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Chapter 1

Introduction

The theory of conformal mappings are studied because af ¢hase relation to
physical applications in, for example, electrostatiséind aerodynamics, as well
as their theoretical significance in mathematics. In apfibns numerical com-
putations are usually required. For example, the analyticenputation of the
capacitance can be carried out only for few condensers. i3 llastrated by the
following simple example. Let us consider a cylindrical denser, see Figure 1.1.
Then the capacitance per unit length is given by

C 2me

L  In(R/r)
wheree is the permittivity factor and. is the length of the cylinder. The con-
nection between the capacitance and the conformal modtiusjwadrilateral is
shown in Example 4.1.2.
We consider mappings that map conformally simply connedtadains onto
simplier domains like the unit disk, the upper half planesatangles. In physical
applications partial differential equations usually aris

—aAu + bVu + cu = f.

By mapping the domain onto simplier one, the computatiodaehatage is clear.
In particular, the Laplace equatidxu = 0 is one of the the most important partial
differential equations in engineering mathematics. Fqiaee equations, we may
use the complex analysis to represgfit+iy) = u(z,y)+iv(x, y), whereu(z, y)
andv(z,y) are harmonic functions.

There are many old and new applications of conformal maspiiog example
in cartography. Historically, Mercator’s cylindrical mgpojection was the first

1



2 1. INTRODUCTION

A

Figure 1.1: The cross-section of the cylinder.

conformal mapping studied because of this property. It nepdormally the
Earth’s surface onto the plane. The projection distort tka and length near the
poles, for example Greenland and Africa have approximakel\same size at the
projection, but in the real world, Africa is aboli times as large as Greenland is.
Furthermore, in the last century conformal mappings haee lbsed in wide range
of applications such as integrated and printed circuits|eax reactors, airfoils,
pattern recognitions, and condensers [SL]. Applicatiansartex dynamics have
been studied in [SC] and further applications to fluids anddlare described in
[Crol, Cro2, Cro3, TD].

In this thesis we are interested on a quantity called thearordl modulus of
a quadrilateral. For computations we use mainly two difieegpproaches

1. Schwarz—Christoffel mappings,
2. finite element methods.

The former methods give the conformal modulus as well as tlkéiary confor-
mal mapping of the quadrilateral onto a rectangle.

Schwarz—Christoffel mappings are closely related to therRinn mapping
theorem which states that any simply connected domain ékoephole complex
plane can be map onto the unit disk. It is noteworthy that eeaply connected
domains with, for example, fractal boundaries such as Koshowflake (Figure
1.2) can be conformally mapped onto the unit disk [Pom]. Aeotimportant



result is a theorem of Carathéodory, which gives a condfiiorihe continuous
boundary extensions. This is crucial in our applications.

Figure 1.2: Koch’s snowflake with consecutive iterations.

The other technique we will be using, finite element methoddgs not im-
mediately arise from the complex analysis. They can be usesdlving partial
differential equations by decomposing the domain of irdeneto elements and
approximating the solution on each of the elements. In tiesis, finite element
methods are used for solving the conformal modulus of gladrals. This is
possible because the conformal modulus can be charactdrizeneans of the
Laplace equation with Dirichlet—-Neumann boundary coondgi By this methods
we minimize the Dirichlet integral

/ |Vul? dz dy,
0

the value, which equals the capacitance of a condensergwhira domain in
the complex plane. This approach gives another way to cteaize the conformal
modulus of a quadrilateral.

Besides the Schwarz—Christoffel mapping, there existsynadginer numeri-
cal methods that can be used for obtaining conformal magpiBgme of these
techniques are overviewed in [Por] and for more details[idea2].



4 1. INTRODUCTION

This thesis is organized as follows. In Chapter 2 we give gemknd material
to understand this thesis. In Chapter 3 we state the Riemappimg theorem and
give a proof through a normal family argument. Definitions @noperties of the
conformal modulus of quadrilaterals are given in Chaptén£hapter 5 we study
the Schwarz—Christoffel mappings which can be used for mgp@ polygonal
domain onto the unit disk, the upper half plane, or a rectantihe theory of finite
element methods is developed in Chapter 6. Numerical msthaldted to the
Schwarz—Christoffel mapping and finite element methodsareied in Chapter
7. Finally, in Chapter 8, we consider examples of quadridédseand compute the
modulus by both the Schwarz—Christoffel toolbox [Dri] alyelversion of finite
element methods. The results are compared to each otheo &ndwn reference
results. In Chapter 9 we discuss about the results obtam€&thapter 8 and we
give some ideas for further research.

This thesis is closely related to earlier work in the sameassh group, see
for example theses [Num, Vuo, Yrj] and research papers [E3Wu, HRV, RV].



Chapter 2

Preliminaries

In this chapter we give basic definitions and results useuaheory of conformal
mappings. Presented results are well known, so the reagdidiawith the topic
may glance through it quickly and begin with the next chapteferring to this
chapter when necessary.

2.1 Curves and domains

Definition 2.1.1. (Curve)
A curveis a continuous functiory: [a,5] — C, whereC = C U {co} is the
extended complex plane, the so called one point compatitfiicaf C.

A curve is said to bemoothif it is continuously differentiable and(¢) # 0.
We denote a set of curves byand call it acurve family

Definition 2.1.2. (Length of a curve)

Lety be a curveyy: [a,b] — C, and letTy:a =ty < t; < --- < t;, = b be
a partition of the closed intervéd, b]. The sety([a, b]) is called thelocusof .
Then, by denoting; = ~(¢;), thelengthof the curvey is defined by the supremum
of sums

k
() = SUPZ Vi = i1 -
Te =1

If the curve~ is piecewise differentiable, then we can define, altereatjihe
length of the curve by

I(7) = / /()] dt.

5



6 2. PRELIMINARIES

A curve~ is said to beectifiableif its length is finite. A curvey with para-
metric interval[a, b] such thaty(a) = ~(b) is called aclosed curve That is, the
starting point and the end point ofare the same. Furthermorg,s said to be
simpleif it does not intersect itself, that is, if(c) # ~(d), for all ¢ # d, where
¢,d € (a,b). Note that the exceptiof(a) = ~(b) is allowed. Ify is both simple
and closed, then it is calledJardan curvgPon, p. 117].

A

Simple, closed  Not simple, closed Simple, open Not simple, open

Figure 2.1: Different types of curves.

Definition 2.1.3. (Domain)

A domain() is a non-empty open connected sefiinin particular, a domaif is
path-wise connected, that is for each pair of potqt@andz, in 2 can be connected
with a curvey such that they lies entirely in€).

A domain together with some, none, or all of its boundary fmis called a
region The closure of a domaifl is denoted by and is the union of the domain
2 and the boundary curvé2. A domain() is said to besimply connectedf
its complement with respect to the extended plane is coadedtor reasons of
convenience we do not consider the whole complex pl&as simply connected.
If ©2is not simply connected, then we say tkails multiply connectedA domain
2 bounded by a Jordan curve is calledadan domain Note that every Jordan
domain is simply connected.

Definition 2.1.4. (Generalized quadrilateral)

A generalized quadrilaterails a Jordan domaif2 with four separate boundary
pointszy, z, 23, andz, given in positive order on the boundary cud@ of €.
These points are called vertices of the generalized qaaelrdl. They divide))
into four curvesy,, s, 3, and~, which are called the sides of the generalized
quadrilateral and denoted Wy, z2), (29, 23), (23, 24), @nd(z4, 21), respectively.
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Simply connected Not a domain Multiply connected

Figure 2.2: Different types of sets.

In this case, when we traver$¥) such that() is on the left-hand side, the
pointszy, zs, 23, andz, occur in this order. We denote a generalized quadrilateral

by Q(QJ 21, %2, 23, 24).

73
23

V2

2 4!

Y4
21

Figure 2.3: A generalized quadrilatert@(<?; z1, 22, 23, 24).

If the sidesy,, wherek = 1,2, 3,4, are line segments, then the generalized
quadrilateral will be a quadrilateral in the usual geoneesense. In what fol-
lows the word quadrilateral is used to describe both geamatd generalized
quadrilaterals.

2.2 Complex analysis

The origin of complex numbers lies in the problem of findingtsoof polynomial
equations. Already in the earlth century Cardano, Tartaglia, and Ferro found
a long sought general solution for the cubic equation. Inesgases Cardano—
Tartaglia—Ferro formula gives a solution which seeminglykis like a complex
number even though the solution is, for example a positiaé member. This
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puzzled Cardano who acknowledged the existence of theagdiaumbers even
though he could not make any use of them. Bombelli showedia that the roots
of a negative number have a great utility by manipulatingensegly complex
solution obtained by Cardano—Tartaglia—Ferro formula streal number solu-
tion. In thel8th century Euler introduced the modern notatica v/—1 [Lau, pp.
64—69].

We assume that the reader is familiar with complex numbeétkid is not the
case, please see, for example, [Ahl1, Gam, MH, NP, Pon] fercl@ncepts of
complex numbers.

2.2.1 Derivative

Suppose that for every valugn a domairt? there corresponds a definite complex
valuew. Then the functiory: z — w is said to be a complex function defined in
Q). A function f(z) is said to besingle-valuedf f(z) satisfies

f(2) = [(z(r, 9)) = f(z(r, ¢ + 2m)).
Otherwise,f(z) is said to bemultiple-valued

Definition 2.2.1. (Derivative)
A complex functionf(z) defined in a domaifl is differentiableat a pointz, € 2
if the limit

lim f(2) = f(#) ~ lm f(z0 + Az) — f(20)

Z—20 Z— 2 Az—0 Az
exists and is independent of the path along which— 0. The limit is denoted
by f'(z0) and is called the complex derivative of the functifix) at the pointz.

The complex derivative shares many of the properties of ¢laé derivative.
See [AhI1] for a further reference.

Definition 2.2.2. (Analytic function)

A function f(z) is said to beanalytic or holomorphic at a pointz, € C if it is
differentiable at every point of some neighborhood of thenpa,. Similarly, a
function f(z) is said to be analytic in a sét if it is differentiable at every point
of some open sé? such thatt C Q.

A function f(z), which is analytic in the whole complex plafigis called an
entire function Suppose that a functiofi(z) is analytic in a neighborhood of a
point zy, except perhaps at itself. If lim f(z) = oo, the pointz, is said to
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be apole of f(z), and we setf(z;) = oo. A function f(z) which is analytic
in a domains, except for poles, is said to beeromorphidn 2. Furthermore,
a meromorphic functiory(z) at a pointz, is said to have an orde¥ at z, if
f(2) = (z — 20)Vg(2) for some analytic functiog(z) at z, such thay(zy) # 0.

Determining whether a given functigfiz) is analytic or not directly from the
definition is not usually practical. Fortunately, tBauchy—Riemann equations
give us a convenient characterization of analytic funion

Theorem 2.2.3.(Cauchy—Riemann equations)

Let a functionf(z) = u(x, y)+iv(x, y) be defined and continuous in some neigh-
borhood of a point, = xy + iy, and differentiable at,. Thenf(z) is analytic

if partial derivatives of u(x,y) andv(z, y) exists atz, and satisfy the Cauchy—

Riemann equations
ou  Ov ou ov
— = —= 2.1
or Oy’ oy ox 2.1)
in the neighborhood of,.
Furthermore, iff (z) is analytic in a domaif, thenf(z) satisfies the Cauchy-

Riemann equations for every poing ().

Definition 2.2.4. (Harmonic function) [Ahl1, p. 162]

A real-valued functionu(z) = u(x,y) defined and single-valued in a doméain

is said to béharmonicin €2 if it is continuous together with its partial derivatives
of the first two orders and satisfieaplace’s equation

AU = Ugy + Uy, = 0.

It is easy to see that for analytic functiorf(z) = u(z) + iv(2), f: Q@ — C,
the functionsu(z) andv(z) are harmonic ir2. A functionv(z) = v(z,y) is
called aconjugate harmonic functicior a harmonic functiom(z) in 2 whenever
f(z) = u(z) + iv(z) is analytic inf2.

To construct a conjugate harmonic functiofx), we use the information that
f(z) is analytic. In particularf(z) satisfies the Cauchy-Riemann equations (2.1).
Sow(z) can be expressed by

o(e,y) = / us(a,y) dy + C(2), (2.2)

Notation:u, (z,y) = 2% (z,y).
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where(C'(x) is a function ofr alone to be determined. Differentiating (2.2) with
respect tar, we will get

0 d
wloy) = 5 [ usle ) dy+ 5C@)
C-R 0 d
L (o) = 5 [l dy+ 5 Cla)
The functionC'(z) can now be solved from the last equation by integrating with
respect ofr. Note that the conjugate harmonic functiofx) is unique up to an
addition of a real constant.
We also use the following result:

Theorem 2.2.5.(Liouville’s Theorem) [AhI1, p. 122]
A bounded and entire function is constant.

2.2.2 Integral

Arithmetic operations and calculus of differentiationsgralize from the real to a
complex variable without difficulties. But definingcamplex integralalso known
ascontour integra) the transition is not as straightforward as it could be imed.
For some historical remarks see [Lau, pp. 73-75].

Let a curvey and a partitiori}, of an intervalja, b] be as in Definition 2.1.2.
For each intervalt;_,t;), wherei = 1,--- k, we choose an arbitrary point
t = 7;. Suppose thaf(z) is defined and continuous on Settingé; = v(7;) and
vi = ~(t;), we consider the expression

k

Sr,o= Y (&) — vie). (2.3)

i=1

Suppose that the length of each interi#al |, ¢;) of the partitionT}, is bounded,
then the sum (2.3) will tend to a finite limit when the partitif, is refined so that
k — oo and the length of the longest interval — t,_4|,i = 1,2, - - | k, tends to
zero. ¥p, tends to a limit which is called the integral ¢fz) along the curvey

and denoted b)/ f(2)dz. Thus,
Y

JECEEEE Sy}
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The value of the integral is independent of the way the refirprocess offl},
is carried out [Neh, pp. 81-83], [NP, pp. 108-109]. For a preee [NP, pp.
109-110].

Figure 2.4: Partition of a curve in a complex integral.

If the curve~ is a line segmeniu, b] of the real line, then the integral of the
continuous complex valued functigitt) = u(t) + iv(t) is defined by

/abf(t)dt:/abu(t)dtJrz’/abv(t)dt.

Suppose that a curveis piecewise differentiable with a parametrization- (t),
a <t < b. If the function f(z) is defined and continuous onthen f(vy(¢)) is
continuous as well. Then we define the integraf 6f) over the curvey by

/ﬁ (2)dz = / o)) de.

The complex integral has the usual properties of the reaggmat. For further
reference see [Ahl1].
For analytic functions we have following theorem.

Theorem 2.2.6.(Cauchy’s integral theorem) [AhI1, p. 109]
Let (2 be simply connected domain and suppose fiaj is analytic on2. Then

., f(z) =0.

By Theorem 2.2.6, the contour integral of the analytic fiorctf(2) is path
independent.
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2.2.3 Winding number and Argument principle

The concepts of winding numbers and argument principléggd¢iow many times
the given curvey wind up a given point. The theory is based on calculus of
residues and Cauchy theorems. We will only give the necgskmitions and
theorems to understand the proof of Theorem 4.1.3.

Definition 2.2.7. (Branch) [Pon, p. 105]

SupposeF(z) is a multiple-valued function defined in. A branchof F(z) is a
single-valued analytic functiofi(z) in some domairt/ C (2 obtained fromF'(z)

in such a way that at each point bf f(z) assumes exactly one of the possible
values ofF'(z).

Definition 2.2.8. (Winding number) [Ahl1, p. 115]
Let v be a piecewise smooth closed curve. Suppose a poiaty. Then the
winding numbeiof the pointa respect to the curve is given by

( ) 1 / dz
n(v,a) = — )
7 2mi ), 2 —a

The winding number can be interpreted intuitively as the benof timesy
wraps around the point in positive order. The following theorem states all the
possible winding numbers for a Jordan curve.

Theorem 2.2.9.(Jordan curve theorem) [NP, pp. 178-179]
A Jordan curvey separates the complex plane into two doméatnand(?,, both
of which are bounded by. One of the domains is bounded and the other is
unbounded. Without loss of generality we may assumethad bounded anf,
is unbounded.
Then the winding number of each pointe (2, respect oty is zero and the
winding number of each point € 2; respect ofy is either+1 or —1 depending
on the orientation ofy, positive or negative, respectively.

In calculations of the argument principle, we will be usihg above property
of the winding number.

Theorem 2.2.10.(Argument principle) [Gam, pp. 224-225]
Let ©2 be bounded domain with a piecewise smooth bound&ryand letf(z) be
a meromorphic function oft that extends analytically aiX2, such thatf(z) # 0
onof). Then

1 (=)

2mi Joo f(2)

dz:NO_Nooa
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where N, and N, denote, respectively, the numbers of zeros and polg$-0fin
2, counted according the orders.

The integral in Theorem 2.2.10 is often referred to &arithmic integralof
f(z) along~. In case of a Jordan curve the Argument principle can bedstse
following theorem:

Theorem 2.2.11.(Argument principle for a Jordan curve) [Henl, p. 278]

Let f(z) be analytic in a simply connected domdiand lety be a positively
oriented Jordan curve i not passing through any zero ffz). Then the number
of zeros off (z) in the interior ofy, each zero counted according to its multiplicity,
equals the winding number of the image cujf(e) with respect td.

2.3 Conformal mappings

The history of conformal mappings can be dated back to thedettury. In1569
Mercator presented a cylindrical map projection which isoafermal mapping
from a sphere onto the plane. It was not uaiR0 that Gauss gave the formal
definition to conformal mappings. Thus, Mercator precedadss by nearly three
centuries.

A heuristic way to define a conformal mapping is the followidgmapping
f: z — wis said to beconformalat z, if it preserves angles and their orientation
between smooth curves through Obviously, such mappings are very useful in
cartography.

More precisely, letf be an analytic function in the domaihand letz, be a
pointin . If f’(z9) # 0, thenf can be expressed by

f(z) = f(z0) + f'(20) (2 = 20) + 1(2) (= = 20),

wheren(z) — 0 asz — z,. Whenever: is in a sufficiently small neighborhood
of 2y, the transformatiom = f(z) can be approximated by

S(z) = f(20) + ['(20)(2 — 20)
= f(20) = f'(20)z0 + f'(20)2.
Here the mapping(z) can be represented as a following composite map. First

apply a rotation of the plane through the angdles f'(z,), then a scaling by the
factor|f’(zo)|. Finally use the translatiofi(zo) — f'(z0)z20.
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Let v(¢) be a smooth curve that passes through a pajrand f'(z,) # 0.
Then the tangent to the curve

atwy = f(zo) is given by

(f o) (to) = f'(20)7 (to)-

A mappingf: Q2 — Cis said to be conformal at, € (2 if, for any two parameter-
ized curvesy; and~, intersecting at the poing = 7 (tg) = 72(to) with non-zero
tangents, the following conditions hold:

() the transformed curveg = f o+, andy, = f o+, have non-zero tangents
at the point,, and

(i) the angle between|(to) = (f o 71) (to) and3(te) = (f o ¥2) (to) IS Same
as the angle betweeri(t,) and~j(ty).

If the function f(z) is conformal at each point of a domdin thenf(z) is said to
be locally conformal ir{2 [Pon, pp. 194-195]. Iff(2) is also a bijectionf(z) is
a conformal mapping if.

Yy v
2 0
Ve f(z) (k%
Q x \J u
%5/%, ST
<0
Wo
z—plane w—plane

Figure 2.5: An illustration of a conformal map.

Example 2.3.1.Let us consider a mapping

= (1)
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which is analytic for every € C\{1}. Thus, it maps conformally the upper part
of the unit disk onto the upper half plane. See Figure 2.6 foillastration of

f(2).

N

-2.0-1.5-1.0-0.5 5 1.0 15 20

Figure 2.6: Example of a conformal mapping that maps the upae of the unit
disk onto the upper half plane.

2.4 Mobius transformations

Mobius transformations are one class of conformal mappifigsis we may try
to construct conformal mappings of one domain onto anotsi@eguMobius trans-
formations.

Mobius transformations are essentially compositions & onmore of the
simpler types of transformations.

e Translation: A mapping of the fornx — z+ ¢, wherec € C. If ¢ = 0 then
the mapping is the identity map.

e Magnification: A mapping of the formz — rz, wherer € R\{0}. If
r = 1 then the mapping is the identity map.if< 0 then the mapping is
also a reflection with respect to the origin.

e Rotation: A mappingz — ¢*¥z, wherep € R produces a rotation through
the anglep about the origin in positive sensegf> 0.

e Inversion: A mappingz — < produces a geometric inversion.
z

Mdbius transformations are always rational functions @f finst order and thus
sometimes are referred to faactional linear transformationsas well.
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Definition 2.4.1. (M6bius transformations)
Let parameters, b, c,d € C be chosen so thatd — bc # 0. Then a Md6bius
transformation is defined by

az+b

wa(Z):m,

wherez € C.

Since the derivative of (z) is given by
ad — be
(cz +d)?’
the conditiorud — be # 0 ensures that a Mobius transformation is not constant. In

addition a Mobius transformatiofiz) is analytic for allz € C\{—4}. If ¢ = 0,
then the Mdbius transformation will reduce to the form

f'(z) =

b
f(z)= ngrg =az+V,

which is called araffine mapping It is convenient to define Mobius transforma-
tion as a mapping frort onto itself. If f(2) is an affine mapping, then we define
f(00) = co. Otherwise whem # 0 we definef(—2) = co and f(c0) = .

Mobius transformations can be associated with-a2 matrix via the map

Let mappingsf(z) andg(z) be Mébius transformations as follows

. a12+b1
B Clz+d1

. CL22+Z)2
N CQZ““dQ.

1(2) and  g(z

Then computing the compositidtf o g)

a2z+bs
ay cgzzidg + bl
o )= —==2
IO
o (aras 4 byca)z + (arby + bids)

B (crag + dyca)z + (e1by + didy)’

and a derivation gives us

(aras + byca)(c1be + dids) — (cras + dica)(a1by + bids)

(f © g>l<z) - [(Cla2 + d102)z + (Clb? + dldz)]Q
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Then by simplifying the numerator, we have

(arag + bicz)(c1by + didy) — (craz + dicz)(a1by + bida)
= a1a2d1d2 + b10201b2 - Clazbldz + dlcgalbz
= (a1d1 - blcl)(&zdz — szz). (24)

Sincef(z) andg(z) are Mdbius transformations, the factors in (2.4) are nat.zer
This implies that a composition of Mdbius transformatioasai Mobius trans-
formation as well. In addition the inverse of a MObius tramsfation is also a
Mdbius transformation and is given by

dw —b

S w) = —cw+a

The composition and the inverse of M6bius transformati@amsaspond to product
and inverse of the matrices, respectively. The analogylievWing, the derivative
of a Mobius transformatiorf’(z) # 0 if and only if thedet(A;) # 0.

M&bius transformations map circles @onto circles inC, where a straight
line is considered as a circle with an infinite radius [Gam, p-66], [Pon, pp.
200-206]. In particular we have Mébius transformationsoclihmap the unit disk
onto itself.

Lemma 2.4.2.(Mapping of the unit disk onto itself) [Kre, p. 740]
The mapping

Z— 20

ZoZ — 1’
where|zg| < 1 maps the unit disk onto the unit disk such that the painnhaps
onto the origin.

Proof: We take|z| = 1 and calculate

|2 = 20| = [7 — Zo
= 2] - [z = =0
= |]_ —EQZ|
Hence o
jwf = L0l
‘502— 1‘ ’

so that the unit circle maps onto the unit circle. Noting thatmaps onto the
origin, implies the claim [Kre, p. 740].
O
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Example 2.4.3.Let z, = 1. Then we have

2z —1
z—2

w =

In Figure 2.7 we have an illustration of the above mapping.

il
.

EE27 //I/[/

==l

Figure 2.7: Mapping of the unit disk onto the unit disk.

Definition 2.4.4. (Cross ratio) [Ahl1, p. 78]
Fix pointszy, 29, 23, 24 € C. Then across ratio(zy, 22, 23, z4) is defined by

(24 — 22)(21 — 23)
(24 — 23)(21 — 22)

(217 29y R3, 24) —

By the cross ratio, we may construct a Mobius transforma®follows

Theorem 2.4.5.1f 2,2, 23 € C andwy, ws, w3 € C such thatw; = f(z;),
j = 1,2,3. Then the Mdbius transformatian = f(z) can be solved from the
Cross ratio

(w—wa)(wy —ws) (2 — 22)(21 — 23)

(w — ws)(wy — wa) (z — 23)(21 — 22)

This is true, because the cross ratio is invariant under Mgtsansformations
[AhI1, p. 79].
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2.5 Elliptic integrals

There is a vast number of interesting integrals that canaaXpressed in terms
of elementary functions. One type of such integrals is knag#illiptic integrals
Such integrals arise from many elementary questions in défweral science. For
example wherKepler's lawsbecame known, the first natural aim was to compute
the orbit of a planet. Wallis attempted to compute the argtleof an ellipse in
1655. Series expansion for elliptic integrals were given by Newand Euler.

Elliptic integrals were extensively studied by Legendreu€s, Abel and Ja-
cobi in the earlyl 9th century. Legendre showed that every elliptic integral loa
reduced by a suitable substitution to one of the three noionals. These normal
forms are called elliptic integral of the first, second anddtlkind [Cay]. We are
only interested in the elliptic integrals of the first kindgdause these provide a
way to conformally map the upper half plane onto a rectangle.

Definition 2.5.1. (Elliptic integral of the first kind) [Cay, pp. 2-3]
Theelliptic integral of the first kinds defined by

G a
Flis) = | Ji—oa-ro)

for 0 < k < 1, where the parametéris called theelliptic modulus The comple-
mentary elliptic modulus is given by = /1 — k2.

Substitutingz = sin ¢ and{ = sin 6, we will get

sin.g cos 0 df
o /(1 —sin?6)(1 — k2sin®0)

F(k,sing) =
By the identitycos? § = 1 — sin® #, we eliminate the cosine term and the elliptic
integral of the first kind can also be expressed by

sin ¢ do

0 1 — k2sin’ 0

F(k,sing) =

whereg is called the amplitude. If the integral is taken up to the binnge 7, then
it is called the complete elliptic integral of the first kind.
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Definition 2.5.2. (Complete elliptic integral of the first kind) [Cay, p. 4]
Thecomplete elliptic integral of the first kind defined by

_ ! d¢
K(k) = F(k,1) —/0 NS

B /— do
0 1 — k2sin%6

for 0 < k£ < 1, where the parametéris the elliptic modulus.

The complete complementary elliptic integral of the firstckis denoted by

The inverse of the elliptic integrals is called Jacobi'guit functions. To simplify
the notation we give a following definition.

Definition 2.5.3. (Jacobi’s elliptic sine function) [Cay, p. 8]
Letu = F(k, z). Then theJacobi’s elliptic sine functiosn(u, k) is defined by

sn(u, k) = z.

Jacobi’s elliptic sine function maps conformally a rectengnto upper half
plane. This result is proved in Section 5.4.

2.0r

==

-2.0 -15 -1.0 -05 05 10 15 2C
_0.5C

Figure 2.8: Example of a conformal mapping that maps a rgétamto the upper
half plane.
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2.6 Lebesgue and Sobolev spaces

In finite element applications often arise situations wheeefunctions in gen-
eral are, strictly speaking, not differentiable, but cannedl approximated with
differentiable functions.

Sobolev spaces are vector spaces whose elements are ffisndgéined on
domain ofR™ and whose partial derivatives satisfy certain integrghiroperties.
A solution of partial differential equations are soughinfr&obolev spaces.

We assume that the reader is familiar with basic concepts mdren, the
Lebesgue measure, and Lebesgue integration, for a reéessec[Rudl, Rud2].
Following definitions and theorems are givenRA even though generalizations
to higher dimensions could be done, naturally.

Definition 2.6.1. (Compact support) [AF, p. 2]
Supposé) C R? is non-empty. Thaupportof « is defined by

supp(u) = {x € Q : u(x) # 0}.
We sayu has acompact supporin €2 if supp(u) C Q2 andsupp(u) is compact.

In R, compactness is equivalent to closedness and boundediessesult
is known as the Heine—Borel Theorem. For a proof, see [Rudd0Qp

Definition 2.6.2. (Space of continuous function) [AF, p. 10]
Let Q2 be a domain. For any non-negative integefet C"(2) denote the vector
space consisting of all functions which, together with their partial derivatives
D1 of orders|a| < m, are continuous of?, where
0% 92
DY = ——
¢ agl 832 ¢7

anda = (a1, ay) is a pair of non-negative integets, as and|a| = a; + as is
called a degree af.

We abbreviat€?(Q) = C(Q) andC>(Q)) = ﬂ C™(£2). The family of func-
0

tions of space€’'(2) andC>(£2) that have a coggact support{inare denoted by
Co(R2) andC§e(£2), respectively.

Definition 2.6.3. (L,—norm) [Rud2, p. 65]
Let © C R? be a Lebesgue measurable set andflety — [—oo, 0] be a
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Lebesgue measurable function. 1if< p < oo, then theL,—normof f is de-

fined by
1/p
T ( / |f<x,y>|pdxdy) .

In some situations when confusion about domains may occwynte || - ||, &
instead of| - ||,. Also the norm is denoted by - ||.»(g) if there is a confusion
about the actual space.

Definition 2.6.4. (Lebesgue space) [AF, pp. 23]
Let p be a positive real number. We denote 133(€2) the class of all measurable
functionsf(x, y) defined on domaif for which

1F1lp < o0

Note thatZ!(Q2) is a family of functions which are Lebesgue integrablen
Forp € [1, 00) the spacd.?((2) is not a normed space in a classical sense, since
| fll, = 0 does not imply thaff = 0. For this reason, we defing’((2) as the
space of equivalence classes

f~g << f=g, almosteverywhere ofl.

Then it follows thatZ?((2) is a normed space [Rud2, pp. 65-69].

Suppose a functionis defined almost everywhere on a dom@iand suppose
u € LY (U) for every compact/ C Q. Thenu is said to bdocally integrableon
Q2 and we denote € L} () [AF, p. 20].

We now proceed to define a concept of a function beingatbak derivative
of another function.

Definition 2.6.5. (Weak derivative) [AF, p. 22]
Let u,v, € Li.(Q). The functiony, is called weak partial derivative of and
denoted by

x,
D% = v,,

if it satisfies

[ a0t gy dedy = (1) [ vt pite.g) dedy,

Q

forall ¢ € C§°(Q).
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Note that suchy, may not exists. In this case we say thaloes not have a
weakath partial derivative. On the other hand if sughexists then it is uniquely
defined up to sets of measure zero. See [Eva, p. 243] for a.proof

Example 2.6.6.(1 dimensional) [Eva, p. 243]
Let = (0,2) and let

r, fO0o<z<l1,
u(z) = .
1, ifl1<z<2

Define
1, ifo<z<l,

v(x) = .
0, If1<z<2.

Let us show'(z) = v(z) in the weak sense. We take anye C§°(D) and we
must show that

/0 QU(:CW(@ do = — /0 2@(:6)1/1(:6) dz.

By calculating the left-hand side we have
2 1 2
"(z)dx = "(z)d "(z)d
| @i = [Ce@ar [ v
1 1 2
= [t~ [[wwat [ o
0 0 1
1
— o) - [ wla) e+ 0@) - w0
0
1
= —/O v(x)Y(z)dz + ¥ (2) (2.5)
Sincey € C3°(D) it follows thaty(2) = 0. By adding the term

- /121)(3:)1&(3:) de =0

to the equation (2.5) we obtain

as required. O
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Definition 2.6.7. (Sobolev norm) [AF, p. 59]
Letm be a positive integer and lét< p < oo. Then we define the Sobolev norm

by

1/p
Ifllmp =1 D ID*fIZ]

0< | <m

where the nornj - ||,, is the corresponding norm ity (2).

Definition 2.6.8. (Sobolev spaces) [AF, pp. 59-60]
For any positive integer and1 < p < oo we consider following vector spaces

(i) H™P(Q) is the space of completion ¢ff € C™(Q) : || f|lm,p < oo} with
respect to the norm - ||,

(i) Wme(Q) ={f e L) : D*f € LP(Q2) for 0 < |a| < m}, whereD“f is
the weak partial derivative of.

The completion is understood as every Cauchy sequence vea gpace con-
verges to a limit in the same space. In case ef 2 we abbreviate?™({2) and
Wwmr(Q) by H™(2) andW™(£2), respectively.

Even though the definition of af™?(2) andW™?(Q2) differs, Meyers and
Serrin [MS] showed in964 that ™7 (Q2) = W™P(Q2) for every).



Chapter 3

Riemann mapping theorem

Riemann stated thRiemann mapping theoremhis doctoral dissertation irg851.
The theorem says that a disk can be conformally transfornméal any simply
connected domain, which implies that any two simply conegcdiomains can be
conformally mapped onto each other, see Figure 3.1. Inquéat, the theorem
applies to polygonal domains.

Riemann’s own proof considered an extremal problem rel@téiae Dirichlet
problem. Riemann’s argument was flawed since he assumedhthaixtremal
problem always has a solution. Numerous mathematicianextomple, Schwarz,
Harnack and Poincaré, sought after a proof until arowgtd a rigorous proof was
given by Koebe. It should be mentioned thatlbv0 Osgood gave a proof for a
related theorem from which the Riemann mapping theorem egrdved [Ahll,
pp. 229-230], [Wal].

3.1 Preliminary concepts

Before stating and proving the Riemann mapping theoremslatork through the
preliminaries results on convergences, function sequéfige)}, and the family
of functionsF.

Definition 3.1.1. (Pointwise convergence) [Rudl, pp. 143-144]
Suppose thaff,(z)} is a sequence of functions defined on aBeaind suppose
that the sequences of valuég,(z)} converges for every € E. We can then
define a functiory(z) by

f(2) = Tim fu(2),

for z € F'andf,(z) is said to convergpointwiselyto f(z).

25
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Definition 3.1.2. (Uniform Convergence) [Rudl, p. 147]
We say that a sequence of functidn(z)} convergesiniformlyon £ to a func-
tion f(z) if for everye > 0 there exists an integey such that

[fu(2) = f(2)] <&,
forn > N and for every: € E.
Let us emphasize the subject of convergence with a simplagea

Example 3.1.3.For instance, it is true that

1
lim (1+—)z:z,
n—oo n
for all z. But in order to have
’( 1)
l1+—)z—2
n

forn > N itis necessary thaV > % Such an integelV exists for every fixed
z, but the requirement cannot be met simultaneously for.all

_
= €
n

The above example showed that the sequence of functiongdéfin

fulz) = (1 + %) 2

is pointwise convergent and is not uniformly convergent.

Theorem 3.1.4.(Hurwitz's Theorem) [Ahl1, p. 178]

If the functionsf,(z) are analytic andf,,(z) # 0 in a domain(2, and if f,,(z)
converges tgf(z), uniformly on every compact subsetQf Thenf(z) is either
identically zero or never equal to zerofin

Proof: See [AhI1, p. 178].
The following definition characterizes a regular behavidamilies.

Definition 3.1.5. (Normal family) [Ahl1, p. 220]

A family F is said to benormalin 2 if every sequencsd f,,(z)} of functions
fa(2) € F contains a subsequence which converges uniformly on exvenpact
subset of?.
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This definition does not require the limit function of the gergent subse-
guences to be members Bt

Theorem 3.1.6.(Montel’'s Theorem) [Pon, p. 440]
Suppose thafF is a family in domairn2 such thatF is locally uniformly bounded
in 2. ThenF is a normal family.

Proof. See [Pon, p. 440].

3.2 Statement and proof

In this section we state and proof the Riemann mapping thearel discuss about
the boundary regularity which is crucial in applications.

Theorem 3.2.1.(Riemann mapping theorem) [Ahl1, p. 230]

Given any simply connected domaihin C, and a pointz, € (2, there exists
a unique analytic functiorf(z) in €2, normalized by the conditionf(z,) = 0,
f'(z0) € Ry, such thatf(z) defines a one-to-one mapping Qfonto the disk
lw| < 1.

Proof: We have to prove that the mappirigz) exists and it is unique. Let us start
by showing the uniqueness, since itis easier to prove. Sgihat functiong; (z)
and f,(z) satisfy the Riemann mapping theorem. Then the compositetitum
(f1o f;1)(w) defines a one-to-one mapping|af| < 1 on to itself. The mapping
is M6bius transformation since it maps the unit circle omgelf. The conditions
f(0)=0andf’(0) € Ry, imply f(z) = z, hencef,(z) = fa(2).

Second part of the proof is to show that tfle) with desired properties exists.
Let g(z) be an analytic function if2 and letz, zo € Q. Theng(z) is said to be
univalentin Q if g(z;) = g(z2) only for z; = z;. Thatisg(z) is one-to-one. Let
us consider a familyF consist of all functiong(z) with following properties:

(i) function g(z) is analytic and univalent ife,
(i) |g(2)| < 1foreveryz € Q,
(iii) g(z0) =0andg’(z) € R,.

Let us definef(z) in F such that the derivativé (z,) is maximal. The existence
proof will consist three part:

1. the familyF is not empty set,
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2. there exists a functiofi(z) with maximal derivative,
3. the functionf(z) has the desired properties.

First we prove thaf is not empty. By assumptions there exists a poigt co
such that ¢ Q2. Simply connectedness ©fimplies that it is possible to define a
single-valued branch of/z — a € Q and denote it by:(z). Note thath(z) does
not take the same value twice since if there were two dispoattsz;, zo € Q2
such that

Vi —a= vz —a,

it would follow that

21— a =29 —a,

which is only possible for; = z,. Also h(z) cannot take both the valuesand
—c, ¢ € Cforeveryz € Q. From

Viai—a=c +z—a=—c,

it would follow that

02:zl—a:22—a,

which is again only possible for, = 2,. Suppose that: Q@ — ' andz, € Q.
Then we have a disB(p, h(z)) € /. By above discussion(z) # —h(z)
for everyz € Q\{z}. This implies that-h(z,) ¢ €. Then we have a disk
B(p,—h(z9)) ¢ €' such that it does not intersect with(p, h(zy)). This implies
that|h(z) + h(z9)| > p, for z € €2, and in particular we have- |h(zy)| > p. Next
we will show that the function

p W (z0)|  hz) h(z) = h(z)

90(2’) = 1 ) ‘h(20)|2 h’(zo) ' h(z) + h(ZO)

belongs taF.

(i) The functiong,(z) is obviously analytic, sincé(z) is analytic. Alsogy(z)
Is univalent, because it is a constructed by means of a Mdkaausforma-
tion of h(z).
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(i) By the estimate

'h(z)—h(zo) ~ 1h(z) h(z) 1-2
h(z) +h(z) | VN G z) + h(z0)] | R(Z) + h(z)
_ a0 hz) 4+ h(z) 2
YN R (z0)[h(2) + h(z0)]  h(2) + h(z0)
1 2
= Ml 5y ™ me) )
1 2
< |h(z0)| ’h(zo) + o)+ h(Zo)J)
<2/p SZP
4|h(z)]
<=

we have an estimate fare ()
p|W(z0) |h(20)] ‘h(z) — h(2)
Z —_— — . . .
90 = T Rk W)
< P 4lh(20)]
4|h(20)| P
= 1.

(iii) We start by noting thay(zy) = 0, because the factér( z) — h(z,) vanishes
for = = zy. For the derivative, we have

W)l h(z)  W(IAGE) + hlz)] = H()h() = hiz)]
)P 7 (z0) [h(=) + h(z0)?

WGo)l hz)  2W(2)h(z0)

)P F(z0) [h(z) + h(z0)P

Lo W) R

T2 [h(z0)P [R(2) + h(z0)?
Then by evaluation at the poing gives

o W)
)= 5 Jhge <

9o(2) =

e I N

This prove thatF is not empty and end the first part of the existence proof.

Let us denote the least upper boundy@ty), g(z) € F by M which a priori
can be infinite. Since, € F are bounded, then by Montel's theorem (Theo-
rem 3.1.6) the familyF is normal. Thus there exists a subsequefize} which
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converges to an analytic limit functiof(z), uniformly on compact sets. By the
properties ofy,, it follows that|f(z)| < 1inQ, f(z0) = 0andf'(zy) = M < oc.
We still have to show thaf(z) is univalent.

First of all we note thaf (z) is not a constant function, sing&z) = B € R,.
Let z; € 2 be a arbitrary point and consider the functignz) = g(z) — g(z1),
g(z) € F. Now g,(z) # 0 for all z # z,. Then by Hurwitz’'s theorem (Theorem
3.1.4) every limit function is either identically zero orves equal to zero. But
f(2) — f(z1) is the limit function and it is not identically zero. It folles that
f(2) # f(=) for z # z;. Sincez; € Q2 was arbitrary, we have proved thétz) is
univalent.

Now it remains to show that(z) takes every value with |w| < 1. Suppose
it is true thatf(z) # w, for somewy, |wy| < 1. Because? is simply connected,
it is possible to define a single-valued branch

f(z) —wo

L —wof(z)

The functionF’(z) is univalent since it is obtained by means of a Mébius transfo
mation of f(z). If | f(2)| = 1, thenﬁ = f(z)and s F(z)| = 1. By assumption
|F(2)] <1, we have

F(z) =

[F(2)| <1 <= |f(z) —wol* < 1 =W f(2)[*
= (1= |wo*)(1 = |f(2)[*) >0
>0

= |f(#)| < 1.

That is,

F(2)| < 1in €. For the normalized form we have
F' (% F(z)— F(z
Go(e) = /Gl | P) = Fle)
F'(20) 1 — F(2)F(2)
which vanishes at,. For the derivative, we have

(=) F'(2)[ = F(z0)F(2)] + F(20) F'(2)[F(2) = F(20)]

G{)(Z) - F'(z) ' [1— F(z0) F(2)]?
B ‘F'(Zo)‘ ) 1—‘F(Zo)|2
Filzg) 7 [1— Fz0)F(2))*

Evaluating at the point, gives us

G6<ZO> _ |FI(ZO)|
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By differentiatingF'(z) we have

Pyt L TE =T+ )~ wl - Wl (2)
2 [ [1—@of(2)

1 [1mwmfe) £ 0 fwoP)

2 Ve w1 —wof2)]

Now we proceed to evaluaté(z) and its derivative at the point. Remark that
f(z0) =0, then

f(20) — wo
Flz0) = 1 — o f(20)
= —Wo ,
and
F'(z0) = 11 —wof(20) f'(20) - (1 = [wol*)
Vo2 V) e —mof(20))
N 1 ]_ — |U}0|2 /
9 — - ['(20)
Then
ooy E(=0)]
G0 = TR Gor
1, 1fwol? g
_ 2 \/|w—0| ‘f (20)‘
1— ‘U)O|
1 + ‘U}o|

whereB = f'(z). It remains to show that

]_+ |w0|

2\/ |w0|
By a brief computation we have
1+ |wol = 2¢/Jwol + (1 — /awo)?

1+ |w0\ > 24/ |w0\

1+ |w0\

2\/ |w0|

> 1.

> 1,
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for |we| < 1. Which implies that5{(z) > B and contradicting our assumptions.
We conclude thaf (z) assumes all the values, |w| < 1. This complete the last
part of the proof [Ahl1, pp. 229-232], [Neh, pp. 173-178].
]

The Riemann mapping theorem is an existence theorem. Se# mat say
anything about how to construct the mappifig). The proof given above does
not give us a way to construct the desire conformal mappitmgeiThis is due to
the following reasons:

(i) Thereis no prescription for constructing a sequefiggz) } such thay! (zo) —
f'(z0) = B.

(i) The process of selecting a convergent subsequencetfresequencéf,,(z)}
cannot actually be carried out.

The proof given by Koebe is actually a constructive proofskhcan be use to
construct the desired conformal mapping given by Riemanppmng theorem.
The discussion and the proof can be found in [Hen2, pp. 3283t another
proof through potential theory and a discussion of Riem=aomwn flawed proof
and its correction, we refer to [Wal].

By Theorem 3.2.1 any simply connected domain can be mapptxdamy
simply connected domain conformally as illustrated in Feg8.1.

(fs"o f1)(2)

fi (Z)\« A/f2 (2)
an
NI

Figure 3.1: Riemann mapping theorem.
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On the other hand, the Riemann mapping theorem does not gtyrapabout
the boundary regularity of conformal mappings either. Inegal, a conformal
mapping of the unit disk onto a simply connected domain, m@&ntire complex
planeC, cannot be extended continuously to the boundary. A coexdenple is
a so called comb domain, see Figure 3.2, because the bourfdacpmb domain
is not a Jordan curve and there are portions of the boundanfioite length in
arbitrarily small neighborhoods of the origin.

Figure 3.2: The comb domain.

Fortunately, there are ways to construct a conformal mappia) onto the
unit disk for a large class of domains. In Chapter 5 we shad giway to construct
the mappingf (=) for polygonal domains. Under some hypotheses the contsuou
boundary extension is known to exist. The following theosgates the required
conditions for the continuity of the boundary extension.

Theorem 3.2.2.(Carathéodory) [Kra, p. 110]

Let Q, €2, be Jordan domains. If: ; — €, is a conformal mapping, then
f(2) extends continuously and one-to-oneXo,. That is, there is a continuous,
one-to-one functiorf : Q; — Q, such thatf(z)|q, = f(z).

Proof: See [Kra, pp. 111-118].
Boundary extensions are used later in the connection watlsdinformal mod-
ulus of quadrilaterals.
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Chapter 4

Conformal modulus of a
guadrilateral

The concern of a conformal modulus of a quadrilateral arisam the studies of
quasiconformal mappings, which was introduced by Grotasdi®28. Grotzsch
showed that there does not exists a conformal mapping frajuars onto a rect-
angle, not a square, which maps vertices onto vertices. &rh@riology of quasi-
conformal is due to Ahlfors [AhI3, pp. 5-7], [AIM, pp. 27-31]

In section 4.1 we give a proof to Theorem 4.1.3 which cannotob@d in
usually reference books.

4.1 Definitions of a conformal modulus

We call aconformal moduluf a quadrilateral in the complex plane a non-
negative real number which divides quadrilaterals intofaonal equivalence
classes. The conformal modulus can be defined in many equivahys.

Definition 4.1.1. (Geometric) [Kuh]

Let Q(2; a, b, ¢, d) be a quadrilateral. Let the function= f(z), wherew = u +
iv, be a one-to-one conformal mapping of the donfaionto a rectanglé < u <
1,0 < v < M such that the vertices b, c,andd correspond to the verticés1, 1+
iM, andi¢M, respectively. The numbéV! is called the (conformalnodulusof
the quadrilaterad)(2; a, b, ¢, d) and we will denote it by\/ (Q; a, b, ¢, d).

Example 4.1.2.Let us go back to the example given in Introduction, where we
considered a cylindrical capacitor. Consider a rectangtk wertices0, a, a +

35
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2mi, 21 and the exponential functiari. The exponential function maps the rect-
angle onto an annulus, see Figure 4.1. By Definition 4.1.téméormal modulus

equal%’f. The capacitance per unit length is given by
C 2me  2me

L In(R/r) a’
which differs from the definition of conformal modulus by anstant factoe.

211

Cooooooocooooo oo oDooood

Figure 4.1: Exponential mapping from a rectangle onto a &rsnu

Let us consider the following Laplace equation witinichlet—Neumantound-
ary conditions on a quadrilater@(2; a, b, ¢, d):

(Au =0, inQ,
u=0UU, ONmo,
wzl, o, @)
@ =0, onvy Uns.
\ On

Theorem 4.1.3.(Conformal mapping fron2 onto a rectangle)

Let Q(2;a,b,c,d) be a quadrilateral and let(z) satisfy the equation (4.1) and
let v(z) be a conjugate harmonic function fofz). Then there exists a conformal
mappingf(z) = u(z) + iv(z) that mapg? onto a rectangle such that the images
of the pointsa, b, ¢, andd arel + iM,:M, 0, and1, respectively. The mapping
f(z) maps the boundary curves, v.,v3, and~, onto curvesy;, v5, v4, and~j,
respectively.
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v
Yy 7
M . Y iM 1+iM
Q f(2)
/\V - ’Yé f(Q> %/1
RET
b
Y2 ‘ 0 ”Y:la 1 u

Figure 4.2: Dirichlet—Neumann boundary value problemidbiet and Neumann
boundary conditions are mark with thin and thick lines, exspely.

Proof: Riemann Mapping Theorem (Theorem 3.2.1) ensures that thases a
conformal mapping from quadrilater@(<2; a, b, ¢, d) onto a rectangle. We have
to show that there exists a conformal mappjitg) which satisfies our Dirichlet—
Neumann boundary conditions.

Suppose that(x, y) is a solution to problem (4.1). Then there exists a conju-
gate harmonic function(z, y) such thatf(z) = u(z, y) + iv(z, y) is analytic. So
u(zx,y) is the real part off (z). By assuming thaf(z) is a mapping fronf2 onto
a rectangle as sketched in Figure (4.2). Then Dirichlet dawnconditions ony,
and~j are readily satisfied. To get the Neumann boundary conditiigt, we
use the Cauchy-Riemann equations. Since

ou

%(SC,Z/) = <Vu(x7y),n(x,y)> -0

on~; and~s, where the notation- , -) stands for an inner product. This implies
thatu,(x,y) = 0 andu,(z,y) = 0. Then by the Cauchy-Riemann equations we
havev,(z,y) = 0 andv,(z,y) = 0, which imply thatv(z, y) is constant ony;
and~4. By translation we may assume thdt:, y) = 0 on~j.

The discussion of Garnett and Marshall [GM, p. 50] impliesttf(z) is con-
formal. We still have to show that(z) maps(2 onto the rectangle only once. To
prove this, we take a Jordan curyén 2 which is sufficiently close to the bound-
ary o). Then the image of under mappingf(z) is also a Jordan curve, since
the image on the boundary is fixed ands Jordan domain and by Theorem 3.2.2
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we can extend continuously to the boundary 6f. By applying Theorems 2.2.9
and 2.2.11, we conclude that the winding number of any paittieé rectangle re-
spect toy is +1. Furthermore this implies that the winding number of anydaor
curve inQ2 equalst1. Finally we conclude thaf(z) does not have branches. This
shows thatf (z) does not mag! onto the rectangle more than once and proves the
claim.

O

Theorem 4.1.4.(Dirichlet—-Neumann definition) [Ahl2, p. 65]
Let « be the solution for the problem (4.1), then the modulus ofgiisedrilateral
Q is given by

M(Q;a,b,c,d):/ |Vu|? dz dy. 4.2)
Q

Proof: By Theorem 4.1.3 there exists a conformal mappjitg) from 2 onto
a rectangle of a width one. This implies that the modulus efgbadrilateral is
given by the area of (2), which is given by an integral

/ 1dudo.
F()

By changing the variables to the original dom&inwe need to calculate a deter-
minant of the Jacobia,;. By the Cauchy-Riemann equations, the Jacobiaf of

is given by
Uy Uy\ C-S [ Up U
se) = (1 ) ( )
x Yy Yy x

Therefore the determinant of the Jacobigrcan be written by
det(Jy) = u2 +ul = |Vul>,

Finally the modulus of the quadrilateral is given by

M(Q;a,b,c,d):/ 1dudv
F(€)

= / | det(Jy)| dz dy
0

= / |Vul? dz dy.
0

O
A proof through the modulus of the curve family (Definitionl8) can be
found in [AhI2, pp. 65-70].
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Corollary 4.1.5. The modulus of the quadrilateral can also be given by
ou
M(Q;a,b,c,d) = —ds.
(Q7 a’7 7C7 ) [y4 8” S

Proof: Let us consider th&reen’s formula

/wAwdxdy: wa—uds—/vw-Vudxdy
Q oo On Q

and by setting) = ¢ = u, we get the following identity

0
/uAud:cdy:/ u—uds—/\vmzdxdy. (4.3)
Q a0 On Q

Sincewu is the solution to the Laplace problem (4.1), the left-hark ©f the
identity (4.3) equal$. Likewise an integral over the bounday$? will reduce to

an integral
0
/ —uds.
vy On
This proves the corollary

/|Vu\2dxdy:/ 6—ud5.
Q Y4 on
L

The third way to define the modulus of a quadrilateral is tgfothecurve
family I', which has influenced the theory of conformal mappings aedibre
general theory of quasiconformal mappings [Ahl2, p. 50].

Suppose thap(z) is a non-negative, real valued, continuous and integrable
function in some domaif of the complex plan€. We call p(z) a metric in{2
and define it by := p(z)|dz|. Then let us define concepts @fength andy-area.

Definition 4.1.6. (p-length) [LV, p. 21]
Let 2 is a domain and lef be a curve iff). The integral defined by

L(y) = / o(2) |dz]

is called thep-lengthof the curvey.

A metric p is calledadmissiblef L,(v) > 1.
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Definition 4.1.7. (p-area) [Ahl2, p. 51]
Suppose tha is a domain and suppose thabe a curve if). Then thep-area
of Q2 is defined by an integral

A2 = [ Flog)deay.

Definition 4.1.8. (The modulus of the curve family) [Ahl2, p. 51]
Let2 be a domain and ldt be a curve family irf2. Then themodulus of the curve
familyis given by

M(Q,T) = iI;f 12223)),

where the infimum is taken over all metricen 2 andp is subject to the condition
0 < A,(0) < oo.

Suppose thdt is a rectangle in Definition 4.1.8. Then it can be shown that th
modulus of(2 coincide with Definition 4.1.1 [LV, pp. 19-22], [AhI2, pp. 583].

4.2 Properties of a modulus

In computations of the modulus of a quadrilateral we try tpleit as many prop-
erties as possible. By the geometry we have following ugefyperties

{M(Q; ¢,d,a,b) = M(Q;a,b,c d),

1
M(Q;b,c,d,a) = .
(@;b,¢,d,a) M(Q;a,b,c,d)
The latter is called the reciprocal identity. In [HVV] sonakentities were given for
M(Q;a,b,0,1). For the numerical tests we use the following reciprocahiity

"a—1"1—a

Let us consider symmetric quadrilaterals.

b—1 1
M(Q;a,b,O,l)-M(Q' ,0,1):1.

Definition 4.2.1. (Symmetric quadrilateral) [Hen2, p. 433]

The quadrilaterad)(€2; a, b, ¢, d) is calledsymmetridf the domain(2 is symmetric
with respect to the straight ling througha and¢, and if the points andd are
symmetric with respect tg.

Theorem 4.2.2.(Modulus of a symmetric quadrilateral) [Hen2, p. 433]
Every symmetric quadrilateral has modulus

Proof. See [Hen2, p. 433].



Chapter 5

Schwarz—Christoffel mapping

After Riemann had stated his mapping theorem, mathemasigtarted to seek
for a way to construct the function given by the Riemann maggiheorem. Soon
Christoffel and Schwarz independently discovered the &chwChristoffel map-
ping in 1867 and 1869 respectively, which provides a conformal mapping of the
upper half plane onto a polygon. Besides the Schwarz—©ffesmapping, there
exists many other numerical methods for conformal mappiRgsdetails of these
techniques, see [Hen2].

5.1 Schwarz—Christoffel idea

The basic idea behind the Schwarz—Christoffel mappingasdttonformal map-
ping f(z) may have a derivative which can be expressed by

7(2) = [ () (5.1)

for certain canonical functionf;(z). Geometrically speaking the equation (5.1)
means that

—

Arg f'(2) = )  Arg fi(2).

1

3

i

Each functionf;(z) is defined in the way thatrg f/(z) is a step function. So
the Arg f'(z) is a piecewise constant function. Let us analyze the sgoatiore
carefully. Suppose that is the interior of a polygorP with verticesw, - - - , w,
given in positive order, and interior anglesr, - - - , o, 7w, i, € (0, 2) for eachk.

41
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Let f(z) be a conformal mapping from the upper half plane onto theguiy’,
and letz, = f~1(wy) be thekth prevertex [DT, pp. 1-2].

As with all conformal mappings, the main effort is in gettitige boundary
right. In this case it requires ti&chwarz reflection principle

Theorem 5.1.1.(Schwarz reflection principle) [Ahll, p. 172]

Let Q" be the part in the upper half plane of a symmetric donfaiand lety be
the part of the real axis which is contained(in Suppose that(z) is continuous
in Q* U+, harmonic inQ*, and zero ony. Thenv has a harmonic extension b
which satisfies the symmetry relatio(g) = —uv(z). In the same situation, if(z)
is the imaginary part of an analytic functigifz) in Q*, thenf(z) has an analytic
extension which satisfie&(z) = f(Z).

By Theorem 5.1.1 the mapping( z) can be analytically continued across the
segment(z, zx11). In particular, if f’(z) exists on this segment thexrg f'(2)
must be a constant there. At a point= z;, Arg f(z) must undergo a specific
jump

(1 — ag)m = By, (5.2)
which implies thatArg f(z) is a piecewise constant function. Now we can write

function fy(z) such that it is analytic in the upper half plane, satisfiestpeation
(5.2), andArg fi(2) is a constant on the real axis:

fu(z) = (2 — zk)_ﬁ’*’.

Then the arguments suggest that
n—1
fz)=Cl]f»
k=1

for some constant’. And the second derivative can be expressed by

5.2 Map from the upper half plane onto a polygon

The above discussions lead us to the theorem of SchwarztGifel mapping.
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Theorem 5.2.1.(Schwarz—Christoffel mapping for a half plane) [DT, p. 10]
Let Q2 be the interior of a polygo® in the w-plane with verticesv, - - - , w,, and
interior anglesy, - - - , v, ™ given in positive order. Lef(z) be any conformal
map from the upper half plane onf® with f(cc0) = w,. Then the Schwarz—
Christoffel representation for the mappiri¢:) is given by

zn—1

w=t@=A+c [ I a (5.3)
k=1

for some complex constantsandC, wherew;, = f(z) fork=1,--- ,n — 1.

Proof: For simplicity, let us assume that all prevertices are fiaitd the product
range froml to n instead froml to n — 1. By the Schwarz reflection principle
(Theorem 5.1.1) the mappinfyz) can be analytically continued into the lower
half-plane. The image continues into the reflectiorfofbout one side of)'.
Reflecting again, we can return analytically to the uppef plahe. So any even
number of reflections of? will create a new branch of (z). And the image of
each branch must be a translated and rotated cofy of

Now, let A andC' be any complex constants, then

(A+CFE) _Cf'G) _ 1)
@A+ CIG)Y  CF) T

By continuation, we can define a functi#ﬁ% to be a single-valued analytic
function in the closure of the upper half plane, except aptiesertices,. Simi-
larly, odd number of reflections lead to a fact tl%}%) is a single-valued analytic
function in the lower half-plane. At the prevertex we have

f'(2) = (2 = z)™1(2),

wherey(z) is analytic in a neighborhood af.. Thatis,f(z) has a simple pole at
2, With residuer;, — 1. Since

f”(Z) :Ciak_l

we have
- -1 & -1 - —1
O S (e RS ) Yy (5.4)
2 — 2k Z— 2k Z— 2k
k=1 k=1 k=1
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which is an entire function, because all the preverticedinite andf(z) is ana-
lytic at = = oco. Thus the Laurent expansion implies that

n

-1
(C—l)zak — 0, asz — 0.

Z — Zk
k=1
Then the expression (5.4) is bounded and by Liouville’s Teeo(Theorem 2.2.5)
it is identically zero, because
f"(2)
f'(z)

— 0, asz — oo.

Then we have .
f"(z) _ g~oew—1

To obtain the formula (5.3), we integrate twice thefunctggnh)g(f’(z)) =1L

—1
log(f / ZCk—Zk de+c

= f(z) = exp (ka ~1)log |z — =l + c)

k=1

ﬁ Z _ Zlc ozk—l
A+C/ H(g — )l
=1

O

5.3 Map from the upper half plane onto the unit
disk

An alternative version of the formula (5.3) applies the confal mapping onto
the unit disk.
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Theorem 5.3.1.(Schwarz—Christoffel mapping for a disk) [DT, p. 11]

Let €2 be the interior of a polygo® in thew-plane with verticesv,, - - - , w,, and
interior anglesy, - - - , v, ™ given in positive order. Lef(z) be any conformal
map from the unit disk ont®. Then the Schwarz—Christoffel mappirigz) can
be given by
z N C ap—1
w:f(z):A+C/H(1——) dc, (5.5)
k=1 k

for some complex constantsandC, wherew,, = f(z;) fork =1,--- n.

The main difference between formulas (5.3) and (5.5) isttt@product runs
over alln prevertices in the latter case. Otherwise the integramdfat a constant

multiple of the original form (5.3). Note that the quanﬁi(el - i) lie in the disk
|lw — 1] < 1for |z| < 1. Therefore, choosing a branchlof(z) with branch cut
on the negative real axis; = f(z) defines an analytic function in the dis¥ < 1
and it is continuous ofx| < 1 with a possible exception at vertices This will

help us to avoid later troubles in numerical computations,[P. 12].

Figure 5.1: Example of mappings of the unit circle onto a fagpolygon and a
regular polygon with slits.

5.4 Map from the upper half plane onto a rectangle

Let us consider the case where we want to map the upper hak plato a rect-
angle. The symmetry of a rectangle allows an explicit soluto the Schwarz—
Christoffel mapping. Using symmetries we choose the pt®es asz; = —%,
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29 =—1,23=1andz, = % wherek, the elliptic modulus, present the degree of
freedom in the prevertices. The Schwarz—Christoffel magmian be expressed
by an elliptic integral of the first kind

A+C1/

L e

- k2C1

/ VI k2<2 (<2—1)

/ \/1—k2§2 )(1 - ¢2)
sin ¢
=C

0 1 — k2sin’ 0

= CF(k,z).

By rotating, translating, and scaling the rectangle we gatwt; = f(z3) =
F(k,1), which is a complete elliptic integral of the first kind. Fugtmore the
normalization ensures that the constahequalsl. By denotingws; = K and
computingw, = f(z4) = f (1), we have

o V(1 —k¢)(1-¢?)

0<k<1 d¢ Z ¢
: \/0 \/(1—k2C2)(1—Czl+/1 JA-RO) 1=

— K(k)

To transform the latter integral

(5.6)

| e
L VAR -3)
we make the change of variable as follows

V-1 B 1
= = C—im.

Hence
k/2?7 d77

d¢ = 17
‘ (1 —&2n?)2

I
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wherek’ is the complementary elliptic modulus given by = /1 — k2. Then
new integral boundaries are

(=1=n=0,
1
= - =1.
(==
The integrand (5.6) can be written as a product of the folhgaivo factors
1

1 JR—
1—c2 1
1 C 1 - 17]6’2172

1

. k./2n2
1_k/2n2

i/1 — K22
/

k'n ’
1 1
1 — k2¢? 1— k2—2

17]{)/2172

1

1—]9’27]2—(1—]9’2)
1_k/2n2

Ve
N

So the integral (5.6) can be written by

/}C d¢ B 1 \/1 — k2n2 i\/l — k2n2 len 4
VIS RAT-) b wyToE B kel

— / 1 dn

o V(1 —E2P2)(1—n?)
— iK (k)
— iK' (k).

That is, the prevertice; = ; is mapped onto the point, = K (k) + iK'(k). By
the symmetry of a rectangle, the prevertices= —% andz; = —1 are mapped
onto pointsw, = —K (k) + iK' (k) andws = —K(k), respectively. This also
implies that the modulus of a quadrilateral can be given by

K (k)

M(Q7 w1, Wa, W3, 'LU4) = 2K(k) .
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Figure 5.2 illustrates the correspondence of vertices maad®nformal map of a
polygonal domain onto a rectangle.

—K—H’K’r\ KJF,)iK’

_ Mobius
SC-mapping m F(k,z)
— AN O
RS T — KA DK
k k

Figure 5.2: Illustration, how to conformally map a polygbdamain onto a rect-
angle.



Chapter 6

Finite element methods

There are two popular ways to approximate the solution ofragbaifferential
equation (PDE), namely the finite difference method (FDM) tire finite element
method (FEM). The former dominated the early developmemiuofierical anal-
ysis. In finite difference methods an approximation to thetsan is obtained by
finite mesh of points where derivatives of the differentigliation are replaced by
appropriate difference quotients. This procedure redtloeeproblem to a finite
linear system [LT, p. 43].

Finite element methods were introduced!#60s and are probably the most
used method in engineering. Finite element methods aredl@sa variational
form of partial differential equations and involve an appneation of the exact
solution by piecewise polynomial functions. This makest@érlement methods
to be more easily adapted to the underlying domain than fiffierence methods.
For symmetric positive definite elliptic equations such aplace equation, the
problem reduces to a finite linear system with a positive @efimatrix [LT, p.
51].

The rest of the chapter is devoted to the analysis of finitsmefg methods
since available numerical packages are revolved arourdat) though finite dif-
ference methods could be used as well.

49
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6.1 Variational formulation of Laplace equation

Let us consider the following Dirichlet boundary value dieoh of Laplace equa-
tion

{ ~Au=f, inQ, ©.1)

u=0, onol,
By assuming: € C?(Q2), we multiply the above equation by a test functiore
C;(2) and integrate over the domdih Then by applying Green'’s formula

/sz@dxdy: v S"d —/V¢~V<pda:dy

Q

we have for the left-hand side
/Awdg;dy: ¢—ds—/vu Vi drdy, Yo e CHQ).
Q

Recall that) € C}(€2) and we get

—/Auwdxdy:/Vu-Vz/zdxdy:/f@bdxdy, Vih € Cy(Q)
Q Q Q

Denote

a(u,@b):/QVu-V@/)dxdy,
()= [ fodedy.

SinceC} is dense ind}, it follows

a(u,¥) = (f,¥), V¥ € Hy(9). (6.2)

The variational problem corresponding to (6.1) is to find H}(Q) such that
(6.2) holds and such a solutiars called aveakor avariational solutionof (6.1).
Thus aclassicalsolution of (6.1) is also a weak solution. On the other hand, b
assuming that € HJ(Q) andu € C?*(Q), then it follows thatu is a classical
solution of (6.1) as well.

For a non-zero Dirichlet boundary value problem we have fmde concept
of atrace operator By a trace we means a way to assigning boundary values
along o to a functionu € H'(§2), assuming thad) € C'. Obviously ifu €
C'(Q) thenu has boundary values in a natural sense. The problem aris&s wh
u € HY(Q) and therefore it is not generally continuous, and even wibisenly
defined almost everywhere {h[Eva, pp 257-259].
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Theorem 6.1.1.(Trace theorem) [Eva, p. 258]
Assume) is bounded and) € C*. Then there exists a trace operator
Tr: H' — L*(09)
such that
HTT<u)HL2(8Q) S CHuHHl(Q)7 Vu € Hl(Q),
where the constarit depends only of. We callTr(u) the trace of. on 0.

Now consider a non-zero Dirichlet boundary value problem

{—Au =f, inQ,

6.3
u=g, o0onosl. 63)

Suppose thab) € C! andu € H'(Q) is a weak solution of (6.3). This implies
thatu = g on o< in the trace sense which means thaas to be the trace of some
H' function, sayh. Thenu = u — h belongs toH] (€2), and it is a weak solution
of the boundary value problem

wheref = f + Ah.
For the Neumann boundary value problem of Laplace equation

—Au=f, inQ,
6.4
6—” =0, ono, ©-4)
on

we use the same argument as above to obtain the variatiomaul&tion cor-
responding to (6.4). Becau% = 0, we takey € H'(Q) instead of taking
Y € H}(Q). Therefore we have

a(u, ) = (f,4), Ve HY(Q). (6.5)
The variational problem corresponding to (6.4) is to finde H*(2) such that
(6.5) holds.

Finally considering the Laplace equation with the Dirichldeumann bound-
ary value problem (4.1)

(Au=0, inqQ,
UIO, on s,
u = 17 0N 7y,

ou
—— =0, onvy Unys.
\ On
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By above arguments we obtain the following variational fatation:
a(u,) =0, Yo € Hy(S).

The above discussions can be stated in more general mamegjE®, pp. 293—
297] for more details.

6.2 Finite element mesh

The first task in finite element methods is to define a finite el@nto work with.
We have to give some properties that the finite element hasatisfy in order to
be useful. After defining a finite element, we need a way to eotimite elements
together which requires more from the elements.

Definition 6.2.1. (Finite element) [SSD, p. 1]
A finite elements a triadK = (K, P, X)), where

e K is a domain irR2. It can be either a triangle or a quadrilateral.
e Pis a space of polynomials on K of the dimensitim(P) = Np.

o X ={Ly,Ly,---,Ly,}isasetof linear forms

Li:P—R, i=12--- Np.

The elements of are calleddegrees of freedom

Definition 6.2.2. (Unisolvency of finite element) [SSD, p. 2]
The finite elemeniC = (K, P, Y) is said to beunisolventif for every function
p € P it holds that

Li(g) = La(g9) = -+ - = Lnp(9) =0 =g = 0.
In other words, every vector of numbers
L(g) = (L1(g), La(g), - - - , Lnp(g))" € RY?
identifies a unique polynomiglin the spaceP.

Unisolvency is a way to express a compatibility of the setegrées of free-
dom in X with the polynomial spacé.
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Theorem 6.2.3.(Characterization of unisolvency) [SSD, p. 3]

Consider a finite elemeiit = (K, P, X), dim(P) = Np. The finite elemenk is
unisolvent if and only if there exists a unique baSis= {0,605, ,0n,} C P
satisfying a following—property

Ll(9J> :51']'7 1 S’l,] SNP,

whered;; is the Kronecker delta defined by

1, 2=,
0ij = . j
0, ©#}7.
Proof:

"="Let {g1,92, -+ ,9np} C P an arbitrary basis and we express sought func-
tionsd;,j =1,---,Np, by

Np
Hj = Z Ak gk -
k=1
For thed-property, we require that
Np Np
LZ(GJ) = Lz (Z Cijgk> = ZakjLz(gk) = 5ij7 1 S Z,] S NP.
k=1 k=1

This yields a linear system aofp variables and can be given by matrix equation
as

LA =1,

where column of matrix! contains the coefficients of the functiohsés, - - - , Ox,.
Since the elemerit is unisolventit follows thal is invertible and thadt;, 65, - - - , Oy,
are uniquely determined. Next we show thatd,, - - - , Oy, are linearly indepen-
dent, that is

Np

> Bbe=0 = Bi=p= =Py =0

k=1

By evaluating the functions; with the above linear combinations we get

Np

Np
0=L (Zm) = BeLi(0) =B, Vi=1,2,--- Np.
k=1

k=1
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"<"Let B = {6,,0s,---,0N,} abasis of the spack satisfying thej-property.
Then every functiop € P can be expressed by

Np
p= Z B0
k=1

Assuming that
Li(g) = La(g) = - -~ = Lnp(9) = 0,

immediately we have

Np
k=1

Hence it follows thay = 0 and the finite elemeri€ is unisolvent [SSD, pp. 3-4].
O

The proof of Theorem 6.2.3 gives us a convenient way to cheekunisol-
vency of the finite element in form of invertibility of the matrix L. Here we
have discussed about the unisolvent of a single finite elerierNext we will
address the compatibility of finite elements of functioncgsawhich are used for
an approximation. We called this compatibility bgnformityof finite elements
to function spaces.

Suppose that a domaiis bounded with the boundanf2 € C!, where the
underlying partial differential equation is considerethem(? is approximated by
a computational domaifl, whose boundary is a piecewise polynomial.

Definition 6.2.4. (Finite element mesh) [SSD, p. 7]

A finite element mesh, , = { K1, K, - - - , K/ } over a domairf2,, with a piece-
wise polynomial boundary is a geometrical partitiorfpfinto a finite number of
non-overlapping open polygonal; such that

and eachk;, 1 < i < M, is equipped with a polynomial orde(K;) = p; > 1.

A finite element mesh is callegkgular if for any two elementds; and K,
i # 7, only one of the following statements hold

e K,;andK; are disjoint,
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e K, andK, have only one common vertex,
e K, andK have only one common edge.

By a regular mesh we avoiganging nodesvhich complicate the discretization
process. A mesh with hanging nodes is calleggular.

VANQVA!

Regular mesh Irregular mesh

Figure 6.1: Finite element meshes, on the left a regular anti@right an irreg-
ular mesh with one hanging node.

Definition 6.2.5. (Interpolant) [SSD, p. 9]

Given a unisolvent finite eleme(i’, P, %), let B = {6,,- - - , 0y, } be the unique
basis of P satisfying the-property. Letv € V', whereP C V/, be a function for
which all Ly, - - - | Ly, are defined. Then we define a logaterpolantby

The global interpolant over a finite mesly; , is defined by means of local
interpolants by
Z(v)

x, =Tk, (v), i=1,--- M.

Definition 6.2.6. (Conformity of finite elements) [SSD, p.10]

Let 7, , be afinite element mesh consistibunisolvent finite elementss;, P, %),
i=1,2,---, M. LetV(Q,) be H' and letZg,: V(K;) — P; be the local finite
element interpolation operator. We s@y,, is conforming to the spacE* if for
each common edge of elemedfsand X, K;, K; € 7, , the trace ob|x, equals
to the trace ob|x, on the edge.
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In higher order finite elements methods we have lots of opertay infor-
mations on each element and an effective management ische&tlerefore the
usage of the reference elemény,; is encouraged. The task is to findederence
mappingFy,: K,.; — K; that is smooth and bijective. The polynomial space
with the reference mapy, is used for define the function spakg,(€2;), where
the finite element solution is sought [SSD, pp. 16-17].

6.3 Shape functions

Shape functions are functions used for approximating thgiea to partial dif-
ferential equations. There are numerous ways to selecesiagtions but we
will be usingLegendre’s polynomiajsince they possess many useful properties.
Though there are many ways to define Legendre’s polynontiaés definition
through a recursive formula is the most useful way to impleitiee higher order
shape functions.

Definition 6.3.1. (Legendre’s polynomial) [Leb, p. 46]
Legendre’s polynomialsf degreen can be defined recursively by

(n+1)Pyi1(x) — (2n+ D)zP,(z) + nP,_1(z) = 0,.
wherePy(z) = 1 and P, (z) = z.

First few Legendre’s polynomials are

P()(.T) = 1,
Pi(z) =z,
3 1
Py(z) = a2 — =
5(2) 256 %
5 3
Py(z) = 5253 — 5%

The derivatives of Legendre’s polynomials can also be glwea recursive for-
mula as follow

(1 — 2P/ (x) = nP,_1(x) — nzP,(z), n>1.
By manipulating the derivatives further we have

(1 —2)PL(x)] +n(n+1)P,(z) =0, n>0. (6.6)
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One of the most important properties of Legendre’s polyrabsnis the orthog-
onality in the interval—1, 1]. This can be shown from the differential equation
(6.6). First we multiply the:th differential equation by, (x) and subtract it from
themth differential equation multiplied by, (x), which leads to
0=[(1 -2 P ()] P.(x) +m(m + 1) Py (z)Pu()
— [(1 = 2?)P)(2)] Pu(x) = n(n + 1) Py () P (). (6.7)
By the identity

(1= 2?) () Pa()] = [(1 = 2®) Py ()] + (1 = 2%) Py, () Pl (),
and the symmetry between indicesandn, we rewrite the equation (6.7) in form
[(1 = 22) (Pl (2) Pa(x) — Py(x) Pu())] + (m—n) (m+n-+1) Py (2) Py(x) = 0.

Then by integrating over the intervt1, 1], the first term vanishes becaude—
x?) vanishes and we have

/_1(m —n)(m+n+1)P,(z)P,(z)dz =0,

which yields the orthogonality of Legendre’s polynomidlelp, pp. 47-50]. It
can also be shown that the norm is given by

1/2

1
2
1Pl = (/ P2(a) dx) _ .
-1 27’L+1

Let us define functiong; as the integrated Legendre’s polynomials. Then we
have

1—=x

Bol6) =5
r—1

<Z51(f): 5

1 £
60 = T / Pyt dt

\/2‘7_1 i>2,

and we can rewrite them by mean of Legendre’s polynomials

1 .
0;(§) = m [Pi(§) — Pj—2(8)], Jj=>2.
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Note thatp;(—1) = 0, £ > 1, and they are orthogonal

Ydgi(©)dei() L
/1 dg éf A€ =dij, 4,522

The integrated Legendre’s polynomials form a shape fundiasis to be used in
finite elements methods. In particular, they play an esalmie in a construction
of a hierarchic basis [SSD, p. 25], [SB, pp. 38-39].

For other definitions and for more details regarding Legeisdvolynomials
see [Leb, Sze].

Definition 6.3.2. (Hierarchic basis) [SB, p. 96]
Suppose that the bad#® consist of polynomials of order. ThenB? is said to be
hierarchicif B» c B,

In case of quadrilateral elements, we usd, 1] x [—1, 1] as the reference
element. In order to satisfy the conformity requirementghaf finite element
mesh, we divide shape functions into three categoriexial shape functions,
side modesandinternal modesWe follow a presentation of Szabé and BabuSka
[SB, pp. 98-100] and present the shape functions as follows.

1. Nodal shape functions.Nodal shape functions are defined so that they get
value one at only one vertex and vanish on the other verfidesre are total
of 4 nodal shape functions and they are defined by

NiEm) = ~(1— €)1 — ),

4
No(6.m) = (141 — )
Ny(6.) = (1 + )1 +n),

Ni(.m) = (01— O)(1 +1)

2. Side NodesThere arel(p—1) side modes and they associate with only one
edge of the finite element and vanish on the other edges. d®nsdes we
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have p > 2)

Nzl(§7n):%(1_n)¢z(§)a 222737 » Ps
NAEm) = S O6), i=23 .
Nzg(gvn):%(1+n)¢z(§)a 222737 » Ps

NAEm) = 50— O6in). i=2.3 p,

where the superscript determines the edge of the finite elewleich the
side mode function associate with.

3. Internal modes. For internal modes we have two different options to choose
from. Thetrunk space which ha@% shape functions and they are de-
fined by

Nij(§,m) = ¢:(§)oi(n), 4,5 >2, 4<i+j<p.

On the other hand thielll space hagp — 1)(p — 1) shape functions, which
are defined by

sz(gan) = ¢z(§)¢g(77)a Za] = 2737 Y

Note that internal modes vanish on the boundary of the neéerelement.
This is the reason why they are sometimes referred tmbble functions

See Appendix A for an illustration of some of the shape flongi

6.4 Higher-order finite element methods

There are three different kinds of higher order finite eletmaathods, namely
h-, p-, and hp-version. Theh-version of finite element methods is considered
as the most popular version. kaversion the degree of freedom of elements are
fixed by fixing the order of the polynomial space and a convaergas obtained
by refining the mesh where errors are large. This can be dowreryputing the
estimated error for each element. On the other hatveysion of the finite element
methods uses fixed elements and the convergence is obtamedrbasing the
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degree of elements that is the order of the polynomial sgaastly thehp-version
simultaneously refines the mesh and increases the degréenoérgs. For more
detailed discussion of the error analysis of higher ordetefielement methods,
see series of papers by Gui and Babuska [GB1, GB2, GB3].



Chapter 7

Numerics of the modulus of a
guadrilateral

There are two natural approaches to compute the modulus oidritpteral.
Through the definition of the modulus and use of the conformapping from
given domain onto a rectangle and methods that will only geemodulus. The
former methods give the conformal mappings as well and lysm&blves solving
a parameter problem for the Schwarz—Christoffel mappingil&\the latter gives
only the modulus, which we are interested in. Also the lattethods usually de-
pends on solving the Dirichlet—-Neumann boundary valuelprolior the Laplace
equation.

Methods for numerical computation of the Schwarz—Christahapping date
back to around 960. In 1980 Trefethen [Tre] introduced th&de-lengthmethod
based on works by Relly and others. Driscoll and Vavasis gpfoposed in
1998 an algorithmCRDT (cross-ratios of the Delaunay triangulation) to overcome
crowding [DT, p. 23]. Recently Banjai [Ban] gave modificaisoto Trefethen’s
algorithm to improve the accuracy of the computation of setoagated domains,
which are the main cause of the crowding phenomenon.

Finite element methods can be applied to solve the Diriehletimann bound-
ary value problem for the Laplace equation (4.1). 2004 Samuelsson [BSV]
described an AFEM (adaptive finite element method) softywakkage based on
an h-version finite element method. Recently Hakula [HRV] inluced an al-
gorithm to anhp-version of finite element method for Mathematica. Both @& th
above methods can be applied to compute the modulus of aitpiec.

For side-length and CRDT methods a numerical integratioreeded. Usual
numerical integration methods give poor results since tn@rz—Christoffel in-

61



62 7. NUMERICS OF THE MODULUS OF A QUADRILATERAL

tegral is usually singular at prevertices. To compute thegiral, we use &auss—
Jacobiquadrature, which is too lengthy to be described here. S€edp. 28—30]
for more details about Gauss—Jacobi quadrature.

The rest of the chapter, we discuss above the methods in netadsdand
discuss the crowding phenomenon.

7.1 Side-length

To compute the Schwarz—Christoffel mapping using the Bdgth method, we
must solve a parameter problem, which is in general noradin€or Schwarz—
Christoffel mappings we have three degrees of freedom. Bpsing prevertices
Zn—2, Zn—1 @andz, from the boundary of the domain, we are left with- 3 quan-
tities to be determinate by the following system of equation

( Zj+1
/ £ d¢
ijz :|wj+1_wj|7 j:2737"'7n_27
‘ 70 dc‘ fws =
ZlZJ+1 (7.0)
| o
Z‘];; — It J_l, if wy=o0forJ <n,
] / poac| el

where f’(z) can be obtained from (5.3). In case of the unit circle, usiegfor-
mula (5.5) instead of (5.3) is a better option. In additior, must require that no
two infinite vertices are adjacent. This can be achieved trgdiucing a degener-
ated vertex with the interior angteon the straight line between infinite adjacent
vertices [DT, pp. 23-25].

For details how this can be done in case of the unit circle B&e pp. 25-27]
or the original paper by Trefethen [Tre].

7.2 CRDT

The CRDT algorithm has several phases in order to constrae&¢hwarz—Christoffel
mapping. First we have to triangulate the given simple paty§ by using one
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kind of Delaunay triangulation process. Then we split thgesdusing edge split-
ting algorithm. Finally we use cross-ratios and solve theergimg parameter
problem to determine the preverticesrof

The Delaunay triangulation

A triangulation of P is a partition ofP into non-degenerate triangles, whose ver-
tices are vertices oP. If triangles intersect, they must intersect on a vertex or
on an entire edge. It can be proved by induction, that a ttikatign of P con-
sists exactly of» — 2 triangles andh — 3 diagonals, which are edges of triangles
that are not also the edges Bf Furthermore, i/ is a diagonal, let)(d) be the
quadrilateral, the union of the two triangles on either ild. Remark that the
triangulation ofP is not unique.

Splitting edges

To avoid quadrilaterals that are long and narrow, we spétallges so that the
quadrilaterals in the Delaunay triangulation are well dboded. By "well con-
ditioned” we mean that the prevertices of the quadrilasesad not too crowded.

The splitting procedure has two phases. In the first phasearevdooking
for verticesw with an interior angle less than or equalfo For every such a
preverticesw, find a largest isosceles triandlethat can be formed by with its
adjacent edges such tHats contained inP. Next we introduced new vertices at
midpoints of the two sides df that are the edges adjacentit@nd we call these
adjacent edges to asprotected That is, we do not allow them to be split during
the second phase. L&Y denote the polygon obtained after the first phase of the
splitting procedure.

On the second phase we iteratively split the polygdinto partitions. Let
be an unprotected edge of some polygon during the splitingguure. Let(e)
be its length and lei(e) be the smallest distance fromto any vertex except the
endpoints okt. The distance is measured along the shortest piecewis® [ath
that remains inside the polygon. The edge said to be ill separated if

l(e)
de) < 33

Then the ill conditioned edges are split into three equakpéircan be proved that
the second phase of the splitting procedure will end in agfinitmber of steps.
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Cross-ratios

Like side-length method, CRDT also hawve- 3 variable to be determined. These
variables are determined using cross ratios of prevertices d;,--- ,d,_3 be
diagonals and lef); = Q(d,),---,Q,_3 be quadrilaterals of the Delaunay tri-
angulation ofP. Denote the vertices a); by w1y, We(i,2), Wk(i,3), Wr(,a) fOr

eachi = 1,--- ,n — 3, wherex(i, 1), x(4,2), (1, 3), k(i,4) is distinct indices in
{1,---,nk
For a given list of prevertices,, - - - , z,,, we compute variables;, which are
defined by
o, = h1<__(zﬁ(hl)7ZH(L2)7ZH(L3)7zn(L4)))7 t=1,---,n—3. (7.2)

Notice that there are real variables and only — 3 real constraints. By choosing
a Delaunay trianguldry in the way that its prevertices are arbitrarily placed on
the unit circle in a manner of preserving the order. Thendleaists a unique way
to determine the remaining — 3 z;’s on the unit circle satisfying (7.2). It turns
out that the choice fdf, does not matter, we will end up with the same polygon,
up to a similarity transformation [DrVal].

7.3 Adaptive finite element methods

AFEM

In order thea posterioriestimate to work well, AFEM triangulate the domain to
have certain properties. For example, the lower bound ofrtiedlest angle of the
triangulation must be fixed. The refined elements must haesetiproperties as
well. For detailed properties and algorithms, see [BSV].

hp-FEM

In hp-FEM, the mesh of a polygonal domain is generated in two phkgeithm:

1. Generate a minimal mesh where the vertices are isolatibdafixed num-
ber of triangle depending on the interior angte

e o < 7. one triangle,

°
vl

< a < 7 two triangles,

e o > 7 three triangles.
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2. Every triangle attached to vertices is replaced by refinadgles where the
edges adjacent to the vertex are split as specified by thengdaktorr.
This process is repeated recursively until the the neséwngll’ is reached
[HRV].

The refined mesh is referred @sv)-mesh. An example is shown in Figure 7.1.
The actual numerical computation for the solution of (4sldone as described in
Chapter 6.

Figure 7.1: A quadrilateral) (0,1, 3 + <i,7) with the initial mesh and the

(0.4, 2)-mesh on the left- and right-hand side, respectively.

7.4 Heikkala—Vamanamurthy—\Vuorinen iteration

Heikkala, Vamanamurthy, and Vuorinen [HVV] proposed amat®n which can
be used for compute the modulus of a quadrilateral. Thetiteraonsists of
evaluations of hypergeometric functions, beta functians elliptic integrals.

Definition 7.4.1. (Gaussian hypergeometric function) [HVV, p. 1]
Given complex numbers, b,andc with ¢ £ 0, —1, -2, - - -, the Gaussian hyper-
geometric functions the analytic continuation to the slit plafi [1, co) of the
series

(a,n)(b,n) 2"

F(a,b;C;Z):QFl(a,,b;C;Z):ng, |Z| <1l

n=0
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Here(a,0) = 1 for a # 0, and(a, n) is theshifted factorial functioror theAppell
symbol
(a,m) =ala+1)(a+2)---(a+n—1)

forn € N.

Definition 7.4.2. (Beta function) [HVV, p. 10]
Let Re(z) > 0 andRe(y) > 0. Then thebeta functioris defined by

1
B(z,y) :/ (1 — v de.
0

Theorem 7.4.3.Let0 < a,b < 1, max{a +b,1} < ¢ < 1+ min{a,b}. Suppose
that@ is a quadrilateral in the upper half plane with vertiée$, A, and B, the
interior angles at which are, respectivéty, (c —b)x, (1 — a)r, and(1+a — ¢)7.
Then the modulus af) is given by

K'(k)

M(Q;0,1,A,B) = K)

where the elliptic modulus satisfies the equation

Lk’z(C*“*b)F(c —a,c—bc+1—a—0bk?

A—1=
F(a,b;c;r?) ’

and
_ B(C — b7 1— CL) e(b—i—l—c)iﬂ'

I =
B(b,c —b)

Proof: See [HVV, p. 7].
Note that the quadrilaterd) in Theorem 7.4.3 is convex. There is a slight
chance that the iteration works for a non-convex quadréges well.

7.5 Crowding

The biggest obstacle for numerical methods of conformalpimeys is a so called
crowding Crowding is a form of ill-conditioning which is present iirtually all
numerical methods of conformal mappings. Crowding occutsemtwo prever-
tices are too close to each other. It might be numericallyossgble to distinguish
the two prevertices from each other, because of the limitedracy of the numer-
ical floating point arithmetics [DT, pp. 20-21].
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The situation can be illustrated by a long and thin rectadgBonsider a map
f(z) that maps a quadrilaterg)(2, 1 + iM,iM, 0, 1) onto the unit diskD such
that f(1 +iM) = —f(0)andf(iM) = — f(1). Then the minimal distance of the
image pointsf (1+iM), f(iM), £(0), andf(1) is less thars.4- 1016 for M =
[HRV], [Pap, pp. 131-132].
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Chapter 8

Numerical results

In this chapter we consider quadrilaterals and compute dsulus by different
numerical tools introduced in Chapter 7. Then the resuktscampared to the
reference value as well as with each other.

8.1 Symmetric quadrilateral

In this section we uskp-version of finite element methods [HRV] to run series of
tests on a symmetric quadrilateral with verti€es, 0.3 + 0.3i,4. See Figure 7.1
for an illustration. By Theorem 4.2.2 we know that the modukiexactly one.

8.1.1 Scaling factor

Let us consider the scaling factor. We use the 2)-meshes, where € [0.1, 0.5]
with polynomial degree o, 6, - - - , 18. Using different polynomial degrees we
identify the effect of the scaling factor. The result of tbhgarithmic error is shown
in Figure 8.1. The result shows that for a fixed nesting lexasd different polyno-
mial degree there exists a optimal scaling factor. Gengetiadl higher polynomial
degree is, the smaller the scaling factor should be chosererphasize that the
result is only valid for this particular quadrilateral. Father configurations the
optimal scaling factor may vary. There might also be an ditalformula for
relations between the polynomial degree and the optiméhgckctor.
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Log10 Errot

Degree

e e Scal
0.1 0.2 0.3 0.4 0.5

Figure 8.1: Logarithmic error obtained by different scgliiactor with fixed the
nesting level ofl 2 with polynomial degree of, 6, - - - , 18.

8.1.2 Nesting levels

We consider different nesting level to see the effect of #sing. Before actually
refining the mesh, let us first consider the nesting levedjuals zero. This means
that we are working with the initial mesh ang-FEM reduces tp-FEM. In Fig-
ure 8.2 shows the logarithmic error of thd=EM for various polynomial degree
ranging from to 18.

The results fop-version of finite element methods are quite astonishingesin
the error should get smaller when the polynomial degreesas®s. The opposite
happens once we have past the polynomial degrée, dhie error start to increase.

Let us move on with the computation of different nesting lev&or this test
we compute the modulus of a quadrilateral with»)-meshes, with polynomial
degree of4,6,--- ,12. The scaling factor is chosen from the above example
(Section 8.1.1). The logarithmic errors are shown in FiguBe

From the result we conclude that the error decreases expaiheand for
lower polynomial degrees the error saturates more quididy for higher poly-
nomial degrees. So for higher polynomial degrees, we shasddhigher nesting
levels to maintain the exponential rate of convergence.



8.1. SY'MMETRIC QUADRILATERAL

71
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Figure 8.2: Logarithmic error gf-FEM with polynomial degree of, 5, - - - | 18.

Log10 Errot
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L —¥-12
-10+
S S Nesting
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Figure 8.3: Logarithmic error obtained by different negtiavel with the scaling
factor obtained in Section 8.1.1 and polynomial degreg, 6f- - - | 18.
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8.1.3 Refining vertices

In [BS] basic principles and properties are giverptand hp-versions of finite
element methods. One of the properties says that most ofrtbeames from
the so called singularity component which is the vertex veittargest interior
angle. In this test we use three different kind of mesh tofy¢hie result. We use
(0.15, 12)-meshes and refine the meshes

1. to vertices with interior anglgs< o < 7 (regular vertices),
2. to the singular vertex only,
3. to all vertices.

The polynomial degree is varied frodnto 18. Results of the logarithmic errors
are shown in Figure 8.4.

Log10 Errot
or
ot M Refinemen
_4:’ —e— Regulal
6L _
i —m— Singulat
—8}
I —o— All
-10r
| | | | | | | | p

Figure 8.4: Logarithmic errors of computations of modulysdifferent mesh
refinements on vertices. Notice that the error of refiningaitices and refining
the singular vertex alone are indistinguishable.

The result suggests that the we cannot get more 3haorrect digits for this
example by refining only the regular vertices. While refinorgy the singular
vertex, we may obtainl correct digits at most. The result of refinement of all
the vertices does not give any significant improvement overcase where we
refine only the singular vertex. It should be notice that iefjrall vertices, the
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computing time is much longer than compared to the case weerefly the
singular vertex.

8.2 Modulus of the convex quadrilateral

In this example we compute the modulus of convex quadraiewrith vertices
0,1,z + 1y,i. This test have been carried out with the Schwarz—Chredtadbl-
box [Dri] and hp-version of finite element methods. We are using [HVV] as the
reference result, since its analytic numeric presentasonathematically exact.
To be able to compare the result, we compute the differen¢leobbtained re-
sults against the reference result to gain the error for sieel method and plot the
logarithm of the errors.

First of all we have computed the modulus of the quadriléderdhe com-
putation of the Schwarz—Christoffel toolbox is carried tsing the side-length
method fectmap ). For the hp-FEM we are usin@.15, 12)-meshes and the test
is carried out with a polynomial degree @and12. The logarithmic errors along
with the reproduction of the moduli surface from [HVV] areosin in Figure 8.5.

The value of the-axis on the error graphs tells the accuracy of the methods at
the corresponding point. The Schwarz-Christoffel toolgaes us8 — 14 correct
digits. While hp-version of finite element methods givesus- 8 and10 — 13
correct digits when the degree of the polynomiabiand 12, respectively. It
should be noted that fdtp-version of finite element methods even better can be
achieved if a more optimal scaling factor is chosen.

8.3 Modulus of the ring domains

In this section we will consider symmetric ring domains. Thg domains are
studied in [BSV, Gai, HRV]. In [HRV] AFEM andp-FEM are used for com-
puting the capacitance of the condenser. In this sectionree@mparing the
result obtained by:.p-FEM to the Schwarz—Christoffel toolbox. By Schwarz re-
flection theorem (Theorem 5.1.1) the domain can be decordparse the actual
computation can be carried out on the decomposed domain.
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Figure 8.5: On top we have the reproduction of the modulusefquadrilateral
with vertices0, 1, x + iy, ¢ from [HVV] and the logarithmic error of the Schwarz—
Christoffel toolbox. On bottom we have logarithmic errofgtee hp-FEM with
(0.15, 12)-meshes and the polynomial degre&aind12 respectively.

Square in a square

We compute the modulus of the ring dom&in= Q,\2,, where; = [—1,1] x
[—1,1] andQy = [—a,a] x [—a,a], 0 < a < 1. For the computation the domain
iIs decomposed int8 quadrilaterals, see Figure 8.6. It can be proved that the
modulus of the quadrilateral is doubled if the reflection tabary is Neumann
boundary. This implies that the modulus of the original donegjuals t8 times

the modulus of the decomposed quadrilateral.

The computation is carried out by the Schwarz—Christoffeltiox andhp-
FEM. In this case we computed the modulus of the decomposattidateral with
the side-length methoddctmap ) and CRDT ¢rrectmap ). For hp-FEM we
have used0.15, 12)-meshes with polynomial degrees @f12, and18. Like in
previous examples, the results are compared to the valuaged from HVV
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(0,0)

(1,0)

Figure 8.6: The domain of interest is on the left-hand sid® @mthe right-hand
side we have one of the quadrilateral decomposed from tiggnatidomain.

iteration. The errors are listed in Table 8.1 along with thedmus obtained by
HVYV iteration.

Table 8.1: Table for the exact value of the modulus and ther dor different
methods in a square in a square. The parametefers to polynomial degree of
hp-FEM. Reference values are obtained by HVV-iteration.

a

rectmap

crrectmap

p=6

p=12

p=18

Reference

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5.2-107°
8.4-10713
1.1-10713
3.8-1071
2.7-107°
7.1-107°
3.5-107°
1.1-107°
2.9-10710

5.3-1077
4.1-10°8
6.3-10710
5.7-10712
2.4-10711
7.2.10712
1.6-107°
5.2-10710
7.4-10710

1.0-107*
3.4-10°¢
3.4-1077
1.1-1077
8.9-1078%
5.1-107%
8.8-1078
7.0-1077
9.9-10°°¢

7.0-1078
2.0-10710
4.2-10712
2.1-10712
1.9-10712
1.0-10712
9.1-1071
1.2-1071°
221078

8.1-1071
1.6-1071
3.3-1071°
1.8-1071
1.2-107%
1.1-10716
3.8-1071
2.6-107"
8.8-107!

2.817122196
1.934943792
1.420245745
1.057986726
0.781700961
0.561999833
0.382746154
0.233679562
0.107766002

Since the quadrilaterals are not elongated the CRDT doestaiod out from
the side-length method. For some cases CRDT perform eveseviban side-
length method and vice versa. In case of hp-FEM wege8 more correct digits
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by increasing the polynomial degree byFor0.3 < a < 0.7, hp-FEM with the
(0.15, 12)-mesh and polynomial degrees®f- 11 gives the same performance as
the Schwarz—Christoffel toolbox.

We have only emphasized how to improve the performandepefersion of
finite element methods. In the Schwarz—Christoffel toollae<can change the
tolerance rate to obtain much better result. In Table 8.2awve the result obtained
by the side-length method with the default and a customi* tolerance rate.

Table 8.2: Table for values obtained with the side-lengtlthoe by using the
default and a custort0—!* tolerance rate.

a default custom
0.1] 52-107° | 1.6-10714
02|84-1071%|3.1-1071°
03|1.1-107% | 1.6-1071°
0.4 1]38-10711]1.3-1071°
05 27-107% | 1.1-1071°
06| 71-107° [ 1.1-1071
0.7 3.5-1072 | 4.9-1071°
0.8 1.1-107% | 2.5-1071°
09]29-10719]2.1-10714

Lastly Figure 8.7 illustrates the potential function of arfehe decomposed
quadrilateral.

Figure 8.7: The initial mesh and the potential function ofjaaze in a square with
a = 0.4 on left- and right-hand side, respectively.



Chapter 9

Conclusion and further research

In this thesis we have given an introduction on the theory ajraputation of the
modulus of a quadrilateral. We have develop an extensiveuataf theory in
order to give numerical examples.

By looking closely to the error graphs and tables in Chaptér $&2ems that
hp-version of finite element methods produges4 more correct digits whenever
the degree of the polynomial is doubled. Of course this cabeageneralized
because of the computational precision. Whiteversion of finite element meth-
ods perform better than the Schwarz—Christoffel toolbothwhe default error
tolerance rate, it does not come for free. Since the compuatatith hp-version
finite element methods is more time-consuming than with tren@rz-Christoffel
toolbox.

Lastly we want to give some ideas for further studies.

¢ In the Section 8.1 we considered a symmetric quadrilateitil @ne sin-
gular vertex to study:p-version of finite element methods. Following the
example we could choose a different symmetric quadrilgtBmaexample,
a parallelogram and try to find out how the geometry affectctirenection
between the scaling factor and the degree of polynomial.

e The natural continuation would be considering quadrikgewith curved
boundaries. In this case the comparison betweenersion of finite ele-
ment methods and the Schwarz—Christoffel toolbox cannataoeed out
unless we use a piecewise polynomial approximation to cubgindary
segments.

e Constructing the conformal mapping from the potential fiorcu obtained
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from hp-version of finite element methods and comparing the redatt o
tained by the Schwarz—Christoffel toolbox.



Appendix A

Hierarchic shape functions

Let us illustrate some of the shape functions defined in &edi3 by plotting
them to give an intuition what they look like. First in Figukel we have all the
four nodal shape functions. Side mode functions, which@as®with the first
edge, are shown in Figure A.2. Lastly in Figure A.3 we havétptbinner mode
functionsNy (€, n), N12(€, 1), Na1(€, 1), andNaa (€, ).
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Figure A.1: From the top left to the lower right the nodal shfynctions are in a
fOHOWing order: Nl (éa 7])7 NQ(&? 7])7 N3(§a 7])7 N4(£7 77)
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Figure A.2: From the top left to the lower right the side modedtions are in a
following order: N (&, ), N3 (&, 1), N3 (&), Ni (&, n).
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Figure A.3: From the top left to the lower right the inner mddections are in a
fO”OWing order: Nll(fa n)a N12(§7 77)7 NZl(fa n)a N22(§a 77)
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