.1.Let us consider a mapping

f(z) =

(
1 + z

1 − z

)2

,
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which is analytic for everyz ∈ C\{1}. Thus, it maps conformally the upper part
of the unit disk onto the upper half plane. See Figure 2.6 for an illustration of
f(z).

-1.0 -0.5 0.5 1.0
-0.2

0.2

0.4

0.6

0.8

1.0

1.2

-2.0-1.5-1.0-0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 2.6: Example of a conformal mapping that maps the upper part of the unit
disk onto the upper half plane.

2.4 Möbius transformations

Möbius transformations are one class of conformal mappings. Thus we may try
to construct conformal mappings of one domain onto another using Möbius trans-
formations.

Möbius transformations are essentially compositions of one or more of the
simpler types of transformations.

• Translation: A mapping of the formz 7→ z+ c, wherec ∈ C. If c = 0 then
the mapping is the identity map.

• Magnification: A mapping of the formz 7→ rz, wherer ∈ R\{0}. If
r = 1 then the mapping is the identity map. Ifr < 0 then the mapping is
also a reflection with respect to the origin.

• Rotation: A mappingz 7→ eiϕz, whereϕ ∈ R produces a rotation through
the angleϕ about the origin in positive sense ifϕ > 0.

• Inversion: A mappingz 7→ 1
z

produces a geometric inversion.

Möbius transformations are always rational functions of the first order and thus
sometimes are referred to asfractional linear transformationsas well.
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Definition 2.4.1. (Möbius transformations)
Let parametersa, b, c, d ∈ C be chosen so thatad − bc 6= 0. Then a Möbius
transformation is defined by

w = f(z) =
az + b

cz + d
,

wherez ∈ Ĉ.

Since the derivative off(z) is given by

f ′(z) =
ad− bc

(cz + d)2
,

the conditionad− bc 6= 0 ensures that a Möbius transformation is not constant. In
addition a Möbius transformationf(z) is analytic for allz ∈ C\{−d

c
}. If c = 0,

then the Möbius transformation will reduce to the form

f(z) =
a

d
z +

b

d
= a′z + b′,

which is called anaffine mapping. It is convenient to define Möbius transforma-
tion as a mapping from̂C onto itself. Iff(z) is an affine mapping, then we define
f(∞) = ∞. Otherwise whenc 6= 0 we definef(−d

c
) = ∞ andf(∞) = a

c
.

Möbius transformations can be associated with a2 × 2 matrix via the map

z 7→ Af =

(
a b

c d

)

∼ f(z).

Let mappingsf(z) andg(z) be Möbius transformations as follows

f(z) =
a1z + b1
c1z + d1

and g(z) =
a2z + b2
c2z + d2

.

Then computing the composition(f ◦ g)

(f ◦ g)(z) =
a1

a2z+b2
c2z+d2

+ b1

c1
a2z+b2
c2z+d2

+ d1

=
(a1a2 + b1c2)z + (a1b2 + b1d2)

(c1a2 + d1c2)z + (c1b2 + d1d2)
,

and a derivation gives us

(f ◦ g)′(z) =
(a1a2 + b1c2)(c1b2 + d1d2) − (c1a2 + d1c2)(a1b2 + b1d2)

[(c1a2 + d1c2)z + (c1b2 + d1d2)]
2 .
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Then by simplifying the numerator, we have

(a1a2 + b1c2)(c1b2 + d1d2) − (c1a2 + d1c2)(a1b2 + b1d2)

= a1a2d1d2 + b1c2c1b2 − c1a2b1d2 + d1c2a1b2

= (a1d1 − b1c1)(a2d2 − b2c2). (2.4)

Sincef(z) andg(z) are Möbius transformations, the factors in (2.4) are not zero.
This implies that a composition of Möbius transformations is a Möbius trans-
formation as well. In addition the inverse of a Möbius transformation is also a
Möbius transformation and is given by

f−1(w) =
dw − b

−cw + a
.

The composition and the inverse of Möbius transformations correspond to product
and inverse of the matrices, respectively. The analogy is following, the derivative
of a Möbius transformationf ′(z) 6= 0 if and only if thedet(Af) 6= 0.

Möbius transformations map circles in̂C onto circles inĈ, where a straight
line is considered as a circle with an infinite radius [Gam, pp. 63–66], [Pon, pp.
200–206]. In particular we have Möbius transformations which map the unit disk
onto itself.

Lemma 2.4.2. (Mapping of the unit disk onto itself) [Kre, p. 740]
The mapping

w =
z − z0
z0z − 1

,

where|z0| < 1 maps the unit disk onto the unit disk such that the pointz0 maps
onto the origin.

Proof: We take|z| = 1 and calculate

|z − z0| = |z − z0|
= |z| · |z − z0|
= |1 − z0z|
= |z0z − 1|.

Hence

|w| =
|z − z0|
|z0z − 1| = 1,

so that the unit circle maps onto the unit circle. Noting thatz0 maps onto the
origin, implies the claim [Kre, p. 740].
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Example 2.4.3.Let z0 = 1
2
. Then we have

w =
2z − 1

z − 2
.

In Figure 2.7 we have an illustration of the above mapping.
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1.0
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-0.5

0.5

1.0

Figure 2.7: Mapping of the unit disk onto the unit disk.

Definition 2.4.4. (Cross ratio) [Ahl1, p. 78]
Fix pointsz1, z2, z3, z4 ∈ Ĉ. Then across ratio(z1, z2, z3, z4) is defined by

(z1, z2, z3, z4) =
(z4 − z2)(z1 − z3)

(z4 − z3)(z1 − z2)
.

By the cross ratio, we may construct a Möbius transformationas follows

Theorem 2.4.5. If z1, z2, z3 ∈ Ĉ andw1, w2, w3 ∈ Ĉ such thatwj = f(zj),
j = 1, 2, 3. Then the Möbius transformationw = f(z) can be solved from the
cross ratio

(w − w2)(w1 − w3)

(w − w3)(w1 − w2)
=

(z − z2)(z1 − z3)

(z − z3)(z1 − z2)
.

This is true, because the cross ratio is invariant under Möbius transformations
[Ahl1, p. 79].
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2.5 Elliptic integrals

There is a vast number of interesting integrals that cannot be expressed in terms
of elementary functions. One type of such integrals is knownaselliptic integrals.
Such integrals arise from many elementary questions in the natural science. For
example whenKepler’s lawsbecame known, the first natural aim was to compute
the orbit of a planet. Wallis attempted to compute the arc length of an ellipse in
1655. Series expansion for elliptic integrals were given by Newton and Euler.

Elliptic integrals were extensively studied by Legendre, Gauss, Abel and Ja-
cobi in the early19th century. Legendre showed that every elliptic integral can be
reduced by a suitable substitution to one of the three normalforms. These normal
forms are called elliptic integral of the first, second and third kind [Cay]. We are
only interested in the elliptic integrals of the first kind, because these provide a
way to conformally map the upper half plane onto a rectangle.

Definition 2.5.1. (Elliptic integral of the first kind) [Cay, pp. 2–3]
Theelliptic integral of the first kindis defined by

F (k, z) =

∫ z

0

dζ
√

(1 − ζ2)(1 − k2ζ2)
,

for 0 < k < 1, where the parameterk is called theelliptic modulus. The comple-
mentary elliptic modulus is given byk′ =

√
1 − k2.

Substitutingz = sinφ andζ = sin θ, we will get

F (k, sinφ) =

∫ sinφ

0

cos θ dθ
√

(1 − sin2 θ)(1 − k2 sin2 θ)
.

By the identitycos2 θ = 1 − sin2 θ, we eliminate the cosine term and the elliptic
integral of the first kind can also be expressed by

F (k, sinφ) =

∫ sinφ

0

dθ
√

1 − k2 sin2 θ
,

whereφ is called the amplitude. If the integral is taken up to the amplitude π
2
, then

it is called the complete elliptic integral of the first kind.
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Definition 2.5.2. (Complete elliptic integral of the first kind) [Cay, p. 4]
Thecomplete elliptic integral of the first kindis defined by

K(k) = F (k, 1) =

∫ 1

0

dζ
√

(1 − ζ2)(1 − k2ζ2)

=

∫ π
2

0

dθ
√

1 − k2 sin2 θ
.

for 0 < k < 1, where the parameterk is the elliptic modulus.

The complete complementary elliptic integral of the first kind is denoted by

K ′(k) = K(k′).

The inverse of the elliptic integrals is called Jacobi’s elliptic functions. To simplify
the notation we give a following definition.

Definition 2.5.3. (Jacobi’s elliptic sine function) [Cay, p. 8]
Let u = F (k, z). Then theJacobi’s elliptic sine functionsn(u, k) is defined by

sn(u, k) = z.

Jacobi’s elliptic sine function maps conformally a rectangle onto upper half
plane. This result is proved in Section 5.4.
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Figure 2.8: Example of a conformal mapping that maps a rectangle onto the upper
half plane.
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2.6 Lebesgue and Sobolev spaces

In finite element applications often arise situations wherethe functions in gen-
eral are, strictly speaking, not differentiable, but can bewell approximated with
differentiable functions.

Sobolev spaces are vector spaces whose elements are functions defined on
domain ofRn and whose partial derivatives satisfy certain integrability properties.
A solution of partial differential equations are sought from Sobolev spaces.

We assume that the reader is familiar with basic concepts of anorm, the
Lebesgue measure, and Lebesgue integration, for a reference see [Rud1, Rud2].
Following definitions and theorems are given inR2 even though generalizations
to higher dimensions could be done, naturally.

Definition 2.6.1. (Compact support) [AF, p. 2]
SupposeΩ ⊂ R2 is non-empty. Thesupportof u is defined by

supp(u) = {x ∈ Ω : u(x) 6= 0}.

We sayu has acompact supportin Ω if supp(u) ⊂ Ω andsupp(u) is compact.

In Rn, compactness is equivalent to closedness and boundedness.This result
is known as the Heine–Borel Theorem. For a proof, see [Rud1, p. 40].

Definition 2.6.2. (Space of continuous function) [AF, p. 10]
Let Ω be a domain. For any non-negative integerm let Cm(Ω) denote the vector
space consisting of all functionsψ which, together with their partial derivatives
Dαψ of orders|α| ≤ m, are continuous onΩ, where

Dαψ =
∂α1

∂α1
x

∂α2

∂α2
y
ψ,

andα = (α1, α2) is a pair of non-negative integersα1, α2 and|α| = α1 + α2 is
called a degree ofα.

We abbreviateC0(Ω) = C(Ω) andC∞(Ω) =

∞⋂

m=0

Cm(Ω). The family of func-

tions of spacesC(Ω) andC∞(Ω) that have a compact support inΩ are denoted by
C0(Ω) andC∞

0 (Ω), respectively.

Definition 2.6.3. (Lp–norm) [Rud2, p. 65]
Let E ⊂ R

2 be a Lebesgue measurable set and letf : E → [−∞,∞] be a
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Lebesgue measurable function. If1 ≤ p < ∞, then theLp–norm of f is de-
fined by

‖f‖p =

(∫

E

|f(x, y)|p dx dy

)1/p

.

In some situations when confusion about domains may occur wewrite ‖ · ‖p,E

instead of‖ · ‖p. Also the norm is denoted by‖ · ‖Lp(E) if there is a confusion
about the actual space.

Definition 2.6.4. (Lebesgue space) [AF, pp. 23]
Let p be a positive real number. We denote byLp(Ω) the class of all measurable
functionsf(x, y) defined on domainΩ for which

‖f‖p <∞.

Note thatL1(Ω) is a family of functions which are Lebesgue integrable onΩ.
For p ∈ [1,∞) the spaceLp(Ω) is not a normed space in a classical sense, since
‖f‖p = 0 does not imply thatf ≡ 0. For this reason, we defineLp(Ω) as the
space of equivalence classes

f ∼ g ⇔ f = g, almost everywhere onΩ.

Then it follows thatLp(Ω) is a normed space [Rud2, pp. 65–69].
Suppose a functionu is defined almost everywhere on a domainΩ and suppose

u ∈ L1(U) for every compactU ⊂ Ω. Thenu is said to belocally integrableon
Ω and we denoteu ∈ L1

loc(Ω) [AF, p. 20].
We now proceed to define a concept of a function being theweak derivative

of another function.

Definition 2.6.5. (Weak derivative) [AF, p. 22]
Let u, vα ∈ L1

loc(Ω). The functionvα is called weak partial derivative ofu and
denoted by

Dαu = vα,

if it satisfies
∫

Ω

u(x, y)Dαψ(x, y) dx dy = (−1)|α|
∫

Ω

vα(x, y)ψ(x, y) dx dy,

for all ψ ∈ C∞
0 (Ω).
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Note that suchvα may not exists. In this case we say thatu does not have a
weakαth partial derivative. On the other hand if suchvα exists then it is uniquely
defined up to sets of measure zero. See [Eva, p. 243] for a proof.

Example 2.6.6.(1 dimensional) [Eva, p. 243]
Let Ω = (0, 2) and let

u(x) =

{

x, if 0 < x ≤ 1,

1, if 1 ≤ x < 2.

Define

v(x) =

{

1, if 0 < x ≤ 1,

0, if 1 ≤ x < 2.

Let us showu′(x) = v(x) in the weak sense. We take anyψ ∈ C∞
0 (D) and we

must show that ∫ 2

0

u(x)ψ′(x) dx = −
∫ 2

0

v(x)ψ(x) dx.

By calculating the left-hand side we have

∫ 2

0

u(x)ψ′(x) dx =

∫ 1

0

xψ′(x) dx+

∫ 2

1

ψ′(x) dx

=

/1

0

xψ(x) −
∫ 1

0

ψ(x) dx+

/2

1

ψ(x)

= ψ(1) −
∫ 1

0

ψ(x) dx+ ψ(2) − ψ(1)

= −
∫ 1

0

v(x)ψ(x) dx+ ψ(2) (2.5)

Sinceψ ∈ C∞
0 (D) it follows thatψ(2) = 0. By adding the term

−
∫ 2

1

v(x)ψ(x) dx = 0

to the equation (2.5) we obtain

∫ 2

0

u(x)ψ′(x) dx = −
∫ 2

0

v(x)ψ(x) dx

as required.
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Definition 2.6.7. (Sobolev norm) [AF, p. 59]
Letm be a positive integer and let1 ≤ p <∞. Then we define the Sobolev norm
by

‖f‖m,p =




∑

0≤|α|≤m

‖Dαf‖p
p





1/p

,

where the norm‖ · ‖p is the corresponding norm inLp(Ω).

Definition 2.6.8. (Sobolev spaces) [AF, pp. 59–60]
For any positive integerm and1 ≤ p <∞ we consider following vector spaces

(i) Hm,p(Ω) is the space of completion of{f ∈ Cm(Ω) : ‖f‖m,p < ∞} with
respect to the norm‖ · ‖m,p,

(ii) Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for 0 ≤ |α| ≤ m}, whereDαf is
the weak partial derivative off .

The completion is understood as every Cauchy sequence in a given space con-
verges to a limit in the same space. In case ofp = 2 we abbreviateHm,p(Ω) and
Wm,p(Ω) byHm(Ω) andWm(Ω), respectively.

Even though the definition of ofHm,p(Ω) andWm,p(Ω) differs, Meyers and
Serrin [MS] showed in1964 thatHm,p(Ω) = Wm,p(Ω) for everyΩ.



Chapter 3

Riemann mapping theorem

Riemann stated theRiemann mapping theoremin his doctoral dissertation in1851.
The theorem says that a disk can be conformally transformed onto any simply
connected domain, which implies that any two simply connected domains can be
conformally mapped onto each other, see Figure 3.1. In particular, the theorem
applies to polygonal domains.

Riemann’s own proof considered an extremal problem relatedto the Dirichlet
problem. Riemann’s argument was flawed since he assumed thatthe extremal
problem always has a solution. Numerous mathematicians, for example, Schwarz,
Harnack and Poincaré, sought after a proof until around1908 a rigorous proof was
given by Koebe. It should be mentioned that in1900 Osgood gave a proof for a
related theorem from which the Riemann mapping theorem can be proved [Ahl1,
pp. 229–230], [Wal].

3.1 Preliminary concepts

Before stating and proving the Riemann mapping theorem, letus work through the
preliminaries results on convergences, function sequence{fn(z)}, and the family
of functionsF .

Definition 3.1.1. (Pointwise convergence) [Rud1, pp. 143–144]
Suppose that{fn(z)} is a sequence of functions defined on a setE, and suppose
that the sequences of values{fn(z)} converges for everyz ∈ E. We can then
define a functionf(z) by

f(z) = lim
n→∞

fn(z),

for z ∈ E andfn(z) is said to convergepointwiselyto f(z).

25
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Definition 3.1.2. (Uniform Convergence) [Rud1, p. 147]
We say that a sequence of functions{fn(z)} convergesuniformlyonE to a func-
tion f(z) if for every ε > 0 there exists an integerN such that

|fn(z) − f(z)| < ε,

for n ≥ N and for everyz ∈ E.

Let us emphasize the subject of convergence with a simple example.

Example 3.1.3.For instance, it is true that

lim
n→∞

(

1 +
1

n

)

z = z,

for all z. But in order to have
∣
∣
∣
∣

(

1 +
1

n

)

z − z

∣
∣
∣
∣
=

|z|
n
< ε

for n ≥ N it is necessary thatN ≥ |z|
ε

. Such an integerN exists for every fixed
z, but the requirement cannot be met simultaneously for allz.

The above example showed that the sequence of functions defined by

fn(z) =

(

1 +
1

n

)

z

is pointwise convergent and is not uniformly convergent.

Theorem 3.1.4.(Hurwitz’s Theorem) [Ahl1, p. 178]
If the functionsfn(z) are analytic andfn(z) 6= 0 in a domainΩ, and if fn(z)

converges tof(z), uniformly on every compact subset ofΩ. Thenf(z) is either
identically zero or never equal to zero inΩ.

Proof: See [Ahl1, p. 178].
The following definition characterizes a regular behavior of families.

Definition 3.1.5. (Normal family) [Ahl1, p. 220]
A family F is said to benormal in Ω if every sequence{fn(z)} of functions
fn(z) ∈ F contains a subsequence which converges uniformly on every compact
subset ofΩ.
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This definition does not require the limit function of the convergent subse-
quences to be members ofF .

Theorem 3.1.6.(Montel’s Theorem) [Pon, p. 440]
Suppose thatF is a family in domainΩ such thatF is locally uniformly bounded
in Ω. ThenF is a normal family.

Proof: See [Pon, p. 440].

3.2 Statement and proof

In this section we state and proof the Riemann mapping theorem and discuss about
the boundary regularity which is crucial in applications.

Theorem 3.2.1.(Riemann mapping theorem) [Ahl1, p. 230]
Given any simply connected domainΩ in C, and a pointz0 ∈ Ω, there exists
a unique analytic functionf(z) in Ω, normalized by the conditionsf(z0) = 0,
f ′(z0) ∈ R+, such thatf(z) defines a one-to-one mapping ofΩ onto the disk
|w| < 1.

Proof: We have to prove that the mappingf(z) exists and it is unique. Let us start
by showing the uniqueness, since it is easier to prove. Suppose that functionsf1(z)

andf2(z) satisfy the Riemann mapping theorem. Then the composite function
(f1 ◦ f−1

2 )(w) defines a one-to-one mapping of|w| < 1 on to itself. The mapping
is Möbius transformation since it maps the unit circle onto itself. The conditions
f(0) = 0 andf ′(0) ∈ R+, imply f(z) = z, hencef1(z) = f2(z).

Second part of the proof is to show that thef(z) with desired properties exists.
Let g(z) be an analytic function inΩ and letz1, z2 ∈ Ω. Theng(z) is said to be
univalentin Ω if g(z1) = g(z2) only for z1 = z2. That isg(z) is one-to-one. Let
us consider a familyF consist of all functionsg(z) with following properties:

(i) functiong(z) is analytic and univalent inΩ,

(ii) |g(z)| ≤ 1 for everyz ∈ Ω,

(iii) g(z0) = 0 andg′(z0) ∈ R+.

Let us definef(z) in F such that the derivativef ′(z0) is maximal. The existence
proof will consist three part:

1. the familyF is not empty set,
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2. there exists a functionf(z) with maximal derivative,

3. the functionf(z) has the desired properties.

First we prove thatF is not empty. By assumptions there exists a pointa 6= ∞
such thata 6∈ Ω. Simply connectedness ofΩ implies that it is possible to define a
single-valued branch of

√
z − a ∈ Ω and denote it byh(z). Note thath(z) does

not take the same value twice since if there were two distinctpointsz1, z2 ∈ Ω

such that
√
z1 − a =

√
z2 − a,

it would follow that

z1 − a = z2 − a,

which is only possible forz1 = z2. Also h(z) cannot take both the valuesc and
−c, c ∈ C for everyz ∈ Ω. From

√
z1 − a = c,

√
z2 − a = −c,

it would follow that

c2 = z1 − a = z2 − a,

which is again only possible forz1 = z2. Suppose thath : Ω → Ω′ andz0 ∈ Ω.
Then we have a diskB(ρ, h(z0)) ∈ Ω′. By above discussionh(z) 6= −h(z0)
for everyz ∈ Ω\{z0}. This implies that−h(z0) 6∈ Ω′. Then we have a disk
B(ρ,−h(z0)) 6∈ Ω′ such that it does not intersect withB(ρ, h(z0)). This implies
that|h(z) + h(z0)| ≥ ρ, for z ∈ Ω, and in particular we have2 · |h(z0)| ≥ ρ. Next
we will show that the function

g0(z) =
ρ

4
· |h

′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· h(z) − h(z0)

h(z) + h(z0)

belongs toF .

(i) The functiong0(z) is obviously analytic, sinceh(z) is analytic. Alsog0(z)

is univalent, because it is a constructed by means of a Möbiustransforma-
tion of h(z).
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(ii) By the estimate
∣
∣
∣
∣

h(z) − h(z0)

h(z) + h(z0)

∣
∣
∣
∣
= |h(z0)|

∣
∣
∣
∣

h(z)

h(z0)[h(z) + h(z0)]
+

1 − 2

h(z) + h(z0)

∣
∣
∣
∣

= |h(z0)|
∣
∣
∣
∣

h(z) + h(z0)

h(z0)[h(z) + h(z0)]
− 2

h(z) + h(z0)

∣
∣
∣
∣

= |h(z0)|
∣
∣
∣
∣

1

h(z0)
− 2

h(z) + h(z0)

∣
∣
∣
∣

≤ |h(z0)|
(∣
∣
∣
∣

1

h(z0)

∣
∣
∣
∣

︸ ︷︷ ︸

≤2/ρ

+

∣
∣
∣
∣
− 2

h(z) + h(z0)

∣
∣
∣
∣

︸ ︷︷ ︸

≤2/ρ

)

≤ 4|h(z0)|
ρ

,

we have an estimate forz ∈ Ω

|g0(z)| =
ρ

4
· |h

′(z0)|
|h(z0)|2

· |h(z0)||h′(z0)|
·
∣
∣
∣
∣

h(z) − h(z0)

h(z) + h(z0)

∣
∣
∣
∣

≤ ρ

4|h(z0)|
· 4|h(z0)|

ρ

= 1.

(iii) We start by noting thatg0(z0) = 0, because the factorh(z)−h(z0) vanishes
for z = z0. For the derivative, we have

g′0(z) =
ρ

4
· |h

′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· h
′(z)[h(z) + h(z0)] − h′(z)[h(z) − h(z0)]

[h(z) + h(z0)]2

=
ρ

4
· |h

′(z0)|
|h(z0)|2

· h(z0)
h′(z0)

· 2h′(z)h(z0)

[h(z) + h(z0)]2

=
ρ

2
· |h

′(z0)|
|h(z0)|2

· h2(z0)

[h(z) + h(z0)]2
.

Then by evaluation at the pointz0 gives

g0(z0) =
ρ

8
· |h

′(z0)|
|h(z0)|2

∈ R+.

This prove thatF is not empty and end the first part of the existence proof.
Let us denote the least upper bound ofg′(z0), g(z) ∈ F byM which a priori

can be infinite. Sincegn ∈ F are bounded, then by Montel’s theorem (Theo-
rem 3.1.6) the familyF is normal. Thus there exists a subsequence{gnk

} which
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converges to an analytic limit functionf(z), uniformly on compact sets. By the
properties ofgn, it follows that|f(z)| ≤ 1 in Ω, f(z0) = 0 andf ′(z0) = M <∞.
We still have to show thatf(z) is univalent.

First of all we note thatf(z) is not a constant function, sincef ′(z) = B ∈ R+.
Let z1 ∈ Ω be a arbitrary point and consider the functiong1(z) = g(z) − g(z1),
g(z) ∈ F . Now g1(z) 6= 0 for all z 6= z1. Then by Hurwitz’s theorem (Theorem
3.1.4) every limit function is either identically zero or never equal to zero. But
f(z) − f(z1) is the limit function and it is not identically zero. It follows that
f(z) 6= f(z1) for z 6= z1. Sincez1 ∈ Ω was arbitrary, we have proved thatf(z) is
univalent.

Now it remains to show thatf(z) takes every valuew with |w| < 1. Suppose
it is true thatf(z) 6= w0 for somew0, |w0| < 1. BecauseΩ is simply connected,
it is possible to define a single-valued branch

F (z) =

√

f(z) − w0

1 − w0f(z)
.

The functionF (z) is univalent since it is obtained by means of a Möbius transfor-
mation off(z). If |f(z)| = 1, then 1

f(z)
= f(z) and so|F (z)| = 1. By assumption

|F (z)| < 1, we have

|F (z)| < 1 ⇐⇒ |f(z) − w0|2 < |1 − w0f(z)|2

⇐⇒ (1 − |w0|2)
︸ ︷︷ ︸

>0

(1 − |f(z)|2) > 0

⇐⇒ |f(z)| < 1.

That is,|F (z)| ≤ 1 in Ω. For the normalized form we have

G0(z) =
|F ′(z0)|
F ′(z0)

· F (z) − F (z0)

1 − F (z0)F (z)
,

which vanishes atz0. For the derivative, we have

G′
0(z) =

|F ′(z0)|
F ′(z0)

· F
′(z)[1 − F (z0)F (z)] + F (z0)F

′(z)[F (z) − F (z0)]

[1 − F (z0)F (z)]2

=
|F ′(z0)|
F ′(z0)

· F ′(z) · 1 − |F (z0)|2

[1 − F (z0)F (z)]2
.

Evaluating at the pointz0 gives us

G′
0(z0) =

|F ′(z0)|
1 − |F (z0)|2

.
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By differentiatingF (z) we have

F ′(z) =
1

2
· 1
√

f(z)−w0

1−w0f(z)

· f
′(z) · [1 − w0f(z)] + [f(z) − w0] · w0f

′(z)

[1 − w0f(z)]2

=
1

2
·
√

1 − w0f(z)

f(z) − w0
· f

′(z) · (1 − |w0|2)
[1 − w0f(z)]2

.

Now we proceed to evaluateF (z) and its derivative at the pointz0. Remark that
f(z0) = 0, then

F (z0) =

√

f(z0) − w0

1 − w0f(z0)

=
√
−w0 ,

and

F ′(z0) =
1

2
·
√

1 − w0f(z0)

f(z0) − w0

· f
′(z0) · (1 − |w0|2)
[1 − w0f(z0)]

2

=
1

2
· 1 − |w0|2√−w0

· f ′(z0).

Then

G′(z0) =
|F ′(z0)|

1 − |F (z0)|2

=

1
2
· 1−|w0|2√

|w0|
· |f ′(z0)|

1 − |w0|

=
1 + |w0|
2
√

|w0|
· B,

whereB = f ′(z0). It remains to show that

1 + |w0|
2
√

|w0|
> 1.

By a brief computation we have

1 + |w0| = 2
√

|w0| + (1 −√
w0)

2

1 + |w0| > 2
√

|w0|

=⇒ 1 + |w0|
2
√

|w0|
> 1,
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for |w0| < 1. Which implies thatG′
0(z0) > B and contradicting our assumptions.

We conclude thatf(z) assumes all the valuesw, |w| < 1. This complete the last
part of the proof [Ahl1, pp. 229–232], [Neh, pp. 173–178].

The Riemann mapping theorem is an existence theorem. So it does not say
anything about how to construct the mappingf(z). The proof given above does
not give us a way to construct the desire conformal mapping either. This is due to
the following reasons:

(i) There is no prescription for constructing a sequence{gn(z)} such thatg′n(z0) →
f ′(z0) = B.

(ii) The process of selecting a convergent subsequence fromthe sequence{fn(z)}
cannot actually be carried out.

The proof given by Koebe is actually a constructive proof which can be use to
construct the desired conformal mapping given by Riemann mapping theorem.
The discussion and the proof can be found in [Hen2, pp. 328–328]. Yet another
proof through potential theory and a discussion of Riemann’s own flawed proof
and its correction, we refer to [Wal].

By Theorem 3.2.1 any simply connected domain can be mapped onto any
simply connected domain conformally as illustrated in Figure 3.1.

Ω1 Ω2

D

(f−1
2 ◦ f1)(z)

f1(z) f2(z)

Figure 3.1: Riemann mapping theorem.
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On the other hand, the Riemann mapping theorem does not say anything about
the boundary regularity of conformal mappings either. In general, a conformal
mapping of the unit disk onto a simply connected domain, not the entire complex
planeC, cannot be extended continuously to the boundary. A counterexample is
a so called comb domain, see Figure 3.2, because the boundaryof a comb domain
is not a Jordan curve and there are portions of the boundary ofinfinite length in
arbitrarily small neighborhoods of the origin.

Figure 3.2: The comb domain.

Fortunately, there are ways to construct a conformal mapping f(z) onto the
unit disk for a large class of domains. In Chapter 5 we shall give a way to construct
the mappingf(z) for polygonal domains. Under some hypotheses the continuous
boundary extension is known to exist. The following theoremstates the required
conditions for the continuity of the boundary extension.

Theorem 3.2.2.(Carathéodory) [Kra, p. 110]
Let Ω1, Ω2 be Jordan domains. Iff : Ω1 → Ω2 is a conformal mapping, then
f(z) extends continuously and one-to-one to∂Ω1. That is, there is a continuous,
one-to-one function̂f : Ω1 → Ω2 such thatf̂(z)|Ω1

= f(z).

Proof: See [Kra, pp. 111–118].
Boundary extensions are used later in the connection with the conformal mod-

ulus of quadrilaterals.
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Chapter 4

Conformal modulus of a
quadrilateral

The concern of a conformal modulus of a quadrilateral arisenfrom the studies of
quasiconformal mappings, which was introduced by Grötzschin 1928. Grötzsch
showed that there does not exists a conformal mapping from a square onto a rect-
angle, not a square, which maps vertices onto vertices. The terminology of quasi-
conformal is due to Ahlfors [Ahl3, pp. 5–7], [AIM, pp. 27–31].

In section 4.1 we give a proof to Theorem 4.1.3 which cannot befound in
usually reference books.

4.1 Definitions of a conformal modulus

We call a conformal modulusof a quadrilateral in the complex plane a non-
negative real number which divides quadrilaterals into conformal equivalence
classes. The conformal modulus can be defined in many equivalent ways.

Definition 4.1.1. (Geometric) [Küh]
LetQ(Ω; a, b, c, d) be a quadrilateral. Let the functionw = f(z), wherew = u+

iv, be a one-to-one conformal mapping of the domainΩ onto a rectangle0 < u <

1, 0 < v < M such that the verticesa, b, c,andd correspond to the vertices0, 1, 1+

iM , andiM , respectively. The numberM is called the (conformal)modulusof
the quadrilateralQ(Ω; a, b, c, d) and we will denote it byM(Q; a, b, c, d).

Example 4.1.2.Let us go back to the example given in Introduction, where we
considered a cylindrical capacitor. Consider a rectangle with vertices0, a, a +

35
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2πi, 2πi and the exponential functionez. The exponential function maps the rect-
angle onto an annulus, see Figure 4.1. By Definition 4.1.1 theconformal modulus
equal2π

a
. The capacitance per unit length is given by

C

L
=

2πε

ln (R/r)
=

2πε

a
,

which differs from the definition of conformal modulus by a constant factorε.

a

2πi

r

R

1 ea

ez

Figure 4.1: Exponential mapping from a rectangle onto a annulus.

Let us consider the following Laplace equation withDirichlet–Neumannbound-
ary conditions on a quadrilateralQ(Ω; a, b, c, d):







∆u = 0, in Ω,

u = 0, onγ2,

u = 1, onγ4,

∂u

∂n
= 0, onγ1 ∪ γ3.

(4.1)

Theorem 4.1.3.(Conformal mapping fromΩ onto a rectangle)
Let Q(Ω; a, b, c, d) be a quadrilateral and letu(z) satisfy the equation (4.1) and
let v(z) be a conjugate harmonic function foru(z). Then there exists a conformal
mappingf(z) = u(z) + iv(z) that mapsΩ onto a rectangle such that the images
of the pointsa, b, c, andd are1 + iM, iM, 0, and1, respectively. The mapping
f(z) maps the boundary curvesγ1, γ2, γ3, andγ4 onto curvesγ′1, γ

′
2, γ

′
3, andγ′4,

respectively.
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γ3

γ4γ1

γ2

a

b

c

d

Ω

y

x

γ′3

γ′1

γ′4γ′2

0 1

1 + iMiM

v

u

f(Ω)
f(z)

Figure 4.2: Dirichlet–Neumann boundary value problem. Dirichlet and Neumann
boundary conditions are mark with thin and thick lines, respectively.

Proof: Riemann Mapping Theorem (Theorem 3.2.1) ensures that thereexists a
conformal mapping from quadrilateralQ(Ω; a, b, c, d) onto a rectangle. We have
to show that there exists a conformal mappingf(z) which satisfies our Dirichlet–
Neumann boundary conditions.

Suppose thatu(x, y) is a solution to problem (4.1). Then there exists a conju-
gate harmonic functionv(x, y) such thatf(z) = u(x, y) + iv(x, y) is analytic. So
u(x, y) is the real part off(z). By assuming thatf(z) is a mapping fromΩ onto
a rectangle as sketched in Figure (4.2). Then Dirichlet boundary conditions onγ′2
andγ′4 are readily satisfied. To get the Neumann boundary conditions right, we
use the Cauchy-Riemann equations. Since

∂u

∂n
(x, y) = 〈∇u(x, y), n(x, y)〉 = 0

on γ1 andγ3, where the notation〈· , ·〉 stands for an inner product. This implies
thatux(x, y) = 0 anduy(x, y) = 0. Then by the Cauchy-Riemann equations we
havevy(x, y) = 0 andvx(x, y) = 0, which imply thatv(x, y) is constant onγ′1
andγ′3. By translation we may assume thatv(x, y) = 0 onγ′3.

The discussion of Garnett and Marshall [GM, p. 50] implies thatf(z) is con-
formal. We still have to show thatf(z) mapsΩ onto the rectangle only once. To
prove this, we take a Jordan curveγ in Ω which is sufficiently close to the bound-
ary ∂Ω. Then the image ofγ under mappingf(z) is also a Jordan curve, since
the image on the boundary is fixed andΩ is Jordan domain and by Theorem 3.2.2
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we can extendγ continuously to the boundary ofΩ. By applying Theorems 2.2.9
and 2.2.11, we conclude that the winding number of any point in the rectangle re-
spect toγ is +1. Furthermore this implies that the winding number of any Jordan
curve inΩ equals+1. Finally we conclude thatf(z) does not have branches. This
shows thatf(z) does not mapΩ onto the rectangle more than once and proves the
claim.

Theorem 4.1.4.(Dirichlet–Neumann definition) [Ahl2, p. 65]
Let u be the solution for the problem (4.1), then the modulus of thequadrilateral
Ω is given by

M(Q; a, b, c, d) =

∫

Ω

|∇u|2 dx dy. (4.2)

Proof: By Theorem 4.1.3 there exists a conformal mappingf(z) from Ω onto
a rectangle of a width one. This implies that the modulus of the quadrilateral is
given by the area off(Ω), which is given by an integral

∫

f(Ω)

1 du dv.

By changing the variables to the original domainΩ, we need to calculate a deter-
minant of the JacobianJf . By the Cauchy-Riemann equations, the Jacobian off

is given by

Jf(x, y) =

(
ux uy

vx vy

)

C–S
=

(
ux uy

−uy ux

)

.

Therefore the determinant of the JacobianJf can be written by

det(Jf) = u2
x + u2

y = |∇u|2.

Finally the modulus of the quadrilateral is given by

M(Q; a, b, c, d) =

∫

f(Ω)

1 du dv

=

∫

Ω

| det(Jf)| dx dy

=

∫

Ω

|∇u|2 dx dy.

A proof through the modulus of the curve family (Definition 4.1.8) can be
found in [Ahl2, pp. 65–70].
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Corollary 4.1.5. The modulus of the quadrilateral can also be given by

M(Q; a, b, c, d) =

∫

γ4

∂u

∂n
ds.

Proof: Let us consider theGreen’s formula
∫

Ω

ψ∆ϕ dx dy =

∫

∂Ω

ψ
∂u

∂n
ds−

∫

Ω

∇ψ · ∇u dx dy

and by settingψ = ϕ = u, we get the following identity
∫

Ω

u∆u dx dy =

∫

∂Ω

u
∂u

∂n
ds−

∫

Ω

|∇u|2 dx dy. (4.3)

Sinceu is the solution to the Laplace problem (4.1), the left-hand side of the
identity (4.3) equals0. Likewise an integral over the boundary∂Ω will reduce to
an integral

∫

γ4

∂u

∂n
ds.

This proves the corollary
∫

Ω

|∇u|2 dx dy =

∫

γ4

∂u

∂n
ds.

The third way to define the modulus of a quadrilateral is through thecurve
family Γ, which has influenced the theory of conformal mappings and the more
general theory of quasiconformal mappings [Ahl2, p. 50].

Suppose thatρ(z) is a non-negative, real valued, continuous and integrable
function in some domainΩ of the complex planeC. We callρ(z) a metric inΩ

and define it byρ := ρ(z)|dz|. Then let us define concepts ofρ-length andρ-area.

Definition 4.1.6. (ρ-length) [LV, p. 21]
Let Ω is a domain and letγ be a curve inΩ. The integral defined by

Lρ(γ) =

∫

γ

ρ(z) |dz|

is called theρ-lengthof the curveγ.

A metricρ is calledadmissibleif Lρ(γ) ≥ 1.
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Definition 4.1.7. (ρ-area) [Ahl2, p. 51]
Suppose thatΩ is a domain and suppose thatγ be a curve inΩ. Then theρ-area
of Ω is defined by an integral

Aρ(Ω) =

∫

Ω

ρ2(x, y) dx dy.

Definition 4.1.8. (The modulus of the curve family) [Ahl2, p. 51]
Let Ω be a domain and letΓ be a curve family inΩ. Then themodulus of the curve
family is given by

M(Ω,Γ) = inf
ρ

Aρ(Ω)

L2
ρ(γ)

,

where the infimum is taken over all metricsρ in Ω andρ is subject to the condition
0 < Aρ(Ω) <∞.

Suppose thatΩ is a rectangle in Definition 4.1.8. Then it can be shown that the
modulus ofΩ coincide with Definition 4.1.1 [LV, pp. 19–22], [Ahl2, pp. 50–53].

4.2 Properties of a modulus

In computations of the modulus of a quadrilateral we try to exploit as many prop-
erties as possible. By the geometry we have following usefulproperties







M(Q; c, d, a, b) = M(Q; a, b, c, d),

M(Q; b, c, d, a) =
1

M(Q; a, b, c, d)
.

The latter is called the reciprocal identity. In [HVV] some identities were given for
M(Q; a, b, 0, 1). For the numerical tests we use the following reciprocal identity

M(Q; a, b, 0, 1) ·M
(

Q;
b− 1

a− 1
,

1

1 − a
, 0, 1

)

= 1.

Let us consider symmetric quadrilaterals.

Definition 4.2.1. (Symmetric quadrilateral) [Hen2, p. 433]
The quadrilateralQ(Ω; a, b, c, d) is calledsymmetricif the domainΩ is symmetric
with respect to the straight lineγ througha andc, and if the pointsb andd are
symmetric with respect toγ.

Theorem 4.2.2.(Modulus of a symmetric quadrilateral) [Hen2, p. 433]
Every symmetric quadrilateral has modulus1.

Proof: See [Hen2, p. 433].



Chapter 5

Schwarz–Christoffel mapping

After Riemann had stated his mapping theorem, mathematicians started to seek
for a way to construct the function given by the Riemann mapping theorem. Soon
Christoffel and Schwarz independently discovered the Schwarz–Christoffel map-
ping in 1867 and1869 respectively, which provides a conformal mapping of the
upper half plane onto a polygon. Besides the Schwarz–Christoffel mapping, there
exists many other numerical methods for conformal mappings. For details of these
techniques, see [Hen2].

5.1 Schwarz–Christoffel idea

The basic idea behind the Schwarz–Christoffel mapping is that a conformal map-
pingf(z) may have a derivative which can be expressed by

f ′(z) =

n−1∏

k=1

fk(z) (5.1)

for certain canonical functionsfk(z). Geometrically speaking the equation (5.1)
means that

Arg f ′(z) =
n−1∑

k=1

Arg fk(z).

Each functionfk(z) is defined in the way thatArg f ′
k(z) is a step function. So

theArg f ′(z) is a piecewise constant function. Let us analyze the situation more
carefully. Suppose thatΩ is the interior of a polygonP with verticesw1, · · · , wn

given in positive order, and interior anglesα1π, · · · , αnπ, αk ∈ (0, 2) for eachk.

41
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Let f(z) be a conformal mapping from the upper half plane onto the polygonP ,
and letzk = f−1(wk) be thekth prevertex [DT, pp. 1–2].

As with all conformal mappings, the main effort is in gettingthe boundary
right. In this case it requires theSchwarz reflection principle.

Theorem 5.1.1.(Schwarz reflection principle) [Ahl1, p. 172]
Let Ω+ be the part in the upper half plane of a symmetric domainΩ, and letγ be
the part of the real axis which is contained inΩ. Suppose thatv(x) is continuous
in Ω+ ∪ γ, harmonic inΩ+, and zero onγ. Thenv has a harmonic extension toΩ
which satisfies the symmetry relationv(z) = −v(z). In the same situation, ifv(z)
is the imaginary part of an analytic functionf(z) in Ω+, thenf(z) has an analytic
extension which satisfiesf(z) = f(z).

By Theorem 5.1.1 the mappingf(z) can be analytically continued across the
segment(zk, zk+1). In particular, iff ′(z) exists on this segment thenArg f ′(z)

must be a constant there. At a pointz = zk, Arg f(z) must undergo a specific
jump

(1 − αk)π = βkπ, (5.2)

which implies thatArg f(z) is a piecewise constant function. Now we can write
functionfk(z) such that it is analytic in the upper half plane, satisfies theequation
(5.2), andArg fk(z) is a constant on the real axis:

fk(z) = (z − zk)
−βk .

Then the arguments suggest that

f ′(z) = C

n−1∏

k=1

fk(z)

for some constantC. And the second derivative can be expressed by

f ′′(z) = Cf ′(z)

n−1∑

k=1

αk − 1

z − zk
.

5.2 Map from the upper half plane onto a polygon

The above discussions lead us to the theorem of Schwarz–Christoffel mapping.
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Theorem 5.2.1.(Schwarz–Christoffel mapping for a half plane) [DT, p. 10]
Let Ω be the interior of a polygonP in thew-plane with verticesw1, · · · , wn and
interior anglesα1π, · · · , αnπ given in positive order. Letf(z) be any conformal
map from the upper half plane ontoΩ with f(∞) = wn. Then the Schwarz–
Christoffel representation for the mappingf(z) is given by

w = f(z) = A+ C

∫ z n−1∏

k=1

(ζ − zk)
αk−1dζ, (5.3)

for some complex constantsA andC, wherewk = f(zk) for k = 1, · · · , n− 1.

Proof: For simplicity, let us assume that all prevertices are finiteand the product
range from1 to n instead from1 to n − 1. By the Schwarz reflection principle
(Theorem 5.1.1) the mappingf(z) can be analytically continued into the lower
half-plane. The image continues into the reflection ofΩ about one side ofΩ′.
Reflecting again, we can return analytically to the upper half plane. So any even
number of reflections ofΩ will create a new branch off(z). And the image of
each branch must be a translated and rotated copy ofΩ.

Now, letA andC be any complex constants, then

(A+ Cf(z))′′

(A+ Cf(z))′
=
Cf ′′(z)

Cf ′(z)
=
f ′′(z)

f ′(z)
.

By continuation, we can define a functionf
′′(z)

f ′(z)
to be a single-valued analytic

function in the closure of the upper half plane, except at thepreverticeszk. Simi-
larly, odd number of reflections lead to a fact thatf ′′(z)

f ′(z)
is a single-valued analytic

function in the lower half-plane. At the prevertexzk, we have

f ′(z) = (z − zk)
αk−1ψ(z),

whereψ(z) is analytic in a neighborhood ofzk. That is,f(z) has a simple pole at
zk with residueαk − 1. Since

f ′′(z)

f ′(z)
= C

n∑

k=1

αk − 1

z − zk
,

we have

C

n∑

k=1

αk − 1

z − zk
−

n∑

k=1

αk − 1

z − zk
= (C − 1)

n∑

k=1

αk − 1

z − zk
, (5.4)
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which is an entire function, because all the prevertices arefinite andf(z) is ana-
lytic at z = ∞. Thus the Laurent expansion implies that

(C − 1)
n∑

k=1

αk − 1

z − zk

→ 0, asz → ∞.

Then the expression (5.4) is bounded and by Liouville’s Theorem (Theorem 2.2.5)
it is identically zero, because

f ′′(z)

f ′(z)
→ 0, asz → ∞.

Then we have
f ′′(z)

f ′(z)
=

n∑

k=1

αk − 1

z − zk
.

To obtain the formula (5.3), we integrate twice the functiond
dz

log(f ′(z)) = f ′′(z)
f ′(z)

.

log(f ′(z)) =

∫ z n∑

k=1

αk − 1

ζ − zk
dζ + C

=

n∑

k=1

∫ z αk − 1

ζ − zk
dζ + C

=

n∑

k=1

(αk − 1) log |z − zk| + C

⇒ f ′(z) = exp

(
n∑

k=1

(αk − 1) log |z − zk| + C

)

= C
n∏

k=1

(z − zk)
αk−1

⇒ f(z) = A+ C

∫ z n∏

k=1

(ζ − zk)
αk−1dζ.

5.3 Map from the upper half plane onto the unit
disk

An alternative version of the formula (5.3) applies the conformal mapping onto
the unit disk.
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Theorem 5.3.1.(Schwarz–Christoffel mapping for a disk) [DT, p. 11]
Let Ω be the interior of a polygonP in thew-plane with verticesw1, · · · , wn and
interior anglesα1π, · · · , αnπ given in positive order. Letf(z) be any conformal
map from the unit disk ontoΩ. Then the Schwarz–Christoffel mappingf(z) can
be given by

w = f(z) = A+ C

∫ z n∏

k=1

(

1 − ζ

zk

)αk−1

dζ, (5.5)

for some complex constantsA andC, wherewk = f(zk) for k = 1, · · · , n.

The main difference between formulas (5.3) and (5.5) is thatthe product runs
over alln prevertices in the latter case. Otherwise the integrand is in fact a constant

multiple of the original form (5.3). Note that the quantities
(

1 − ζ
zk

)

lie in the disk

|w − 1| < 1 for |z| < 1. Therefore, choosing a branch oflog(z) with branch cut
on the negative real axis,w = f(z) defines an analytic function in the disk|z| < 1

and it is continuous on|z| ≤ 1 with a possible exception at verticeszk. This will
help us to avoid later troubles in numerical computations [DT, p. 12].
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1

Figure 5.1: Example of mappings of the unit circle onto a regular polygon and a
regular polygon with slits.

5.4 Map from the upper half plane onto a rectangle

Let us consider the case where we want to map the upper half plane onto a rect-
angle. The symmetry of a rectangle allows an explicit solution to the Schwarz–
Christoffel mapping. Using symmetries we choose the prevertices asz1 = − 1

k
,



46 5. SCHWARZ–CHRISTOFFEL MAPPING

z2 = −1, z3 = 1 andz4 = 1
k
, wherek, the elliptic modulus, present the degree of

freedom in the prevertices. The Schwarz–Christoffel mapping can be expressed
by an elliptic integral of the first kind

f(z) = A+ C1

∫ z 4∏

j=1

dζ
√
ζ − zj

= C1

∫ z

0

dζ
√

(ζ2 − k−2)(ζ2 − 1)

= k2C1

∫ z

0

dζ
√

(k2ζ2 − 1)(ζ2 − 1)

= C

∫ z

0

dζ
√

(1 − k2ζ2)(1 − ζ2)

= C

∫ sin φ

0

dθ
√

1 − k2 sin2 θ

= CF (k, z).

By rotating, translating, and scaling the rectangle we get thatw3 = f(z3) =

F (k, 1), which is a complete elliptic integral of the first kind. Furthermore the
normalization ensures that the constantC equals1. By denotingw3 = K and
computingw4 = f(z4) = f

(
1
k

)
, we have

w4 =

∫ 1

k

0

dζ
√

(1 − k2ζ2)(1 − ζ2)

0<k<1
=

∫ 1

0

dζ
√

(1 − k2ζ2)(1 − ζ2)
︸ ︷︷ ︸

= K(k)

+

∫ 1

k

1

dζ
√

(1 − k2ζ2)(1 − ζ2)
.

To transform the latter integral
∫ 1

k

1

dζ
√

(1 − k2ζ2)(1 − ζ2)
, (5.6)

we make the change of variable as follows

η =

√

ζ2 − 1

k′ζ
⇐⇒ ζ =

1
√

1 − k′2η2
.

Hence

dζ =
k′2η dη

(1 − k′2η2)
3

2

,
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wherek′ is the complementary elliptic modulus given byk′ =
√

1 − k2. Then
new integral boundaries are







ζ = 1 ⇒ η = 0,

ζ =
1

k
⇒ η = 1.

The integrand (5.6) can be written as a product of the following two factors

1
√

1 − ζ2
=

1
√

1 − 1
1−k′2η2

=
1

√

− k′2η2

1−k′2η2

=
i
√

1 − k′2η2

k′η
,

1
√

1 − k2ζ2
=

1
√

1 − k2 1
1−k′2η2

=
1

√
1−k′2η2−(1−k′2)

1−k′2η2

=

√

1 − k′2η2

k′
√

1 − η2
.

So the integral (5.6) can be written by

∫ 1

k

1

dζ
√

(1 − k2ζ2)(1 − ζ2)
=

∫ 1

0

√

1 − k′2η2

k′
√

1 − η2

i
√

1 − k′2η2

k′η

k′2η

(1 − k′2η2)
3

2

dη

= i

∫ 1

0

dη
√

(1 − k′2η2)(1 − η2)

= iK(k′)

= iK ′(k).

That is, the preverticez4 = 1
k

is mapped onto the pointw4 = K(k) + iK ′(k). By
the symmetry of a rectangle, the preverticesz1 = − 1

k
andz2 = −1 are mapped

onto pointsw1 = −K(k) + iK ′(k) andw2 = −K(k), respectively. This also
implies that the modulus of a quadrilateral can be given by

M(Q;w1, w2, w3, w4) =
K ′(k)

2K(k)
.
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Figure 5.2 illustrates the correspondence of vertices under a conformal map of a
polygonal domain onto a rectangle.

�

△

©

♥

Möbius

− 1
k
−1 1 1

k

� △ © ♥ −K K

K + iK ′−K + iK ′

△ ©

♥�

SC-mapping F (k, z)

Figure 5.2: Illustration, how to conformally map a polygonal domain onto a rect-
angle.



Chapter 6

Finite element methods

There are two popular ways to approximate the solution of a partial differential
equation (PDE), namely the finite difference method (FDM) and the finite element
method (FEM). The former dominated the early development ofnumerical anal-
ysis. In finite difference methods an approximation to the solution is obtained by
finite mesh of points where derivatives of the differential equation are replaced by
appropriate difference quotients. This procedure reducesthe problem to a finite
linear system [LT, p. 43].

Finite element methods were introduced in1960s and are probably the most
used method in engineering. Finite element methods are based on a variational
form of partial differential equations and involve an approximation of the exact
solution by piecewise polynomial functions. This makes finite element methods
to be more easily adapted to the underlying domain than finitedifference methods.
For symmetric positive definite elliptic equations such as Laplace equation, the
problem reduces to a finite linear system with a positive definite matrix [LT, p.
51].

The rest of the chapter is devoted to the analysis of finite element methods
since available numerical packages are revolved around it,even though finite dif-
ference methods could be used as well.

49
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6.1 Variational formulation of Laplace equation

Let us consider the following Dirichlet boundary value problem of Laplace equa-
tion {

−∆u = f, in Ω,

u = 0, on∂Ω,
(6.1)

By assumingu ∈ C2(Ω), we multiply the above equation by a test functionψ ∈
C1

0 (Ω) and integrate over the domainΩ. Then by applying Green’s formula
∫

Ω

ψ∆ϕ dx dy =

∫

∂Ω

ψ
∂ϕ

∂n
ds−

∫

Ω

∇ψ · ∇ϕ dx dy

we have for the left-hand side
∫

Ω

∆uψ dx dy =

∫

∂Ω

ψ
∇u
∂n

ds−
∫

Ω

∇u · ∇ψ dx dy, ∀ψ ∈ C1
0 (Ω).

Recall thatψ ∈ C1
0(Ω) and we get

−
∫

Ω

∆uψ dx dy =

∫

Ω

∇u · ∇ψ dx dy =

∫

Ω

fψ dx dy, ∀ψ ∈ C1
0(Ω)

Denote 





a(u, ψ) =

∫

Ω

∇u · ∇ψ dx dy,

(f, ψ) =

∫

Ω

fψ dx dy.

SinceC1
0 is dense inH1

0 , it follows

a(u, ψ) = (f, ψ), ∀ψ ∈ H1
0 (Ω). (6.2)

The variational problem corresponding to (6.1) is to findu ∈ H1
0 (Ω) such that

(6.2) holds and such a solutionu is called aweakor avariational solutionof (6.1).
Thus aclassicalsolution of (6.1) is also a weak solution. On the other hand, by
assuming thatu ∈ H1

0(Ω) andu ∈ C2(Ω), then it follows thatu is a classical
solution of (6.1) as well.

For a non-zero Dirichlet boundary value problem we have to define a concept
of a trace operator. By a trace we means a way to assigning boundary values
along∂Ω to a functionu ∈ H1(Ω), assuming that∂Ω ∈ C1. Obviously if u ∈
C1(Ω) thenu has boundary values in a natural sense. The problem arises when
u ∈ H1(Ω) and therefore it is not generally continuous, and even worseit is only
defined almost everywhere inΩ [Eva, pp 257–259].
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Theorem 6.1.1.(Trace theorem) [Eva, p. 258]
AssumeΩ is bounded and∂Ω ∈ C1. Then there exists a trace operator

Tr : H1 → L2(∂Ω)

such that
‖Tr(u)‖L2(∂Ω) ≤ C‖u‖H1(Ω), ∀u ∈ H1(Ω),

where the constantC depends only onΩ. We callTr(u) the trace ofu on∂Ω.

Now consider a non-zero Dirichlet boundary value problem
{

−∆u = f, in Ω,

u = g, on∂Ω.
(6.3)

Suppose that∂Ω ∈ C1 andu ∈ H1(Ω) is a weak solution of (6.3). This implies
thatu = g on∂Ω in the trace sense which means thatg has to be the trace of some
H1 function, sayh. Thenũ = u − h belongs toH1

0 (Ω), and it is a weak solution
of the boundary value problem

{

−∆ũ = f̃ , in Ω,

ũ = 0, on∂Ω,

wheref̃ = f + ∆h.
For the Neumann boundary value problem of Laplace equation







−∆u = f, in Ω,

∂u

∂n
= 0, on∂Ω,

(6.4)

we use the same argument as above to obtain the variational formulation cor-
responding to (6.4). Because∂u

∂n
= 0, we takeψ ∈ H1(Ω) instead of taking

ψ ∈ H1
0 (Ω). Therefore we have

a(u, ψ) = (f, ψ), ∀ψ ∈ H1(Ω). (6.5)

The variational problem corresponding to (6.4) is to findu ∈ H1(Ω) such that
(6.5) holds.

Finally considering the Laplace equation with the Dirichlet–Neumann bound-
ary value problem (4.1)







∆u = 0, in Ω,

u = 0, onγ2,

u = 1, onγ4,

∂u

∂n
= 0, onγ1 ∪ γ3.
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By above arguments we obtain the following variational formulation:

a(u, ψ) = 0, ∀ψ ∈ H1
0 (Ω).

The above discussions can be stated in more general manner. See [Eva, pp. 293–
297] for more details.

6.2 Finite element mesh

The first task in finite element methods is to define a finite element to work with.
We have to give some properties that the finite element have tosatisfy in order to
be useful. After defining a finite element, we need a way to connect finite elements
together which requires more from the elements.

Definition 6.2.1. (Finite element) [SSD, p. 1]
A finite elementis a triadK = (K,P,Σ), where

• K is a domain inR2. It can be either a triangle or a quadrilateral.

• P is a space of polynomials on K of the dimensiondim(P ) = NP .

• Σ = {L1, L2, · · · , LNP
} is a set of linear forms

Li : P → R, i = 1, 2, · · · , NP .

The elements ofΣ are calleddegrees of freedom.

Definition 6.2.2. (Unisolvency of finite element) [SSD, p. 2]
The finite elementK = (K,P,Σ) is said to beunisolventif for every function
p ∈ P it holds that

L1(g) = L2(g) = · · · = LNP
(g) = 0 ⇒ g = 0.

In other words, every vector of numbers

L(g) = (L1(g), L2(g), · · · , LNP
(g))T ∈ R

NP

identifies a unique polynomialg in the spaceP .

Unisolvency is a way to express a compatibility of the set of degrees of free-
dom inΣ with the polynomial spaceP .
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Theorem 6.2.3.(Characterization of unisolvency) [SSD, p. 3]
Consider a finite elementK = (K,P,Σ), dim(P ) = NP . The finite elementK is
unisolvent if and only if there exists a unique basisB = {θ1, θ2, · · · , θNP

} ⊂ P

satisfying a followingδ–property

Li(θj) = δij , 1 ≤ i, j ≤ NP ,

whereδij is the Kronecker delta defined by

δij =

{

1, i = j,

0, i 6= j.

Proof:
”⇒” Let {g1, g2, · · · , gNP

} ⊂ P an arbitrary basis and we express sought func-
tionsθj , j = 1, · · · , NP , by

θj =

NP∑

k=1

akjgk.

For theδ-property, we require that

Li(θj) = Li

(
NP∑

k=1

akjgk

)

=

NP∑

k=1

akjLi(gk) = δij , 1 ≤ i, j ≤ NP .

This yields a linear system ofNP variables and can be given by matrix equation
as

LA = I,

where column of matrixA contains the coefficients of the functionsθ1, θ2, · · · , θNP
.

Since the elementK is unisolvent it follows thatL is invertible and thatθ1, θ2, · · · , θNP

are uniquely determined. Next we show thatθ1, θ2, · · · , θNP
are linearly indepen-

dent, that is

NP∑

k=1

βkθk = 0 ⇒ β1 = β2 = · · · = βNP
= 0.

By evaluating the functionsLi with the above linear combinations we get

0 = Li

(
NP∑

k=1

βkθk

)

=

NP∑

k=1

βkLi(θk) = βi, ∀ i = 1, 2, · · · , NP .
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”⇐” Let B = {θ1, θ2, · · · , θNP
} a basis of the spaceP satisfying theδ-property.

Then every functionp ∈ P can be expressed by

p =

NP∑

k=1

βkθk.

Assuming that
L1(g) = L2(g) = · · · = LNP

(g) = 0,

immediately we have

0 = Li(g) = Li

(
NP∑

k=1

βkθk

)

= βi, ∀ i = 1, 2, · · · , NP .

Hence it follows thatg = 0 and the finite elementK is unisolvent [SSD, pp. 3–4].

The proof of Theorem 6.2.3 gives us a convenient way to check the unisol-
vency of the finite elementK in form of invertibility of the matrixL. Here we
have discussed about the unisolvent of a single finite element K. Next we will
address the compatibility of finite elements of function spaces which are used for
an approximation. We called this compatibility byconformityof finite elements
to function spaces.

Suppose that a domainΩ is bounded with the boundary∂Ω ∈ C1, where the
underlying partial differential equation is considered. ThenΩ is approximated by
a computational domainΩh whose boundary is a piecewise polynomial.

Definition 6.2.4. (Finite element mesh) [SSD, p. 7]
A finite element meshTh,p = {K1, K2, · · · , KM} over a domainΩh with a piece-
wise polynomial boundary is a geometrical partition ofΩh into a finite number of
non-overlapping open polygonalKi such that

Ωh =
M⋃

i=1

Ki,

and eachKi, 1 ≤ i ≤M , is equipped with a polynomial orderp(Ki) = pi ≥ 1.

A finite element mesh is calledregular if for any two elementsKi andKj,
i 6= j, only one of the following statements hold

• Ki andKj are disjoint,
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• Ki andKj have only one common vertex,

• Ki andKj have only one common edge.

By a regular mesh we avoidhanging nodeswhich complicate the discretization
process. A mesh with hanging nodes is calledirregular.

Regular mesh Irregular mesh

Figure 6.1: Finite element meshes, on the left a regular and on the right an irreg-
ular mesh with one hanging node.

Definition 6.2.5. (Interpolant) [SSD, p. 9]
Given a unisolvent finite element(K,P,Σ), letB = {θ1, · · · , θNP

} be the unique
basis ofP satisfying theδ-property. Letv ∈ V , whereP ⊂ V , be a function for
which allL1, · · · , LNP

are defined. Then we define a localinterpolantby

IK(v) =

NP∑

i=1

Li(v)θi.

The global interpolantI over a finite meshTh,p is defined by means of local
interpolants by

I(v)|Ki
≡ IKi

(v), i = 1, · · · ,M.

Definition 6.2.6. (Conformity of finite elements) [SSD, p.10]
LetTh,p be a finite element mesh consistingM unisolvent finite elements(Ki, Pi,Σi),
i = 1, 2, · · · ,M . Let V (Ωh) beH1 and letIKi

: V (Ki) → Pi be the local finite
element interpolation operator. We sayTh,p is conforming to the spaceH1 if for
each common edge of elementsKi andKj ,Ki, Kj ∈ Th,p the trace ofv|Ki

equals
to the trace ofv|Kj

on the edge.
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In higher order finite elements methods we have lots of overlapping infor-
mations on each element and an effective management is needed. Therefore the
usage of the reference elementKref is encouraged. The task is to find areference
mappingFKi

: Kref → Ki that is smooth and bijective. The polynomial space
with the reference mapFKi

is used for define the function spaceVh,p(Ωh), where
the finite element solution is sought [SSD, pp. 16–17].

6.3 Shape functions

Shape functions are functions used for approximating the solution to partial dif-
ferential equations. There are numerous ways to select shape functions but we
will be usingLegendre’s polynomials, since they possess many useful properties.
Though there are many ways to define Legendre’s polynomials,the definition
through a recursive formula is the most useful way to implement the higher order
shape functions.

Definition 6.3.1. (Legendre’s polynomial) [Leb, p. 46]
Legendre’s polynomialsof degreen can be defined recursively by

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0, .

whereP0(x) = 1 andP1(x) = x.

First few Legendre’s polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) =
3

2
x2 − 1

2
,

P3(x) =
5

2
x3 − 3

2
x.

The derivatives of Legendre’s polynomials can also be givenby a recursive for-
mula as follow

(1 − x2)P ′
n(x) = nPn−1(x) − nxPn(x), n ≥ 1.

By manipulating the derivatives further we have

[
(1 − x2)P ′

n(x)
]′

+ n(n + 1)Pn(x) = 0, n ≥ 0. (6.6)
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One of the most important properties of Legendre’s polynomials is the orthog-
onality in the interval[−1, 1]. This can be shown from the differential equation
(6.6). First we multiply thenth differential equation byPm(x) and subtract it from
themth differential equation multiplied byPn(x), which leads to

0 =
[
(1 − x2)P ′

m(x)
]′
Pn(x) +m(m+ 1)Pm(x)Pn(x)

−
[
(1 − x2)P ′

n(x)
]′
Pm(x) − n(n+ 1)Pn(x)Pm(x). (6.7)

By the identity
[
(1 − x2)P ′

m(x)Pn(x)
]′

=
[
(1 − x2)P ′

m(x)
]′

+ (1 − x2)P ′
m(x)P ′

n(x),

and the symmetry between indicesm andn, we rewrite the equation (6.7) in form
[
(1 − x2) (P ′

m(x)Pn(x) − P ′
n(x)Pm(x))

]′
+(m−n)(m+n+1)Pm(x)Pn(x) = 0.

Then by integrating over the interval[−1, 1], the first term vanishes because(1 −
x2) vanishes and we have

∫ 1

−1

(m− n)(m+ n+ 1)Pm(x)Pn(x) dx = 0,

which yields the orthogonality of Legendre’s polynomials [Leb, pp. 47–50]. It
can also be shown that the norm is given by

‖Pn‖2 =

(∫ 1

−1

P 2
n(x) dx

)1/2

=

√

2

2n+ 1
.

Let us define functionsφj as the integrated Legendre’s polynomials. Then we
have

φ0(ξ) =
1 − x

2
,

φ1(ξ) =
x− 1

2
,

φj(ξ) =
1

‖Pj−1‖2

∫ ξ

−1

Pj−1(t) dt

=

√

2j − 1

2

∫ ξ

−1

Pj−1(t) dt, j ≥ 2,

and we can rewrite them by mean of Legendre’s polynomials

φj(ξ) =
1

√

2(2j − 1)
[Pj(ξ) − Pj−2(ξ)] , j ≥ 2.
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Note thatφj(−1) = 0, k ≥ 1, and they are orthogonal

∫ 1

−1

dφi(ξ)

dξ

dφj(ξ)

dξ
dξ = δij , i, j ≥ 2.

The integrated Legendre’s polynomials form a shape function basis to be used in
finite elements methods. In particular, they play an essential role in a construction
of a hierarchic basis [SSD, p. 25], [SB, pp. 38–39].

For other definitions and for more details regarding Legendre’s polynomials
see [Leb, Sze].

Definition 6.3.2. (Hierarchic basis) [SB, p. 96]
Suppose that the basisBp consist of polynomials of orderp. ThenBp is said to be
hierarchic if Bp ⊂ Bp+1.

In case of quadrilateral elements, we use[−1, 1] × [−1, 1] as the reference
element. In order to satisfy the conformity requirements ofthe finite element
mesh, we divide shape functions into three categories:nodal shape functions,
side modes, andinternal modes. We follow a presentation of Szabó and Babuška
[SB, pp. 98–100] and present the shape functions as follows.

1. Nodal shape functions.Nodal shape functions are defined so that they get
value one at only one vertex and vanish on the other vertices.There are total
of 4 nodal shape functions and they are defined by

N1(ξ, η) =
1

4
(1 − ξ)(1 − η),

N2(ξ, η) =
1

4
(1 + ξ)(1 − η),

N3(ξ, η) =
1

4
(1 + ξ)(1 + η),

N4(ξ, η) =
1

4
(1 − ξ)(1 + η).

2. Side Nodes.There are4(p−1) side modes and they associate with only one
edge of the finite element and vanish on the other edges. For side modes we
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have (p ≥ 2)

N1
i (ξ, η) =

1

2
(1 − η)φi(ξ), i = 2, 3, · · · , p,

N2
i (ξ, η) =

1

2
(1 + ξ)φi(η), i = 2, 3, · · · , p,

N3
i (ξ, η) =

1

2
(1 + η)φi(ξ), i = 2, 3, · · · , p,

N4
i (ξ, η) =

1

2
(1 − ξ)φi(η), i = 2, 3, · · · , p,

where the superscript determines the edge of the finite element which the
side mode function associate with.

3. Internal modes. For internal modes we have two different options to choose
from. Thetrunkspace which has(p−2)(p−3)

2
shape functions and they are de-

fined by

Nij(ξ, η) = φi(ξ)φj(η), i, j ≥ 2, 4 ≤ i+ j ≤ p.

On the other hand thefull space has(p− 1)(p− 1) shape functions, which
are defined by

Nij(ξ, η) = φi(ξ)φj(η), i, j = 2, 3, · · · , p.

Note that internal modes vanish on the boundary of the reference element.
This is the reason why they are sometimes referred to asbubble functions.

See Appendix A for an illustration of some of the shape functions.

6.4 Higher-order finite element methods

There are three different kinds of higher order finite element methods, namely
h-, p-, andhp-version. Theh-version of finite element methods is considered
as the most popular version. Inh-version the degree of freedom of elements are
fixed by fixing the order of the polynomial space and a convergence is obtained
by refining the mesh where errors are large. This can be done bycomputing the
estimated error for each element. On the other hand,p-version of the finite element
methods uses fixed elements and the convergence is obtained by increasing the
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degree of elements that is the order of the polynomial space.Lastly thehp-version
simultaneously refines the mesh and increases the degree of elements. For more
detailed discussion of the error analysis of higher order finite element methods,
see series of papers by Gui and Babuška [GB1, GB2, GB3].



Chapter 7

Numerics of the modulus of a
quadrilateral

There are two natural approaches to compute the modulus of a quadrilateral.
Through the definition of the modulus and use of the conformalmapping from
given domain onto a rectangle and methods that will only givethe modulus. The
former methods give the conformal mappings as well and usually involves solving
a parameter problem for the Schwarz–Christoffel mapping. While the latter gives
only the modulus, which we are interested in. Also the lattermethods usually de-
pends on solving the Dirichlet–Neumann boundary value problem for the Laplace
equation.

Methods for numerical computation of the Schwarz–Christoffel mapping date
back to around1960. In 1980 Trefethen [Tre] introduced theside-lengthmethod
based on works by Relly and others. Driscoll and Vavasis [DrVa] proposed in
1998 an algorithmCRDT(cross-ratios of the Delaunay triangulation) to overcome
crowding [DT, p. 23]. Recently Banjai [Ban] gave modifications to Trefethen’s
algorithm to improve the accuracy of the computation of someelongated domains,
which are the main cause of the crowding phenomenon.

Finite element methods can be applied to solve the Dirichlet–Neumann bound-
ary value problem for the Laplace equation (4.1). In2004 Samuelsson [BSV]
described an AFEM (adaptive finite element method) softwarepackage based on
an h-version finite element method. Recently Hakula [HRV] introduced an al-
gorithm to anhp-version of finite element method for Mathematica. Both of the
above methods can be applied to compute the modulus of a quadrilateral.

For side-length and CRDT methods a numerical integration isneeded. Usual
numerical integration methods give poor results since the Schwarz–Christoffel in-
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tegral is usually singular at prevertices. To compute the integral, we use aGauss–
Jacobiquadrature, which is too lengthy to be described here. See [DT, pp. 28–30]
for more details about Gauss–Jacobi quadrature.

The rest of the chapter, we discuss above the methods in more details and
discuss the crowding phenomenon.

7.1 Side-length

To compute the Schwarz–Christoffel mapping using the side-length method, we
must solve a parameter problem, which is in general non-linear. For Schwarz–
Christoffel mappings we have three degrees of freedom. By choosing prevertices
zn−2, zn−1 andzn from the boundary of the domain, we are left withn − 3 quan-
tities to be determinate by the following system of equations







∣
∣
∣
∣
∣

∫ zj+1

zj

f ′(ζ) dζ

∣
∣
∣
∣
∣

∣
∣
∣
∣

∫ z2

z1

f ′(ζ) dζ

∣
∣
∣
∣

=
|wj+1 − wj |
|w2 − w1|

, j = 2, 3, · · · , n− 2,

∫ zJ+1

zJ−1

f ′(ζ) dζ

∣
∣
∣
∣

∫ z2

z1

f ′(ζ) dζ

∣
∣
∣
∣

=
wJ+1 − wJ−1

|w2 − w1|
, if wJ = ∞ for J < n,

(7.1)

wheref ′(z) can be obtained from (5.3). In case of the unit circle, using the for-
mula (5.5) instead of (5.3) is a better option. In addition, we must require that no
two infinite vertices are adjacent. This can be achieved by introducing a degener-
ated vertex with the interior angleπ on the straight line between infinite adjacent
vertices [DT, pp. 23-25].

For details how this can be done in case of the unit circle see [DT, pp. 25-27]
or the original paper by Trefethen [Tre].

7.2 CRDT

The CRDT algorithm has several phases in order to construct the Schwarz–Christoffel
mapping. First we have to triangulate the given simple polygonP by using one
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kind of Delaunay triangulation process. Then we split the edges using edge split-
ting algorithm. Finally we use cross-ratios and solve the emerging parameter
problem to determine the prevertices ofP .

The Delaunay triangulation

A triangulation ofP is a partition ofP into non-degenerate triangles, whose ver-
tices are vertices ofP . If triangles intersect, they must intersect on a vertex or
on an entire edge. It can be proved by induction, that a triangulation ofP con-
sists exactly ofn − 2 triangles andn − 3 diagonals, which are edges of triangles
that are not also the edges ofP . Furthermore, ifd is a diagonal, letQ(d) be the
quadrilateral, the union of the two triangles on either sideof d. Remark that the
triangulation ofP is not unique.

Splitting edges

To avoid quadrilaterals that are long and narrow, we split the edges so that the
quadrilaterals in the Delaunay triangulation are well conditioned. By ”well con-
ditioned” we mean that the prevertices of the quadrilaterals are not too crowded.

The splitting procedure has two phases. In the first phase, weare looking
for verticesw with an interior angle less than or equal toπ

4
. For every such a

preverticesw, find a largest isosceles triangleT that can be formed byw with its
adjacent edges such thatT is contained inP . Next we introduced new vertices at
midpoints of the two sides ofT that are the edges adjacent tow and we call these
adjacent edges tow asprotected. That is, we do not allow them to be split during
the second phase. LetP ′ denote the polygon obtained after the first phase of the
splitting procedure.

On the second phase we iteratively split the polygonP ′ into partitions. Lete
be an unprotected edge of some polygon during the splitting procedure. Letl(e)
be its length and letd(e) be the smallest distance frome to any vertex except the
endpoints ofe. The distance is measured along the shortest piecewise linear path
that remains inside the polygon. The edgee is said to be ill separated if

d(e) <
l(e)

3
√

2
.

Then the ill conditioned edges are split into three equal parts. It can be proved that
the second phase of the splitting procedure will end in a finite number of steps.



64 7. NUMERICS OF THE MODULUS OF A QUADRILATERAL

Cross-ratios

Like side-length method, CRDT also haven− 3 variable to be determined. These
variables are determined using cross ratios of prevertices. Let d1, · · · , dn−3 be
diagonals and letQ1 = Q(d1), · · · , Qn−3 be quadrilaterals of the Delaunay tri-
angulation ofP . Denote the vertices ofQi by wκ(i,1), wκ(i,2), wκ(i,3), wκ(i,4) for
eachi = 1, · · · , n − 3, whereκ(i, 1), κ(i, 2), κ(i, 3), κ(i, 4) is distinct indices in
{1, · · · , n}.

For a given list of preverticesz1, · · · , zn, we compute variablesσi, which are
defined by

σi = ln(−(zκ(i,1), zκ(i,2), zκ(i,3), zκ(i,4))), i = 1, · · · , n− 3. (7.2)

Notice that there aren real variables and onlyn− 3 real constraints. By choosing
a Delaunay triangularT0 in the way that its prevertices are arbitrarily placed on
the unit circle in a manner of preserving the order. Then there exists a unique way
to determine the remainingn − 3 zi’s on the unit circle satisfying (7.2). It turns
out that the choice forT0 does not matter, we will end up with the same polygon,
up to a similarity transformation [DrVa].

7.3 Adaptive finite element methods

AFEM

In order thea posterioriestimate to work well, AFEM triangulate the domain to
have certain properties. For example, the lower bound of thesmallest angle of the
triangulation must be fixed. The refined elements must have these properties as
well. For detailed properties and algorithms, see [BSV].

hp-FEM

In hp-FEM, the mesh of a polygonal domain is generated in two phasealgorithm:

1. Generate a minimal mesh where the vertices are isolated with a fixed num-
ber of triangle depending on the interior angleα:

• α ≤ π
2
: one triangle,

• π
2
≤ α < π: two triangles,

• α ≥ π: three triangles.
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2. Every triangle attached to vertices is replaced by refinedtriangles where the
edges adjacent to the vertex are split as specified by the scaling factorr.
This process is repeated recursively until the the nesting levelν is reached
[HRV].

The refined mesh is referred as(r, ν)-mesh. An example is shown in Figure 7.1.
The actual numerical computation for the solution of (4.1) is done as described in
Chapter 6.

Figure 7.1: A quadrilateralQ
(
0, 1, 3

10
+ 3

10
i, i
)

with the initial mesh and the
(0.4, 2)-mesh on the left- and right-hand side, respectively.

7.4 Heikkala–Vamanamurthy–Vuorinen iteration

Heikkala, Vamanamurthy, and Vuorinen [HVV] proposed an iteration which can
be used for compute the modulus of a quadrilateral. The iteration consists of
evaluations of hypergeometric functions, beta functions,and elliptic integrals.

Definition 7.4.1. (Gaussian hypergeometric function) [HVV, p. 1]
Given complex numbersa, b,andc with c 6= 0,−1,−2, · · · , theGaussian hyper-
geometric functionis the analytic continuation to the slit planeC\[1,∞) of the
series

F (a, b; c; z) = 2F1(a, b; c; z) =

∞∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1.



66 7. NUMERICS OF THE MODULUS OF A QUADRILATERAL

Here(a, 0) = 1 for a 6= 0, and(a, n) is theshifted factorial functionor theAppell
symbol

(a, n) = a(a + 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N.

Definition 7.4.2. (Beta function) [HVV, p. 10]
Let Re(x) > 0 andRe(y) > 0. Then thebeta functionis defined by

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1 dt.

Theorem 7.4.3.Let 0 < a, b < 1, max{a + b, 1} ≤ c ≤ 1 + min{a, b}. Suppose
thatQ is a quadrilateral in the upper half plane with vertices0, 1, A, andB, the
interior angles at which are, respectively,bπ, (c− b)π, (1− a)π, and(1+ a− c)π.
Then the modulus ofQ is given by

M(Q; 0, 1, A,B) =
K ′(k)

K(k)
,

where the elliptic modulusk satisfies the equation

A− 1 =
Lk′2(c−a−b)F (c− a, c− b; c + 1 − a− b; k′2)

F (a, b; c; r2)
,

and

L =
B(c− b, 1 − a)

B(b, c− b)
e(b+1−c)iπ.

Proof: See [HVV, p. 7].
Note that the quadrilateralQ in Theorem 7.4.3 is convex. There is a slight

chance that the iteration works for a non-convex quadrilateral as well.

7.5 Crowding

The biggest obstacle for numerical methods of conformal mappings is a so called
crowding. Crowding is a form of ill-conditioning which is present in virtually all
numerical methods of conformal mappings. Crowding occurs when two prever-
tices are too close to each other. It might be numerically impossible to distinguish
the two prevertices from each other, because of the limited accuracy of the numer-
ical floating point arithmetics [DT, pp. 20–21].
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The situation can be illustrated by a long and thin rectangles. Consider a map
f(z) that maps a quadrilateralQ(Ω, 1 + iM, iM, 0, 1) onto the unit diskD such
thatf(1 + iM) = −f(0) andf(iM) = −f(1). Then the minimal distance of the
image pointsf(1+iM), f(iM), f(0), andf(1) is less than3.4 ·10−16 forM = 1

24

[HRV], [Pap, pp. 131–132].
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Chapter 8

Numerical results

In this chapter we consider quadrilaterals and compute its modulus by different
numerical tools introduced in Chapter 7. Then the results are compared to the
reference value as well as with each other.

8.1 Symmetric quadrilateral

In this section we usehp-version of finite element methods [HRV] to run series of
tests on a symmetric quadrilateral with vertices0, 1, 0.3 + 0.3i, i. See Figure 7.1
for an illustration. By Theorem 4.2.2 we know that the modulus is exactly one.

8.1.1 Scaling factor

Let us consider the scaling factor. We use the(r, 12)-meshes, wherer ∈ [0.1, 0.5]

with polynomial degree of4, 6, · · · , 18. Using different polynomial degrees we
identify the effect of the scaling factor. The result of the logarithmic error is shown
in Figure 8.1. The result shows that for a fixed nesting levelν and different polyno-
mial degree there exists a optimal scaling factor. Generally the higher polynomial
degree is, the smaller the scaling factor should be chosen. We emphasize that the
result is only valid for this particular quadrilateral. Forother configurations the
optimal scaling factor may vary. There might also be an analytical formula for
relations between the polynomial degree and the optimal scaling factor.

69
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Figure 8.1: Logarithmic error obtained by different scaling factor with fixed the
nesting level of12 with polynomial degree of4, 6, · · · , 18.

8.1.2 Nesting levels

We consider different nesting level to see the effect of the nesting. Before actually
refining the mesh, let us first consider the nesting levelν equals zero. This means
that we are working with the initial mesh andhp-FEM reduces top-FEM. In Fig-
ure 8.2 shows the logarithmic error of thep-FEM for various polynomial degree
ranging from4 to 18.

The results forp-version of finite element methods are quite astonishing since
the error should get smaller when the polynomial degree increases. The opposite
happens once we have past the polynomial degree of10, the error start to increase.

Let us move on with the computation of different nesting levels. For this test
we compute the modulus of a quadrilateral with(r, ν)-meshes, with polynomial
degree of4, 6, · · · , 12. The scaling factorr is chosen from the above example
(Section 8.1.1). The logarithmic errors are shown in Figure8.3.

From the result we conclude that the error decreases exponentially and for
lower polynomial degrees the error saturates more quickly than for higher poly-
nomial degrees. So for higher polynomial degrees, we shoulduse higher nesting
levels to maintain the exponential rate of convergence.
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Figure 8.2: Logarithmic error ofp-FEM with polynomial degree of4, 5, · · · , 18.

æ
æ
æ
æ
æ
æ
æ
æ
æ æ æ æ æ æ æ æ æ æ

à
à

à

à

à

à

à
à
à
à
à à à à à à à à

ì ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì ì ì ì ì ì ì

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò
ò ò ò ò ò ò

ô
ô

ô

ô

ô

ô

ô

ô

ô

ô

ô

ô
ô
ô ô ô ô ô

5 10 15
Nesting

-10

-8

-6

-4

-2

Log10 Error

ô 12

ò 10

ì 8

à 6

æ 4

Degree

Figure 8.3: Logarithmic error obtained by different nesting level with the scaling
factor obtained in Section 8.1.1 and polynomial degree of4, 6, · · · , 18.
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8.1.3 Refining vertices

In [BS] basic principles and properties are given top- andhp-versions of finite
element methods. One of the properties says that most of the error comes from
the so called singularity component which is the vertex witha largest interior
angle. In this test we use three different kind of mesh to verify the result. We use
(0.15, 12)-meshes and refine the meshes

1. to vertices with interior angles0 < α ≤ π
2

(regular vertices),

2. to the singular vertex only,

3. to all vertices.

The polynomial degree is varied from4 to 18. Results of the logarithmic errors
are shown in Figure 8.4.
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Figure 8.4: Logarithmic errors of computations of modulus by different mesh
refinements on vertices. Notice that the error of refining allvertices and refining
the singular vertex alone are indistinguishable.

The result suggests that the we cannot get more than3 correct digits for this
example by refining only the regular vertices. While refiningonly the singular
vertex, we may obtain11 correct digits at most. The result of refinement of all
the vertices does not give any significant improvement over the case where we
refine only the singular vertex. It should be notice that refining all vertices, the
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computing time is much longer than compared to the case we refine only the
singular vertex.

8.2 Modulus of the convex quadrilateral

In this example we compute the modulus of convex quadrilaterals with vertices
0, 1, x+ iy, i. This test have been carried out with the Schwarz–Christoffel tool-
box [Dri] andhp-version of finite element methods. We are using [HVV] as the
reference result, since its analytic numeric presentationis mathematically exact.
To be able to compare the result, we compute the difference ofthe obtained re-
sults against the reference result to gain the error for the used method and plot the
logarithm of the errors.

First of all we have computed the modulus of the quadrilaterals. The com-
putation of the Schwarz–Christoffel toolbox is carried by using the side-length
method (rectmap ). For the hp-FEM we are using(0.15, 12)-meshes and the test
is carried out with a polynomial degree of6 and12. The logarithmic errors along
with the reproduction of the moduli surface from [HVV] are shown in Figure 8.5.

The value of thez-axis on the error graphs tells the accuracy of the methods at
the corresponding point. The Schwarz-Christoffel toolboxgives us8− 14 correct
digits. Whilehp-version of finite element methods gives us5 − 8 and10 − 13

correct digits when the degree of the polynomial is6 and 12, respectively. It
should be noted that forhp-version of finite element methods even better can be
achieved if a more optimal scaling factor is chosen.

8.3 Modulus of the ring domains

In this section we will consider symmetric ring domains. Thering domains are
studied in [BSV, Gai, HRV]. In [HRV] AFEM andhp-FEM are used for com-
puting the capacitance of the condenser. In this section we are comparing the
result obtained byhp-FEM to the Schwarz–Christoffel toolbox. By Schwarz re-
flection theorem (Theorem 5.1.1) the domain can be decomposed and the actual
computation can be carried out on the decomposed domain.
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Figure 8.5: On top we have the reproduction of the modulus of the quadrilateral
with vertices0, 1, x+ iy, i from [HVV] and the logarithmic error of the Schwarz–
Christoffel toolbox. On bottom we have logarithmic errors of the hp-FEM with
(0.15, 12)-meshes and the polynomial degree of6 and12 respectively.

Square in a square

We compute the modulus of the ring domainΩ = Ω1\Ω2, whereΩ1 = [−1, 1] ×
[−1, 1] andΩ2 = [−a, a] × [−a, a], 0 < a < 1. For the computation the domain
is decomposed into8 quadrilaterals, see Figure 8.6. It can be proved that the
modulus of the quadrilateral is doubled if the reflection boundary is Neumann
boundary. This implies that the modulus of the original domain equals to8 times
the modulus of the decomposed quadrilateral.

The computation is carried out by the Schwarz–Christoffel toolbox andhp-
FEM. In this case we computed the modulus of the decomposed quadrilateral with
the side-length method (rectmap ) and CRDT (crrectmap ). Forhp-FEM we
have used(0.15, 12)-meshes with polynomial degrees of6, 12, and18. Like in
previous examples, the results are compared to the values obtained from HVV
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a

(0, 0) (1, 0)

(a, 1 − a)(0, 1 − a)

Figure 8.6: The domain of interest is on the left-hand side and on the right-hand
side we have one of the quadrilateral decomposed from the original domain.

iteration. The errors are listed in Table 8.1 along with the modulus obtained by
HVV iteration.

Table 8.1: Table for the exact value of the modulus and the error for different
methods in a square in a square. The parameterp refers to polynomial degree of
hp-FEM. Reference values are obtained by HVV–iteration.

a rectmap crrectmap p = 6 p = 12 p = 18 Reference
0.1 5.2 · 10−9 5.3 · 10−7 1.0 · 10−4 7.0 · 10−8 8.1 · 10−11 2.817122196

0.2 8.4 · 10−13 4.1 · 10−8 3.4 · 10−6 2.0 · 10−10 1.6 · 10−14 1.934943792

0.3 1.1 · 10−13 6.3 · 10−10 3.4 · 10−7 4.2 · 10−12 3.3 · 10−15 1.420245745

0.4 3.8 · 10−11 5.7 · 10−12 1.1 · 10−7 2.1 · 10−12 1.8 · 10−15 1.057986726

0.5 2.7 · 10−9 2.4 · 10−11 8.9 · 10−8 1.9 · 10−12 1.2 · 10−15 0.781700961

0.6 7.1 · 10−9 7.2 · 10−12 5.1 · 10−8 1.0 · 10−12 1.1 · 10−16 0.561999833

0.7 3.5 · 10−9 1.6 · 10−9 8.8 · 10−8 9.1 · 10−13 3.8 · 10−15 0.382746154

0.8 1.1 · 10−9 5.2 · 10−10 7.0 · 10−7 1.2 · 10−10 2.6 · 10−14 0.233679562

0.9 2.9 · 10−10 7.4 · 10−10 9.9 · 10−6 2.2 · 10−8 8.8 · 10−11 0.107766002

Since the quadrilaterals are not elongated the CRDT does notstand out from
the side-length method. For some cases CRDT perform even worse than side-
length method and vice versa. In case of hp-FEM we get2−3 more correct digits
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by increasing the polynomial degree by6. For0.3 < a < 0.7, hp-FEM with the
(0.15, 12)-mesh and polynomial degrees of9− 11 gives the same performance as
the Schwarz–Christoffel toolbox.

We have only emphasized how to improve the performance ofhp-version of
finite element methods. In the Schwarz–Christoffel toolboxwe can change the
tolerance rate to obtain much better result. In Table 8.2 we have the result obtained
by the side-length method with the default and a custom10−14 tolerance rate.

Table 8.2: Table for values obtained with the side-length method by using the
default and a custom10−14 tolerance rate.

a default custom
0.1 5.2 · 10−9 1.6 · 10−14

0.2 8.4 · 10−13 3.1 · 10−15

0.3 1.1 · 10−13 1.6 · 10−15

0.4 3.8 · 10−11 1.3 · 10−15

0.5 2.7 · 10−9 1.1 · 10−15

0.6 7.1 · 10−9 1.1 · 10−14

0.7 3.5 · 10−9 4.9 · 10−15

0.8 1.1 · 10−9 2.5 · 10−15

0.9 2.9 · 10−10 2.1 · 10−14

Lastly Figure 8.7 illustrates the potential function of oneof the decomposed
quadrilateral.

Figure 8.7: The initial mesh and the potential function of a square in a square with
a = 0.4 on left- and right-hand side, respectively.



Chapter 9

Conclusion and further research

In this thesis we have given an introduction on the theory of acomputation of the
modulus of a quadrilateral. We have develop an extensive amount of theory in
order to give numerical examples.

By looking closely to the error graphs and tables in Chapter 8, it seems that
hp-version of finite element methods produces3−4 more correct digits whenever
the degree of the polynomial is doubled. Of course this cannot be generalized
because of the computational precision. Whilehp-version of finite element meth-
ods perform better than the Schwarz–Christoffel toolbox with the default error
tolerance rate, it does not come for free. Since the computation with hp-version
finite element methods is more time-consuming than with the Schwarz-Christoffel
toolbox.

Lastly we want to give some ideas for further studies.

• In the Section 8.1 we considered a symmetric quadrilateral with one sin-
gular vertex to studyhp-version of finite element methods. Following the
example we could choose a different symmetric quadrilateral, for example,
a parallelogram and try to find out how the geometry affect theconnection
between the scaling factor and the degree of polynomial.

• The natural continuation would be considering quadrilaterals with curved
boundaries. In this case the comparison betweenhp-version of finite ele-
ment methods and the Schwarz–Christoffel toolbox cannot becarried out
unless we use a piecewise polynomial approximation to curved boundary
segments.

• Constructing the conformal mapping from the potential functionu obtained
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from hp-version of finite element methods and comparing the result ob-
tained by the Schwarz–Christoffel toolbox.



Appendix A

Hierarchic shape functions

Let us illustrate some of the shape functions defined in Section 6.3 by plotting
them to give an intuition what they look like. First in FigureA.1 we have all the
four nodal shape functions. Side mode functions, which associate with the first
edge, are shown in Figure A.2. Lastly in Figure A.3 we have plotted inner mode
functionsN11(ξ, η), N12(ξ, η), N21(ξ, η), andN22(ξ, η).
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Figure A.1: From the top left to the lower right the nodal shape functions are in a
following order:N1(ξ, η), N2(ξ, η), N3(ξ, η), N4(ξ, η).
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Figure A.2: From the top left to the lower right the side mode functions are in a
following order:N1

1 (ξ, η), N1
2 (ξ, η), N1

3 (ξ, η), N1
4 (ξ, η).
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Figure A.3: From the top left to the lower right the inner modefunctions are in a
following order:N11(ξ, η), N12(ξ, η), N21(ξ, η), N22(ξ, η).
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