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Abstract. We establish a variational parabolic capacity in a context of degenerate
parabolic equations of p-Laplace type, and show that this capacity is equivalent to the
nonlinear parabolic capacity. As an application, we estimate the capacities of several
explicit sets.
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1. Introduction

Capacity is a central tool in the classical potential theory. It is utilized for example in
boundary regularity criteria, characterizations of polar sets and removability results. In
the elliptic case, capacity has turned out to be the right gauge instead of the Lebesgue
measure for exceptional sets with respect to Sobolev functions.

In this work, we study a capacity related to nonlinear parabolic partial differential
equations. The principal prototype we have in mind is the p-parabolic equation

∂tu− div(|∇u|p−2∇u) = 0,

with p ≥ 2.
In [13], the second and third author of this paper together with Kinnunen and Korte

defined the nonlinear parabolic capacity of a set E ⊂ Ω∞ = Ω× (0,∞) as

cap(E,Ω∞) = sup{µ(Ω∞) : suppµ ⊂ E, 0 ≤ uµ ≤ 1} ,

where µ is a non-negative Radon measure, and uµ is a weak solution to the measure data
problem {

∂tu− div(|∇u|p−2∇u) = µ, in Ω∞
u(x, t) = 0, for (x, t) ∈ ∂pΩ∞.

The nonlinear parabolic capacity has many favorable features, including inner and outer
regularity, as well as subadditivity to mention a few. The main motivation to study such
a capacity is its possible applications to questions regarding boundary regularity and
removability. The above capacity is analogous to thermal capacity p = 2 related to the
heat equation, which together with its generalizations have been studied for example by
Lanconelli [20, 21], Watson [29], Evans and Gariepy [7], as well as Gariepy and Ziemer
[8, 9]. In the elliptic case, the reader can consult [12].

However, computing the capacities of explicit sets using the above definition is quite
challenging. Again, the situation can be compared to the elliptic case, where explicit
calculations are usually based on the variational formulation of the capacity. Our objec-
tive is to develop tools for estimating capacities of explicit sets in the nonlinear parabolic
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context. In analogy to the elliptic situation, a central role is played by the nonlinear
parabolic variational capacity which in the case of a compact set K can be written as

capvar(K,Ω∞) = inf{‖v‖W(Ω∞) := ‖v‖pV(Ω∞) + ‖∂tv‖p
′

V ′(Ω∞) : v ∈ C∞0 (Ω× R), v ≥ χK},

whereW(ΩT ) = {u ∈ V(ΩT ) : ∂tu ∈ V ′(ΩT )}, V(ΩT ) = Lp(0, T ;W 1,p
0 (Ω)) and V ′(ΩT ) =

(Lp(0, T ;W 1,p
0 (Ω)))′.

Our main result (Theorem 4.9) shows that there exists a constant c ≡ c(n, p) > 1 such
that for any compact set K ⊂ Ω∞,

c−1 capvar(K,Ω∞) ≤ cap(K,Ω∞) ≤ c capvar(K,Ω∞).

As an application, in Section 5, we estimate the capacities of space-time curves (Theo-
rem 5.1), cylinders (Theorem 5.5) and certain hyper-surfaces (Theorem 5.7). In addition,
we give a lower bound for capvar in terms of a time-integral involving the elliptic capacity
(Theorem 5.2).

We first establish the main result in the special case that K is a finite union of space-
time cylinders. The simple structure of such sets allows us to derive estimates using
test-functions mollified in time, since in this case we can control the size of the mollified
test-function. As an intermediate step, we prove the equivalence between the nonlinear
parabolic capacity (defined above) and the following capacity that we call the energy
capacity

capen(K,ΩT ) = inf{‖u‖en,ΩT : u ∈ V(ΩT ), u is p-superparabolic in ΩT , u ≥ χK},

where

‖u‖en,ΩT = sup
0<t<T

1

2

ˆ
Ω

u2(x, t) dx+

ˆ T

0

ˆ
Ω

|∇u|p dx dt.

The proof is based on using the capacitary potential (or balayage/réduite) as a test-
functions in the measure data problem, together with a straightforward estimation.

The main part of the paper is devoted to establishing the equivalence between the
variational and energy capacities in two main steps.

First, in Theorem 4.2, given a non-negative supersolution u we construct a function
v ≥ u for which we can bound the key variational quantity ||v||W in terms of the energy
of u, ||u||en. Such v is obtained as the solution to a specific backwards in time equation
with −2∆pu as a right-hand side.

Second, in Theorem 4.4, given v ∈ W , we show that there exists a supersolution u ≥ v
such that ||u||en ≤ c ||v||W in a suitable intrinsic geometry. Such u is obtained as a
solution to the obstacle problem using rescaled v as an obstacle. The above inequality is
then derived from the definition of u being a supersolution, in essence using the difference
between the rescaled u and v as the test-function. This establishes the main result for
finite unions of space time cylinders in ΩT . To complete the proof, we approximate a
compact set with unions of cylinders and pass to the limit T →∞.

Our work owes its inspiration to the work of Pierre [25] for the heat equation, and can
be seen as a nonlinear generalization of Pierre’s results. For other, but quite different
generalizations, see [6], [26], and [27]. Finally, the results in this paper generalize to a
wider class of equations of p-parabolic type even if for expository reasons we only work
with the p-parabolic equation.
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2. Preliminaries

2.1. Parabolic spaces. We begin by describing the basic notation. In what follows,
B(x0, r) = {x ∈ Rn : |x0−x| < r} stands for the usual Euclidean ball in Rn, Ω a domain,
and U a bounded open set in Rn. If U ′ is a bounded subset of U and the closure of U ′

belongs to U , we write U ′ b U . We denote

Ut1,t2 := U × (t1, t2), UT := U × (0, T ) and U∞ := U × (0,∞).

Furthermore, the parabolic boundary of a cylinder Ut1,t2 := U × (t1, t2) ⊂ Rn+1 is

∂pUt1,t2 = (U × {t1}) ∪ (∂U × (t1, t2]).

We define the parabolic boundary of a finite union of open cylinders U i
ti1,t

i
2

as

∂p

(⋃
i

U i
ti1,t

i
2

)
:=

(⋃
i

∂pU
i
ti1,t

i
2

)
\
⋃
i

U i
ti1,t

i
2
.

Note that the parabolic boundary is by definition compact. We let a ≈ b denote that
there exists a positive constant c depending only on n and p such that c−1a ≤ b ≤ ca.

As usual, W 1,p(U) denotes the space of real-valued functions f such that f ∈ Lp(U)
and the distributional first partial derivatives ∂f∂xi, i = 1, 2, . . . , n, exist in U and belong
to Lp(U). We use the norm ‖f‖W 1,p(U) = ‖f‖Lp(U) + ‖∇f‖Lp(U). The Sobolev space with

zero boundary values, W 1,p
0 (U), is the closure of C∞0 (U) with respect to the Sobolev norm.

By Sobolev’s inequality, we may endow W 1,p
0 (U) with the norm ‖f‖W 1,p

0 (U) = ‖∇f‖Lp(U).

By the parabolic Sobolev space Lp(t1, t2;W 1,p(U)), with t1 < t2, we mean the space of
measurable functions u(x, t) such that the mapping x 7→ u(x, t) belongs to W 1,p(U) for
almost every t1 < t < t2 and the norm

‖u‖Lp(t1,t2;W 1,p(U)) :=

(ˆ t2

t1

‖u(·, t)‖pW 1,p(U) dt

)1/p

,

is finite. The parabolic space Lp(t1, t2;W 1,p
0 (U)) is defined in a similar fashion. Analo-

gously, by the space C(t1, t2;Lq(U)), t1 < t2 and q ≥ 1, we mean the space of functions
u(x, t), such that the mapping t 7→

´
U
|u(x, t)|q dx is continuous on the time interval

[t1, t2]. Moreover, we let sup and inf be the essential supremum and essential infimum
respectively, throughout this paper.

2.2. Nonlinear parabolic problems. We can now introduce the notion of weak solu-
tion to

∂tu− div(|∇u|p−2∇u) = 0 . (2.1)

Definition 2.1. A function u ∈ Lploc(0, T ;W 1,p
loc (Ω)) is called a weak supersolution to the

p-parabolic equation in ΩT , ifˆ ˆ
ΩT

(
|∇u|p−2∇u · ∇φ− u ∂tφ

)
dx dt ≥ 0 , (2.2)

for every φ ∈ C∞0 (ΩT ), φ ≥ 0. It is called a weak subsolution, if the integral above is
instead non-positive. We call a function u a weak solution in ΩT if it is both a super-
and subsolution in ΩT , i.e.,ˆ ˆ

ΩT

(
|∇u|p−2∇u · ∇φ− u ∂tφ

)
dx dt = 0 ,
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for every φ ∈ C∞0 (ΩT ). By parabolic regularity theory a weak solution has a continuous
representative: we call this representative p-parabolic.

In this work we consider weak super-solutions with zero boundary data, that is, zero
boundary values on the lateral boundary ∂Ω×(0, T ) and zero initial values on Ω×{t = 0}.
By this we mean that u ∈ Lp(0, T,W 1,p

0 (Ω)) and

lim
h→0

1

h

ˆ h

0

ˆ
Ω

|u|2dz = 0.

Moreover we say that a time t ∈ (0, T ) is a Lebesgue instant for u ∈ Lp(0, T,W 1,p
0 (Ω)) if

lim
h→0

1

h

ˆ t+h

t−h

ˆ
Ω

|u(x, s)− u(x, t)|2dx ds = 0.

Note that if u ∈ Lp(0, T,W 1,p
0 (Ω)) then almost all t ∈ (0, T ) are Lebesgue instants, since

p ≥ 2. In what follows, we often choose a supersolution with zero boundary data and
above 1 on a compact set K ⊂ ΩT . In this case, we can always choose our function so
that for small enough ε, u = 0 in Ω × (0, ε), and thus takes zero initial values in any
reasonable sense.

Closely related to weak supersolutions, is the more general class of p-superparabolic
functions in Θ ⊂ Rn+1, see [11].

Definition 2.2. We call a function u : Θ→ (−∞,∞] p-superparabolic if

(i) u is lower semicontinuous;
(ii) u is finite in a dense subset of Θ;

(iii) the following parabolic comparison principle holds: Let Qt1,t2 b Θ, and let h be
a p-parabolic function in Qt1,t2 which is continuous in Ut1,t2 . Then, if h ≤ u on
∂pQt1,t2 , h ≤ u also in Qt1,t2 .

We denote the lower semicontinuous regularization of u by

û(x, t) = lim inf
(y,s)→(x,t)

u = lim
r→0

inf
Br(x)×(t−rp,t+rp)

u.

We recall the following theorem from [19].

Theorem 2.3. Let u be a weak supersolution in ΩT . Then the lower semicontinuous
regularization û is a weak supersolution and u = û almost everywhere in ΩT .

Vice versa we also have the following theorem of [17].

Theorem 2.4. Let u be a locally bounded and p-superparabolic function, then u is a weak
supersolution.

Let u be a supersolution. Then by the Riesz representation theorem, there exists a
Radon measure µu such that u solves the following measure data problemˆ ˆ

ΩT

(
|∇u|p−2∇u · ∇φ− u ∂tφ

)
dx dt =

ˆ ˆ
ΩT

φ dµu, (2.3)

for every φ ∈ C∞0 (ΩT ). Conversely, for every finite positive Radon measure, there is a
superparabolic function, see for example [4, 15] and [16].

Next we introduce the parabolic obstacle problem, see [2], [18], [23], and also [5]. The
following definition of the obstacle problem with ψ ∈ C(ΩT ) as an obstacle, is taken from
[23].
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Definition 2.5. Let ψ ∈ C(ΩT ), and consider the class

Sψ = {û : u is a weak supersolution, û ≥ ψ in ΩT}.

Define the function

w(x, t) = inf
u
u(x, t),

where the infimum is taken over the whole class Sψ. We say that its regularization

u(x, t) := ŵ(x, t)

is the solution to the obstacle problem.

In potential theory, the function in the above definition is often called the balayage,
and it has the following basic properties, see [18] and [23]:

(i) u ∈ C(ΩT ),
(ii) u is a weak solution in the set {(x, t) ∈ ΩT : u(x, t) > ψ(x, t)}, and
(iii) u is the smallest weak supersolution above ψ , i.e. if v is a weak supersolution in

ΩT and v ≥ ψ, then v ≥ u.

Continuity of the obstacle can be dropped in the definition of the obstacle problem
without losing (iii). Indeed, a special case we are often going to utilize is the characteristic
functions of a compact set K ⊂ Ω∞,

ψ = χK .

We denote the solution to this obstacle problem by R̂K . This function is sometimes called
a balayage/réduite, and it can also be seen as a capacitary potential for the following

reason: R̂K is a supersolution by Theorem 2.4, and thus there is a Radon measure µK
related to this solution through (2.3). Moreover, suppµK ⊂ K and it is shown in [13,
Theorem 5.7] that

cap(K,Ω∞) = µK(K). (2.4)

2.3. Parabolic capacities. Next define the functional spaces

V(ΩT ) = Lp(0, T ;W 1,p
0 (Ω)), V ′(ΩT ) = (Lp(0, T ;W 1,p

0 (Ω)))′,

with norms

‖v‖V(ΩT ) =

(ˆ
ΩT

|∇v|p dx dt
)1/p

, ‖v‖V ′(ΩT ) = sup
‖φ‖V(ΩT )≤1,φ∈C∞0 (ΩT )

∣∣∣∣ˆ
ΩT

vφ dx dt

∣∣∣∣ .
We also define

W(ΩT ) = {u ∈ V(ΩT ) : ∂tu ∈ V ′(ΩT )},
equipped with the natural norm ‖u‖V + ‖∂tu‖V ′ , which can equivalently be written as

‖u‖V(ΩT ) + ‖∂tu‖V ′(ΩT ) = ‖u‖V(ΩT ) + sup
‖φ‖V(ΩT )≤1,φ∈C∞0 (ΩT )

∣∣∣∣ˆ
ΩT

u∂tφ dx dt

∣∣∣∣ .
A first observation, when generalizing the approach in [25] to the nonlinear setting,

is that one of the fundamental structures of the p-parabolic equation (2.1) is invariance
w.r.t. intrinsic rescaling. Let u be a p-superparabolic function in Ω∞, then we can define
its energy as follows

‖u‖en,ΩT = sup
0<t<T

1

2

ˆ
Ω

u2(x, t) dx+

ˆ T

0

ˆ
Ω

|∇u|p dx dt.
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If we instead consider v(x, t) = λ−1u(x, λ2−pt), then v is still p-superparabolic in Ω∞ and
its energy has changed as follows

‖v‖en,Ω∞ =
‖u‖en,Ω∞

λ2
.

We would like capvar to reflect this, and therefore define the anisotropic quantity in W
as

‖v‖W(ΩT ) := ‖v‖pV(ΩT ) + ‖∂tv‖p
′

V ′(ΩT ),

where 1/p+ 1/p′ = 1. The above quantity now scales as λ2 w.r.t. the intrinsic rescaling,
but in order to encode the geometry within the definition, we set

Definition 2.6. For any compact set K ⊂ ΩT , we define

capvar(K,ΩT ) = inf{λ2 : λ2 = ‖v‖W(Ωλ2−pT ), v ∈ C∞0 (Ω× R), v ≥ χK}.
If T =∞, we use the definition

capvar(K,Ω∞) = inf{‖v‖W(Ω∞) : v ∈ C∞0 (Ω× R), v ≥ χK}.

A couple of remarks are in order. First, note that Definition 2.6 is for compact sets.
Second, although being intrinsic in nature via the anisotropic nature of ‖ · ‖W(ΩT ), the
capacity capvar(K,Ω∞) only minimizes w.r.t. a quasi-norm without any intrinsic condi-
tions. Third, note that for an arbitrary v ∈ W(Ω∞) we can always find a unique solution
λ ≥ 0 to the equation

λ2 = ‖v‖W(Ωλ2−pT ).

In fact, since λ 7→ λ2 is strictly increasing and for a given v, λ 7→ ‖v‖W(Ωλ2−pT ) is non-
increasing, we see that for each smooth v there exists a unique solution λ to the above
equation. We define the variational capacity for more general sets in the usual way:

Definition 2.7. Let U ⊂ ΩT be an open set, then we define the intrinsic variational
capacity as the limit of exhaustions of compact sets, i.e.

capvar(U,ΩT ) = sup{capvar(K,ΩT ) : K is compact, and K ⊂ U}.
For Borel sets B we define it as follows,

capvar(B,ΩT ) = inf{capvar(U,ΩT ) : U is open, and B ⊂ U}.

For lack of a better name, we have taken liberty to call the above quantity the vari-
ational capacity, due to its connections to the capacity as well as due to the elliptic
analogy.

3. Properties of the Variational capacity

We start by listing some very basic properties of the variational capacity. For this,
let Ω′ ⊂ Ω and 0 < T1 ≤ T ≤ T2 ≤ +∞. Let K, K1, and K2 be compact sets of
Ω′T := Ω′ × (0, T ) such that K1 ⊂ K2. Then the following properties hold:

capvar(K,ΩT ) < +∞,
capvar(K1,ΩT ) ≤ capvar(K2,ΩT ), (3.1)

capvar(K,ΩT ) ≤ capvar(K,Ω
′
T ), (3.2)

capvar(K,ΩT1) ≤ capvar(K,ΩT2). (3.3)

The next lemma turns out the be crucial in what follows, it allows us to reduce the
analysis to finite collections of space-time cylinders instead of general compact sets.
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Lemma 3.1. Let Ki, i = 1, 2, . . . be compact sets in ΩT such that K1 ⊃ K2 ⊃ . . ., then

lim
i→∞

capvar(Ki,ΩT ) = capvar(∩iKi,ΩT ) .

Proof. Let K := ∩iKi. From (3.1) we get

capvar(K,ΩT ) ≤ capvar(Ki,ΩT ),

and by passing to the limit as i→∞ (capvar(Ki,ΩT ) is non-increasing), we get

capvar(K,ΩT ) ≤ lim
i→∞

capvar(Ki,ΩT ).

To prove the reverse inequality, the idea is to choose v ≥ χK which can be used to
approximate capvar(K,ΩT ) closely. Then multiplying v by a constant slightly larger
than 1, we get an admissible test-function for the capacity of Ki for i large enough. Yet,
as the constant is close to one, we only make a small error.

To work out the details, set λ2 = capvar(K,ΩT ). For any ε > 0, there exists v ∈
C∞0 (Ω× R), v ≥ χK such that λ2

v = ‖v‖W(Ω
λ

2−p
v T

) and

λ2
v ≤ capvar(K,ΩT ) + ε.

Next, note that since v is smooth we know that for any γ > 0 there exists i0 := i0(γ)
such that

vγ := (1− γ)−1v ≥ χKi ,

for i ≥ i0. Hence for λγ satisfying λ2
γ = ‖vγ‖W(Ω

λ
2−p
γ T

) we have

λ2
γ ≥ capvar(Ki,ΩT ).

Furthermore, by scaling properties

‖vγ‖W(Ω
λ

2−p
v T

) ≤ (1− γ)−pλ2
v.

Moreover, since

λ2
v = ‖v‖W(Ω

λ
2−p
v T

) ≤ ‖vγ‖W(Ω
λ

2−p
v T

),

we clearly have that λv ≤ λγ due to the definition of λγ. This now implies that

λ2
γ = ‖vγ‖W(Ω

λ
2−p
γ T

) ≤ ‖vγ‖W(Ω
λ

2−p
v T

) ≤ (1− γ)−pλ2
v. (3.4)

It also holds that

capvar(Ki,ΩT ) ≤ λ2
γ ≤ (1− γ)−pλ2

v.

Indeed, the first inequality holds by definition of capvar(Ki,ΩT ), and the second inequality
follows from (3.4). We now see that

capvar(K,ΩT ) ≤ capvar(Ki,ΩT ) ≤ λ2
γ ≤ (1− γ)−pλ2

v ≤ (1− γ)−p
(

capvar(K,ΩT ) + ε
)
,

for any i ≥ i0(γ). Letting first i→∞ and then γ → 0, we see that

capvar(K,ΩT ) ≤ lim
i→∞

capvar(Ki,ΩT ) ≤ capvar(K,ΩT ) + ε.

Since ε > 0 was arbitrary, we conclude the proof. �

Lemma 3.2. Let K be a compact set in Ω∞. Then

lim
T→∞

capvar(K,ΩT ) = capvar(K,Ω∞) .
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Proof. The proof goes as follows. For large enough T we find a test-function almost
realizing the capacity. If T is large enough, we may multiply the obtained function by
a cut-off function in time without changing the norm too much. This new function is
admissible to test the capacity related to the reference set Ω∞ and for large T the error
becomes arbitrarily small.

Let us go to the details. Define λ2
T = capvar(K,ΩT ) for T > 0 and note that (3.3) says

that λT is nondecreasing with respect to T . Thus the limit limT→∞ λ
2
T exists and we have

λ2 := lim
T→∞

λ2
T = lim

T→∞
capvar(K,ΩT ) ≤ capvar(K,Ω∞) <∞. (3.5)

Now, for given ε > 0 let T be so large that

K ⊂ Ω× (0, (λ2 + ε)(2−p)/2T/2)

holds. By the definition of variational capacity capvar(K,ΩT ) we may choose vε ∈ C∞0 (Ω×
R) such that vε ≥ χK and

0 < λ2
v,ε := ‖vε‖W(Ω

λ
2−p
v,ε T

) ≤ λ2
T + ε ≤ λ2 + ε, λv,ε ≥ λT . (3.6)

Denote τ := λ2−p
v,ε T/2. By above two displays we have that K ⊂ Ω × (0, τ). Let θ ∈

C∞0 (−∞, 2τ) be such that θ = 1 in (0, τ), 0 ≤ θ ≤ 1, and |θ′| ≤ 2/τ . Then vεθ ≥ χK and
for any function φ ∈ V(Ω∞) we have that∣∣〈∂t(vεθ), φ〉V(Ω∞)

∣∣ =

∣∣∣∣ˆ 2τ

0

ˆ
Ω

vεθ∂tφ dx dt

∣∣∣∣
=

∣∣∣∣ˆ 2τ

0

ˆ
Ω

vε∂t(θφ) dx dt−
ˆ 2τ

0

ˆ
Ω

vεφθ
′ dx dt

∣∣∣∣
≤‖∂tvε‖V ′(Ω2τ )‖φ‖V(Ω2τ ) +

2

τ
‖vεφ‖L1(Ω2τ )

≤
(
‖∂tvε‖V ′(Ω2τ ) +

c

τ
‖vε‖Lp′ (Ω2τ )

)
‖φ‖V(Ω2τ )

≤
(
‖∂tvε‖V ′(Ω2τ ) + cτ−2/p‖vε‖V(Ω2τ )

)
‖φ‖V(Ω2τ ).

Therefore by the above calculation, the definitions of the involved quantities and
Jensen’s inequality, we obtain

‖vεθ‖W(Ω∞) ≤ ‖vε‖pV(Ω2τ ) + ‖∂t(vεθ)‖p
′

V ′(Ω2τ )

≤ ‖vε‖pV(Ω2τ ) + (1 + cτ−2/p)p
′
(
‖∂tvε‖V ′(Ω2τ ) + cτ−2/p‖vε‖V(Ω2τ )

1 + cτ−2/p

)p′
≤ ‖vε‖W(Ω2τ ) +

(
(1 + cτ−2/p)p

′−1 − 1
)
‖∂tvε‖p

′

V ′(Ω2τ )

+ cτ−2/p(1 + cτ−2/p)p
′−1‖vε‖p

′

V(Ω2τ )

≤
(
1 + c̃τ−2/p

)
‖vε‖W(Ω2τ )

=
(
1 + c̃λ2(p−2)/p

v,ε T−2/p
)
λ2
v,ε,

where the constant c̃ depends only on p and Ω. Since vεθ ≥ χK , it is admissible to test
variational capacity capvar(K,Ω∞), thus we have by the above display, (3.5), and (3.6)
that

λ2 ≤ capvar(K,Ω∞) ≤ ‖vεθ‖W(Ω∞) ≤
(
1 + c̃(λ2 + ε)(p−2)/pT−2/p

)
(λ2 + ε).

Letting T →∞ and then ε→ 0 implies that λ2 = capvar(K,Ω∞) finishing also the proof
since λ2 = limT→∞ capvar(K,ΩT ). �
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4. Equivalences of different capacities

In this section, we first prove the main theorem, the equivalence between the capacity
and the variational capacity, in the special case that K is a finite union of space-time
cylinders. The structure of such sets is much simpler, which allows us to derive estimates
using test-functions mollified in time, since we can control the change in the mollification,
cf. (4.2). We first prove the equivalence between the energy capacity, defined below, and
the nonlinear parabolic capacity. Then we establish the equivalence between the energy
and variational capacities.

Later, in Theorem 4.8, we extend the result to any compact set by approximating K
with a finite unions of cylinders. Finally, we pass to a limit as T →∞.

4.1. Energy capacity versus nonlinear parabolic capacity. To prove Theorem 4.7
let us first introduce an intermediate notion of capacity defined in terms of the energy

‖u‖en,ΩT = sup
0<t<T

1

2

ˆ
Ω

u2(x, t) dx+

ˆ T

0

ˆ
Ω

|∇u|p dx dt.

The energy capacity is defined as

capen(K,ΩT ) = inf{‖u‖en,ΩT : u ∈ V(ΩT ), u is p-superparabolic in ΩT , u ≥ χK}.

Theorem 4.1. Let K ⊂ ΩT be a finite family of compact space-time cylinders. Then

capen(K,ΩT ) ≈ cap(K,Ω∞).

Proof. First, we give a rough description of the steps of the proof. Let

uK = R̂K

be the capacitary potential of K, and µK be the corresponding Radon measure in (2.3).
To prove that capen(K,ΩT ) ≤ 2 cap(K,ΩT ), we use the fact that cap(K,Ω∞) = µK(ΩT ),
and estimate the right hand side from below by testing the measure data equation

∂tuK −∆puK = µK , (4.1)

formally with the test-function φ = uK , see (2.3). The reverse inequality follows in a
straightforward manner by testing the measure data equation above, with a supersolution
u for which u = 1 on K, and using the fact that u is a supersolution.

To work out the details, let χh,t ∈ C∞0 (0, T ) be a cutoff function in time approximating
χ(0,t). To be more precise, χh,t increases pointwise to χ(0,t) as h → 0 and χh,t = 1 on
[h, t − h]. Fix h. After a standard density argument, ((uK)εχh,t)ε is an admissible test-
function in (2.3) for small enough ε. Recall that (·)ε is the standard mollification only
over the time variable.

By Fubini’s theorem, we obtain

µK(ΩT ) ≥
ˆ t

0

ˆ
Ω

((uK)εχh,t)εdµK

= −
ˆ t

0

ˆ
Ω

(uK)ε∂t(uK)εχh,t dxds−
ˆ t

0

ˆ
Ω

(uK)2
εχ
′
h,t dxds

+

ˆ t

0

ˆ
Ω

|∇uK |p−2∇uK · ∇((uK)εχh,t)ε dxds.

Now

−
ˆ t

0

ˆ
Ω

(uK)ε∂t(uK)εχh,t dxds−
ˆ t

0

ˆ
Ω

(uK)2
εχ
′
h,t dxds→

1

2

ˆ
Ω

u2
K(x, t) dx,

9



and ˆ t

0

ˆ
Ω

(|∇uK |p−2∇uK)ε · ∇(uK)εχh,t dxds→
ˆ t

0

ˆ
Ω

|∇uK |p dxds,

for almost every t ∈ (0, T ) as first ε→ 0 and then h→ 0. Hence

µK(ΩT ) ≥ 1

2

ˆ
Ω

u2
K(x, t) dx+

ˆ t

0

ˆ
Ω

|∇uK |p dx ds

follows for almost every t ∈ (0, T ). Taking essential supremum over t leads to

2µK(ΩT ) ≥ sup
0<t<T

1

2

ˆ
Ω

u2
K(x, t) dx+

ˆ T

0

ˆ
Ω

|∇uK |p dx dt .

On the other hand, since K is a finite union of space-time cylinders, we know that for
ε, h > 0 small enough, the following holds

4−1χK ≤ ((uK)εχh,T )ε ≤ 1. (4.2)

Because of (4.2) and passing to the limit as above we can estimate

4−1µK(ΩT ) ≤ 1

2

ˆ
Ω

u2
K(x, T ) dx+

ˆ T

0

ˆ
Ω

|∇uK |p dx dt

≤ sup
t

1

2

ˆ
Ω

u2
K(x, t) dx+

ˆ T

0

ˆ
Ω

|∇uK |p dx dt.

Therefore, since cap(K,Ω∞) = µK(ΩT ), we obtain

2−1‖uK‖en,ΩT ≤ cap(K,Ω∞) ≤ 4‖uK‖en,ΩT , (4.3)

which implies that

capen(K,ΩT ) ≤ 2 cap(K,Ω∞).

To prove the other direction, let u be a supersolution such that u = 1 on K, u(x, 0) = 0,
and vanishes on the lateral boundary. Using (uεχh,T )ε as a test-function for the measure
data equation for uK , (2.3), we get from (2.4) that

4−1 cap(K,Ω∞) ≤
ˆ

(uεχh,T )ε dµK

=−
ˆ T

0

ˆ
Ω

(uK)ε∂tuεχh,T dx dt−
ˆ T

0

ˆ
Ω

(uK)εuεχ
′
h,T dx dt

+

ˆ T

0

ˆ
Ω

(|∇uK |p−2∇uK)ε · ∇uεχh,T dx dt.

Furthermore, first using integration by parts, and then using ((uK)εχh,T )ε as a test-
function in (2.2) for u, we get

−
ˆ T

0

ˆ
Ω

(uK)ε∂tuεχh,T dx dt =

ˆ T

0

ˆ
Ω

u ∂t((uK)εχh,T )ε dx dt

≤
ˆ T

0

ˆ
Ω

|∇u|p−2∇u · ∇((uK)εχh,T )ε dx dt.

Using the above two displays, first taking the limit as ε→ 0 and then as h→ 0, gives us
with the aid of Young’s inequality that

4−1 cap(K,Ω∞) ≤
ˆ

Ω

uK(x, T )u(x, T ) dx+

ˆ T

0

ˆ
Ω

|∇u|p−2∇u · ∇uK dx dt
10



+

ˆ T

0

ˆ
Ω

|∇uK |p−2∇uK · ∇u dx dt

≤δ‖uK‖en,ΩT + c(δ)‖u‖en,ΩT .

Recalling (4.3) and choosing small enough δ, we may absorb the first term on the right-
hand side into the left-hand side. Further, recalling the definition of capen, we get

cap(K,Ω∞) ≤ c capen(K,ΩT ). �

4.2. Variational capacity versus energy capacity. In Theorem 4.2, given a non-
negative supersolution u ∈ V(ΩT ) = Lp(0, T ;W 1,p

0 (Ω)), we construct, by using a back-
wards in time equation with a right hand side depending on u, a solution v ∈ W(ΩT ) =
{v ∈ V(ΩT ) : ∂tv ∈ V ′(ΩT )} such that by the comparison principle v ≥ u. The suitably
chosen exponents in the definition of ‖ · ‖W(ΩT ) allow us to obtain ‖v‖W(ΩT ) ≤ c‖u‖en,ΩT

by a direct estimation starting from the backwards-in-time equation.
On the other hand, in Theorem 4.4, given a smooth non-negative v with zero boundary

values, we show that there exists a supersolution u such that u ≥ v a.e. and ||u||en ≤
c ||v||W in a suitable intrinsic geometry. In the proof, we construct u as a solution to the
obstacle problem using rescaled v as an obstacle, and then derive the above inequality by
a using a suitable test-function in the weak equation for u.

Finally, combining these results in Theorem 4.6 we end up with

capvar(K,ΩT ) ≈ capen(K,Ωλ2−pT ).

As we already know by Theorem 4.1 that capvar(K,ΩT ) ≈ cap(K,Ω∞), we obtain the
main result

capvar(K,Ω∞) ≈ cap(K,Ω∞),

by passing to the limit T →∞.
The proof of the next theorem follows the ideas in [25]. Indeed, the use of a backward-

in-time equation is taken from there.

Theorem 4.2. For each non-negative bounded supersolution u ∈ V(ΩT ), there exists a
function v ∈ W(ΩT ) such that v ≥ u and

‖v‖W(ΩT ) ≤ c‖u‖en,ΩT
with c = c(p).

Proof. Let τ ∈ (0, T ) be a Lebesgue instant for u and let vτ ∈ Lp(0, τ ;W 1,p
0 (Ω)) be the

solution to the following problem{
∂tv

τ −∆pv
τ = 0, in Ω× (τ,∞)

vτ (x, τ) = u(x, τ).

Let now uτ be such that {
uτ (x, t) = u(x, t), if t < τ

uτ (x, t) = vτ (x, t), if t ≥ τ,

from this we find that uτ ∈ V(Ω∞) and ‖uτ‖en,Ω∞ ≤ c‖u‖en,ΩT follows by using (2.2).
Since the set of Lebesgue instants τ ∈ (0, T ) have full measure we see that there exists
a sequence of Lebesgue instants converging to T , call this sequence {τj}. We can now
easily see that uτj is an increasing sequence of supersolutions that converges pointwise to a
bounded supersolution ū, which coincides with u in Ω× (0, T ). Moreover we can deduce

11



that ‖ū‖en,Ω∞ ≤ c‖u‖en,ΩT , since the sequence also converges in V(Ω∞) by Lebesgue
dominated convergence.

Let us now take any Lebesgue instant for ū that is bigger than T , from now on we call
this instant τ , and we will rename ū as u. Solve the equation{

−∂tv −∆pv = −2∆pu

v(x, τ) = u(x, τ)
(4.4)

in Ωτ with zero lateral boundary values. The right hand side is naturally interpreted
as
´

2 |∇u|p−2∇u · ∇φ dz. Equation (4.4) has the unique solution v ∈ W(Ωτ ), since we
know that u ∈ V(Ωτ ) and hence ∆pu ∈ V ′(Ωτ ).

Now choose the mollified test-function φ = (vεχh,τ )ε, where again χh,τ = 1 in [h, τ −
h], χh,τ ∈ C∞0 (0, τ) and subscript ε denotes mollification in time. Testing the weak
formulation of equation (4.4) with φ and passing to the limit as ε → 0 similarly as in
Theorem 4.1, we obtain

1

2

ˆ
Ωτ

v2χ′h,τ dx dt+

ˆ
Ωτ

|∇v|pχh,τ dx dt = 2

ˆ
Ωτ

|∇u|p−2∇u · ∇vχh,τ dx dt.

Passing to the limit as h→ 0 we obtain by Young’s inequality that

−1

2

ˆ
Ω

v2(x, τ) dx+
1

2

ˆ
Ω

v2(x, 0) dx+ c

ˆ
Ωτ

|∇v|p dx dt ≤ c

ˆ
Ωτ

|∇u|p dx dt,

which gives together with the terminal data of v thatˆ
Ωτ

|∇v|p dx dt ≤ c

(
1

2

ˆ
Ω

u2(x, τ) dx+

ˆ
Ωτ

|∇u|p dx dt
)
≤ c‖u‖en,Ωτ . (4.5)

Let us now consider the dual norm. We have by (4.4) and Hölder’s inequality that

‖∂tv‖V ′(Ωτ ) = sup
‖φ‖V(Ωτ )≤1

∣∣∣∣ˆ
Ωτ

v ∂tφ dx dt

∣∣∣∣
≤ sup
‖φ‖V(Ωτ )≤1

[∣∣∣∣ˆ
Ωτ

|∇v|p−2∇v · ∇φ dx dt
∣∣∣∣+ 2

∣∣∣∣ˆ
Ωτ

|∇u|p−2∇u · ∇φ dx dt
∣∣∣∣]

≤ c
(
‖v‖pV(Ωτ ) + ‖u‖pV(Ωτ )

)1/p′

,

where φ ∈ C∞0 (Ωτ ) and 1/p+ 1/p′ = 1 so that 1/p′ = (p− 1)/p . Since

‖v‖pV(Ωτ ) + ‖u‖pV(Ωτ ) ≤ c‖u‖en,Ωτ ,

holds by (4.5) and definition of ‖u‖en,ΩT , we also get

‖∂tv‖p
′

V ′(Ωτ ) ≤ c‖u‖en,Ωτ .

Hence we conclude that

‖v‖W(Ωτ ) ≤ c‖u‖en,ΩT .

To check that v ≥ u, we do the following formal computation

−∂tv −∆pv = −2∆pu ≥ −∂tu−∆pu ,

based on (4.4) and the definition of a supersolution for u. Now we can use the compar-
ison principle for backwards equations to conclude the inequality in Ωτ . The rigorous

12



treatment goes via weak formulation and standard mollification argument. Indeed, sub-
tracting the backwards equations in the weak form, passing to limits, and using the initial
condition, we get for a.e. s ∈ (0, τ) thatˆ

Ω

(u− v)2
+(x, s) dx− 0

≤ −
ˆ

Ωτ

(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v)+ dx dt

≤ 0.

This implies that u ≤ v a.e. in Ωτ . �

The proof of Theorem 4.4 utilizes the following rescaling lemma.

Lemma 4.3. Let v ∈ W(Ω∞), and suppose that λ > 0 is the intrinsic parameter satisfying

λ2 = ‖v‖W(Ωλ2−pT ).

Further, let

ṽ(x, τ) = λ−1v(x, λ2−pτ).

Then

‖ṽ‖pV(ΩT ) + ‖∂τ ṽ‖p
′

V ′(ΩT ) = 1. (4.6)

Proof. Changing the variables as t = λ2−pτ , we get from the definition of the norms
‖ · ‖V(Ωλ2−pT ) and ‖ · ‖V(ΩT ), that

‖v‖V(Ωλ2−pT ) =

(ˆ λ2−pT

0

ˆ
Ω

|∇v(x, t)|p dx dt

)1/p

=

(ˆ T

0

ˆ
Ω

|λ∇ṽ(x, τ)|p dxλ2−p dτ

)1/p

= λ2/p‖ṽ‖V(ΩT ).

To find out the scaling of the norm of the time derivative in the dual space we denote
φ̄(x, τ) = φ(x, λ2−pτ) and observe by a similar calculation as above

‖φ‖V(Ωλ2−pT ) = λ(2−p)/p‖φ̄‖V(ΩT ).

Now denoting φ̂ = λ(2−p)/pφ̄ and rewriting

‖∂tv‖V ′(Ωλ2−pT ) = sup
‖φ‖V(Ω

λ2−pT )≤1

|〈v, ∂tφ〉|

= sup
‖φ‖V(Ω

λ2−pT )≤1

∣∣∣∣∣
ˆ λ2−pT

0

ˆ
Ω

v∂tφ dx dt

∣∣∣∣∣
= sup

‖φ‖V(Ω
λ2−pT )≤1

∣∣∣∣∣
ˆ λ2−pT

0

ˆ
Ω

λṽ(x, λp−2t)λp−2∂τ φ̄(x, λp−2t) dx dt

∣∣∣∣∣
= sup

‖λ(2−p)/pφ̄‖V(ΩT )≤1

∣∣∣∣ˆ T

0

ˆ
Ω

λṽ(x, τ)λp−2∂τ φ̄(x, τ) dxλ2−p dτ

∣∣∣∣
= sup

‖λ(2−p)/pφ̄‖V(ΩT )≤1

∣∣∣∣λ1+(p−2)/p

ˆ T

0

ˆ
Ω

ṽ(x, τ)λ(2−p)/p∂τ φ̄(x, τ) dx dτ

∣∣∣∣
13



= λ2/p′ sup
‖φ̂‖V(ΩT )≤1

∣∣∣∣ˆ T

0

ˆ
Ω

ṽ(x, τ)∂τ φ̂(x, τ) dx dτ

∣∣∣∣
= λ2/p′‖∂tṽ‖V ′(ΩT ),

because 1 + (p− 2)/p = 2/p′. Therefore

λ2 = ‖v‖W(Ωλ2−pT )

= ‖v‖pV(Ωλ2−pT ) + ‖∂tv‖p
′

V ′(Ωλ2−pT )

= λ2‖ṽ‖pV(ΩT ) + λ2‖∂tṽ‖p
′

V ′(ΩT )

= λ2‖ṽ‖W(ΩT )

holds, which is exactly (4.6) since λ > 0. �

Theorem 4.4. Let v ∈ C∞0 (Ω × R) be non-negative. Let λ be the non-negative number
such that

λ2 = ‖v‖W(Ωλ2−pT ).

Then there exists a continuous non-negative supersolution u in Ωλ2−pT such that u ≥ v
and

‖u‖en,Ωλ2−pT
≤ c‖v‖W(Ωλ2−pT ),

for a constant c = c(n, p).

Proof. Assume, without loss of generality, that λ > 0. Indeed, otherwise v is identically
zero and we may simply take u = 0.

Let ṽ be defined as in Lemma 4.3, then consider the obstacle problem with ṽ as the
obstacle in ΩT . Let ũ be the continuous solution to this problem. Note that ũ is a
supersolution and that

ũ ≥ ṽ in ΩT .

Moreover, since ∂Ω is regular and ṽ is continuous up to the parabolic boundary, ũ is
continuous up to the parabolic boundary as well and ũ = ṽ on ∂pΩT . Thus, for each
δ > 0 we find an ε, ε > 0, such that

ψ = (((ũ− ṽ − δ)ε)+χh,τ )ε,

vanishes on ∂pΩT . Here χh,τ is again a smooth approximation of a characteristic functions
χ(0,τ) where τ ∈ (0, T ), and the subscript ε refers to the standard time mollification. We
may use ψ as a non-negative test-function in the weak formulation for ũ. Then using
integration by parts, we obtainˆ τ

0

ˆ
Ω

∂ũε
∂t

((ũ− ṽ − δ)ε)+χh,τ dx dt

+

ˆ τ

0

ˆ
Ω

(|∇ũ|p−2∇ũ)ε · ∇((ũ− ṽ − δ)ε)+χh,τ dx dt =

ˆ τ

0

ˆ
Ω

ψdµũ.

(4.7)

From this we obtain ˆ τ

0

ˆ
Ω

∂ũε
∂t

((ũ− ṽ − δ)ε)+χh,τ dx dt

=
1

2

ˆ τ

0

ˆ
Ω

∂((ũ− ṽ − δ)ε)2
+

∂t
χh,τ dx dt

+

ˆ τ

0

ˆ
Ω

∂ṽε
∂t

((ũ− ṽ − δ)ε)+χh,τ dx dt .

(4.8)
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Using integration by parts on the first term on the right-hand side of (4.8), we get

1

2

ˆ τ

0

ˆ
Ω

∂((ũ− ṽ − δ)ε)2
+

∂t
χh,τ dx dt = −1

2

ˆ τ

0

ˆ
Ω

((ũ− ṽ − δ)ε)2
+χ
′
h,τ (t) dx dt .

From the definition of W , properties of standard mollifiers, and Lemma 4.3, we can
estimate the second term on the right-hand side of (4.8) asˆ τ

0

ˆ
Ω

∂ṽε
∂t

((ũ− ṽ − δ)ε)+χh,τ dx dt ≥ −‖ṽ‖W(ΩT )‖ũ− ṽ‖V(Ωτ ) ≥ −‖ũ− ṽ‖V(Ωτ ) .

Combining the previous two displays in (4.8), passing to a limit first in ε and then in δ,
and using Lemma 4.3, we get

lim sup
δ,ε→0

ˆ τ

0

ˆ
Ω

∂ũε
∂t

((ũ− ṽ − δ)ε)+χh,τ dx dt

≥ −‖ũ‖V(Ωτ ) − 1− 1

2

ˆ τ

0

ˆ
Ω

(ũ− ṽ)2χ′h,τ (t) dx dt.

Next, by Young’s inequality and Lemma 4.3, we get

lim
δ,ε→0

ˆ τ

0

ˆ
Ω

(|∇ũ|p−2∇ũ)ε · ∇((ũ− ṽ − δ)ε)+χh,τ dx dt

=

ˆ τ

0

ˆ
Ω

(|∇ũ|p−2∇ũ) · ∇(ũ− ṽ)χh,τ dx dt

≥
ˆ τ

0

ˆ
Ω

|∇ũ|pχh,τ dx dt−
ˆ τ

0

ˆ
Ω

|∇ũ|p−1|∇ṽ|χh,τ dx dt

≥ 1

p

ˆ τ

0

ˆ
Ω

|∇ũ|pχh,τ dx dt−
1

p

ˆ τ

0

ˆ
Ω

|∇ṽ|pχh,τ dx dt

≥ 1

p

ˆ τ

0

ˆ
Ω

|∇ũ|pχh,τ dx dt−
1

p
.

Finally, recall that since the obstacle ṽ is continuous, the solution ũ is continuous and
hence ψδ,ε → 0 on {ũ = ṽ} uniformly as δ, ε → 0. In addition, by the properties of the
obstacle problem suppµũ ⊂ {ũ = ṽ}. Thus combining the previous estimates with (4.7),
we conclude that

1

p

ˆ τ

0

ˆ
Ω

|∇ũ|pχh,τ dx dt−
1

2

ˆ τ

0

ˆ
Ω

(ũ− ṽ)2χ′h,τ (t) dx dt ≤ ‖ũ‖V(Ωτ ) +
p+ 1

p
.

Passing to a limit h → 0, using the initial condition, and choosing τ to be a Lebesgue
instant such that

´
Ω
ũ2(x, τ) dx ≥ 1

2
sup0<t<T

´
Ω
ũ2 dx, we end up with

ˆ T

0

ˆ
Ω

|∇ũ|p dx dt+ sup
0<t<T

ˆ
Ω

ũ2 dx ≤ c.

To get rid of the term
´

Ω
ṽ2 dx

∣∣τ
0

on the left hand side, we used the fact that C(0, T ;L2(Ω)) ↪→
W(ΩT ), together with Lemma 4.3. Now by changing variables u(x, t) = λũ(x, λp−2t) we
obtain the estimate

‖u‖en,Ωλ2−pT
≤ cλ2 = c‖v‖W(Ωλ2−pT ),

where u is a supersolution satisfying u ≥ v, which completes the proof. �

Next we combine the previous two theorems to obtain capvar(K,ΩT ) ≈ capen(K,Ωλ2−pT ).
When combining the previous results, we would like to take v to be smooth, and the fol-
lowing lemma gives us the appropriate mollification.
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Lemma 4.5. Let K be a compact set consisting of a finite union of space-time cylinders.
Let v ∈ W(ΩT ) be such that v ≥ χK for a compact set K ⊂ ΩT . Then there exists a
w ∈ C∞0 (Ω× R) such that w ≥ χK and

‖w‖W(ΩT ) ≤ c‖v‖W(ΩT ).

The proof of Lemma 4.5 can be established by following [6, Appendix A] together
with the fact that on a finite union of space-time cylinders we can control the space-time
mollification, cf. (4.2). In addition, close to the lateral boundary of ΩT , the mollification
can be done by using partition of unity, as usual. The details are left for the reader.

Theorem 4.6. Let K be a compact set consisting of a finite union of compact space-time
cylinders, set λ2 = capvar(K,ΩT ), and suppose that K ⊂ Ωλ2−pT . Then

capvar(K,ΩT ) ≈ capen(K,Ωλ2−pT ),

where Ωλ2−pT is interpreted as Ω∞ if λ = 0.

Proof. Suppose first that capvar(K,ΩT ) > 0. To compare the variational and energy
capacities, we first define

λ2 = capvar(K,ΩT ).

Given δ > 0, choose a superparabolic function u ∈ V(Ωλ2−pT ) such that u ≥ χK , and

‖u‖en,Ωλ2−pT
≤ capen(K,Ωλ2−pT ) + δ.

Without loss of generality we can assume that u is bounded and using Theorem 4.2 we
find a function v ∈ W(Ωλ2−pT ) such that v ≥ u ≥ χK and

‖v‖W(Ωλ2−pT ) ≤ c‖u‖en,Ωλ2−pT
. (4.9)

By Lemma 4.5, we may replace v with a smooth version still staying above χK and still
satisfying (4.9), but with a different c. Furthermore, associated to v there is λv ≥ λ such
that λ2

v = ‖v‖W(Ω
λ

2−p
v T

) and

capvar(K,ΩT ) ≤ λ2
v = ‖v‖W(Ω

λ
2−p
v T

) ≤ c‖u‖en,Ωλ2−pT
≤ c(capen(K,Ωλ2−pT ) + δ).

This gives

capvar(K,ΩT ) ≤ c capen(K,Ωλ2−pT ).

Conversely, for small enough δ > 0 let us now consider v ∈ C∞0 (Ω × R) ∩W(Ωλ2−pT )
such that v ≥ χK and

λ2 ≤ ‖v‖W(Ω
λ

2−p
v T

) = λ2
v ≤ (1 + δ)λ2,

which we find by the definition of capvar. Theorem 4.4 yields a superparabolic function
u ∈ V(Ωλ2−p

v T ) such that u ≥ v and

‖u‖en,Ω
λ

2−p
v T
≤ c‖v‖W(Ωλ2−pT ) ≤ c(1 + δ) capvar(K,ΩT ).

Since K is compact and belongs to Ωλ2−pT , we find small enough δ so that K ⊂ Ωλ2−p
v T

as well. Extending u to the entire cylinder Ω∞ as a solution with initial values at the
time t0 = λ2−p

v T equal to u, we see that

‖u‖en,Ωλ2−pT
≤ ‖u‖en,Ω∞ ≤ 2‖u‖en,Ω

λ
2−p
v T
≤ c(1 + δ) capvar(K,ΩT ), (4.10)

where the second inequality is due to an energy inequality, valid for solutions,ˆ ∞
t0

ˆ
Ω

|∇u|p dx dt+ sup
t0<t

ˆ
Ω

u2(x, t) dx ≤ c

ˆ
Ω

u2(x, t0) dx.
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The estimate (4.10) immediately gives that

capen(K,Ωλ2−pT ) ≤ c capvar(K,ΩT ),

concluding the proof when λ > 0.
To finish the proof, we consider the case capvar(K,ΩT ) = 0. For any δ > 0 there exists

v ∈ C∞0 (Ω× R) ∩W(Ω∞), v ≥ χK , such that

δ > λ2
v = ‖v‖W(Ω

λ
2−p
v T

).

For this given v, we may argue as in the first step using Theorem 4.4. Indeed, we find u
such that u ≥ v ≥ χK and

‖u‖en,Ω∞ ≤ c‖v‖W(Ω
λ

2−p
v T

) < cδ2.

Therefore capen(K,Ω∞) = 0 and the proof is finished in all cases. �

4.3. Nonlinear parabolic capacity versus the variational capacity.

Theorem 4.7. Let K ⊂ ΩT be a compact set consisting of a finite union of compact

space-time cylinders K =
⋃
iQ

i

ti1,t
i
2
, and let λ2 = capvar(K,ΩT ). If K ⊂ Ωλ2−pT , then

capvar(K,ΩT ) ≈ cap(K,Ω∞),

where Ωλ2−pT is interpreted as Ω∞ if λ = 0.

Proof. The proof follows immediately from Theorem 4.1 and Theorem 4.6. �

We are now ready to prove the main result. We start with a local version.

Theorem 4.8. Let K ⊂ ΩT be a compact set and assume that for λ2 = capvar(K,ΩT )
we have K ⊂ Ωλ2−pT . Then

capvar(K,ΩT ) ≈ cap(K,Ω∞),

where Ωλ2−pT is interpreted as Ω∞ if λ = 0.

Proof. Let {Ki}∞i=1 be a nested sequence of compact sets, each a finite union of space-time
cylinders, such that

∞⋂
i=1

Ki = K.

Then from Lemma 3.1 we see that

lim
i→∞

capvar(Ki,ΩT ) = capvar(K,ΩT ) = λ2. (4.11)

First there exists an i1 such that if i ≥ i1, then Ki ⊂ ΩT . Second since λi is a non-
increasing sequence, we get that there is an i2 such that Ki ⊂ Ωλ2−pT ⊂ Ωλ2−p

i T holds for

all i ≥ i2. Now, for i ≥ max{i1, i2}, Theorem 4.7 gives

capvar(Ki,ΩT ) ≈ cap(Ki,Ω∞).

Using the outer regularity of cap(·,Ω∞) (see [13, Lemma 5.8]) together with (4.11) com-
pletes the proof. �

Our main theorem follows immediately.

Theorem 4.9. Let K be a compact set of Ω∞. Then

capvar(K,Ω∞) ≈ cap(K,Ω∞).

Proof. Combine Theorem 4.8 with Lemma 3.2. �
17



5. Estimates of capacities for explicit sets

In this section we establish estimates of the capacities for explicit sets, including space-
time cylinders and special hyper-graphs. First, let us define the standard elliptic capacity
for a compact set K, K ⊂ Ω, as

cape(K,Ω) = inf

{ˆ
Ω

|∇u|p dx : u ≥ χK , u ∈ C∞0 (Ω)

}
.

Theorem 5.1. Let K ⊂ Ω be a compact set such that cape(K,Ω) = 0. Let φ : [t1, t2]→ Ω,
0 < t1 < t2 < T , be a Lipschitz continuous function and let the set Kφ be defined as

Kφ := {(x+ φ(t), t) : x ∈ K, t ∈ [t1, t2]}
and assume that it belongs to ΩT . Then

capvar(Kφ,ΩT ) = 0.

Proof. Let Kε = {x : d(x,K) < ε} for ε > 0. Then also the closure of U := {(x+φ(t), t) :
x ∈ Kε, t ∈ [t1, t2]} belongs to Ω × R for small enough ε > 0 and it covers Kφ. By the
assumptions we find a smooth function u ∈ C∞0 (Kε) such that u ≥ χK and(ˆ

Kε

|∇u|p dx
)1/p

< ε2. (5.1)

Let us now consider the function

v(x, t) := u(φ(t) + x)θ(t),

where θ ∈ C∞0 (−ε/2+ t1, t2 +ε/2), θ = 1 on [t1, t2] as well as |θ′| ≤ 2/ε, and we also define
φ(t) := φ(t1) when t < t1 as well as φ(t) := φ(t2) when t > t2. Then v ∈ W 1,∞

0 (Ω × R)
and v ≥ χKφ . Strictly speaking this is not an admissible smooth test-function since φ is
only Lipschitz, but this point could easily be overcome by an approximation argument.

From (5.1) we get that

‖v‖pV(Ω∞) ≤ c(t2 − t1 + ε)ε2p.

We also see that

∂tv(x, t) = ∂tφ · ∇u(φ(t) + x)θ(t) + u(φ(t) + x)θ′(t),

and consequently

|∂tv(x, t)| ≤ ‖∂tφ‖∞|∇u(φ(t) + x)|+ |θ′(t)| |u(φ(t) + x)| .
Using Hölder’s inequality, Sobolev’s inequality, and (5.1) we get

‖∂tv‖Lp′ (Ω×(−ε/2+t1,ε/2+t2)) ≤ c(t2 − t1 + ε)1/p′‖∂tφ‖∞‖∇u‖Lp′ (Kε) + cε−1‖u‖Lp′ (Kε)
≤ c(t2 − t1 + ε)1/p′‖∂tφ‖∞ε2 + cε.

Thus, for suitably small ε > 0, we obtain

‖∂tv‖V ′(Ω∞) ≤ c1ε,

for a constant c1 = c1(t2 − t1, ‖∂tφ‖∞, |Ω|, n, p) > 1. Letting ε to zero finishes the
proof. �

Next, we will derive a lower bound for the variational capacity in terms of the elliptic
capacity. Since we are going to consider time slices, we need the following convenient
notational tool, the t-slice of E ⊂ Rn+1 is defined as follows

πt(E) = {x : (x, t) ∈ E} ⊂ Rn.

18



Theorem 5.2. Let K ⊂ ΩT be a compact set and let λ2 = capvar(K,ΩT ). Then

ˆ λ2−pT

0

cape(πt(K),Ω) dt ≤ capvar(K,ΩT ).

Proof. Let v ∈ C∞0 (Ω× R) be such that λ2
v = ‖v‖W(Ω

λ
2−p
v T

) < λ2 + ε. Then

cape(πt(K),Ω) ≤
ˆ

Ω

|∇v(x, t)|p dx,

and henceˆ λ2−p
v T

0

cape(πt(K),Ω) dt ≤
ˆ λ2−p

v T

0

ˆ
Ω

|∇v(x, t)|p dx dt ≤ ‖v‖W(Ω
λ

2−p
v T

) < λ2 + ε

follows. Letting ε to zero finishes the proof. �

A point has a zero elliptic p-capacity if and only if p ≤ n, see for example Section 2.11
[10]. From this and the previous two results we have the following corollary.

Corollary 1. Let φ : [t1, t2]→ Ω be a Lipschitz continuous function with 0 < t1 < t2 < T
and define Φ = {(φ(t), t) : t ∈ [t1, t2]}. Then

capvar(Φ,ΩT ) = 0

if and only if 2 ≤ p ≤ n.

Lemma 5.3. Let 2 ≤ p < n and Qr = B(0, r) × (t0 − τ, t0) such that Qr b ΩT . Let
λ2 = capvar(Qr,ΩT ). If Qr ⊂ Ωλ2−pT , then

capvar(Qr,ΩT ) ≥ c−1τrn−p

with c = c(n, p).

Proof. We know that

cape(B(0, r),Ω) ≥ cape(B(0, r),Rn) ≥ c−1rn−p,

see for example [1, 10, 24]. Using Theorem 5.2 we conclude that

capvar(Qr,ΩT ) ≥ c−1τrn−p. �

The converse of Lemma 5.3 holds as well.

Lemma 5.4. Let 2 ≤ p < n, Qr = B(0, r) × (t0 − τ, t0), Ω = B(0, 2r) and assume that
Qr b ΩT . Then there exists a constant c = c(n, p) such that

cap(Qr,Ω∞) ≤ c(rn + τrn−p).

Proof. Let u solve 
−4pu = 0, in Ω \B(0, r)

u = 1, on B(0, r)

u = 0, on ∂Ω.

Then ˆ
Ω

|∇u|p dx ≈ rn−p. (5.2)
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Furthermore, u is a supersolution to the p-Laplace equation in Ω and 0 ≤ u ≤ 1. Next,
define the function

v(x, t) :=


0, if (x, t) ∈ Ω× (−∞, t0 − τ)

u(x), if (x, t) ∈ Ω× [t0 − τ, t0)

h(x, t), if (x, t) ∈ Ω× [t0,+∞),

where h(x, t) is the solution to the Dirichlet problem
ht −∆ph = 0, in Ω× (t0,∞)

h(·, t) = 0, on ∂Ω× [t0,∞)

h(·, t) = u(·), in Ω× {t0}.

Since v is bounded we observe that v satisfies a comparison principle, (cf. for example
Lemma 2.9 in [3], Theorem 2.4 or Theorem 1.1 in [14]). This implies that v is a superso-
lution in Ω∞ satisfying v ≥ χQr . Moreover, since h is a solution in Ω× (t0,∞), we have
the usual energy estimate

sup
t>t0

1

2

ˆ
Ω

h2(x, t) dx+

ˆ ∞
t0

ˆ
Ω

|∇h|p dx dt ≤ 1

2

ˆ
Ω

u2(x, t0) dx ≤ 1

2

ˆ
Ω

1 dx ≤ crn .

Integrating (5.2) in time over [t0 − τ, t0), using the previous estimate, and Theorem 4.1
we see that

cap(Qr,Ω∞) ≤ c‖v‖en,Ω∞ ≤ c(rn + τrn−p). �

Theorem 5.5. Let Qr = B(0, r)× (t0 − rp, t0), and assume that Q2r ⊂ ΩT . Then

cap(Qr,Ω∞) ≈ rn.

Proof. Follows from (3.2), Lemma 5.4, Lemma 5.3, and Theorem 4.9. �

Let us now state a useful comparison lemma between the energy capacity and the
nonlinear parabolic capacity. Observe that earlier, we only worked the equivalence be-
tween the capacity and the energy capacity for a finite union of cylinders in Theorem
4.1 whereas the lemma below is for any compact set. Due to the lack of a convergence
theorem for the energy capacity with respect to shrinking sequences of compact sets, we
only establish a one sided bound in the next lemma.

Lemma 5.6. Let K ⊂ Ω∞ be a compact set. Then there exists a constant c = c(n, p) > 1
such that

capen(K,Ω∞) ≤ c cap(K,Ω∞).

Proof. There is a shrinking sequence of compact sets Ki ⊂ Ω∞, i = 1, 2, . . . , such
that ∩iKi = K, and each Ki consists of a finite union of space time cylinders. Since
capen(·,Ω∞) is a non-decreasing set function, the conclusion of the lemma follows easily
from [13, Lemma 5.8]. �

Our next theorem is in some sense a parabolic counterpart to the fact that the elliptic
capacity only sees the external boundary, i.e.

cape(K,Rn) = cape(∂eK,Rn),

where ∂eK is the external boundary, that is, the boundary of the unbounded component
of the complement of K. See for example [22] or [28].
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Theorem 5.7. Let Q+
r = B(x0, r)× (t0, t0 + τ) be such that Q2r ⊂ Ω∞ and let

H = {(x, h(x)) : x ∈ B(x0, r)}
where h ∈ C(Rn) satisfies h(x) = t0 on ∂B(x0, r) and H ⊂ Q+

r . Then

c−1

(ˆ ∞
0

cape(πt(H),Ω) dt+ rn
)
≤ cap(H,Ω∞) ≤ c(rn + τ rn−p)

with c = c(n, p).

Proof. The bound from above follows immediately from Lemma 5.4. Let us consider the
lower bound. To this end, for any ε > 0 we find v such that ‖v‖en,Ω∞ ≤ capen(H,Ω∞) + ε.
Since v is p-superparabolic and v ≥ χH, we have by the lower semicontinuity that 1 ≤
v(z) ≤ lim infy→z v(y) whenever z ∈ H. Define

H̃ := {(x, t) : x ∈ B(x0, r) , t ∈ (t0, h(x))},
i.e., the set of all the space-time points lying between the graphs (x, t0) and (x, h(x)).
Set now

ṽ(x, t) =

{
min(1, v(x, t)), if (x, t) 6∈ H̃
1, if (x, t) ∈ H̃.

m Note that ṽ is lower semicontinuous in Ω× (t0,∞) and hence it is p-superparabolic in
Ω× (t0,∞) by the “Pasting lemma” in [3].

Let us now consider two cases,

(A) |πt0(H)| ≥ 1/2|B(x0, r)|,
(B) Alternative (A) does not hold.

In alternative (A), we know that v ≥ 1 on H∩B(x0, r)×{t0} and we have a bound for
the measure of this set. Next, since v is a bounded p-superparabolic function in Ω∞, it
is also a supersolution by [17, Theorem 5.8]. As such we can see that by testing formally
with vχ{t>t0}

1

2
|B(x0, r)| ≤

ˆ
Ω

v2(x, t0) dx ≤ 2

ˆ
Ω×(t0,∞)

|∇v|p dx dt ≤ 2‖v‖en,Ω∞ , (5.3)

where rigorous treatment goes via mollifications.
In the case of alternative (B), we know by the continuity of h that there exists σ > 0

such that |πt0+σ(H̃)| ≥ 1
4
|B(x0, r)|, moreover we know that ṽ ≥ 1 on πt0+σ(H̃). Again

since ṽ is a bounded p-superparabolic function, we can as in (5.3), test formally with
uχ{t>t0+σ}(t), and get

1

4
|B(x0, r)| ≤

ˆ
Ω

ṽ2(x, t0 + σ) dx ≤ 2

ˆ
Ω×(t0+σ,∞)

|∇ṽ|p dx dt

= 2

ˆ
Ω×(t0+σ,∞)\H̃

|∇v|p dx dt ≤ 2‖v‖en,Ω∞ .

Thus we obtain that in both alternatives (A) and (B) we have |B(x0, r)|/4 ≤ ‖v‖en,Ω∞ ≤
c cap(H,Ω∞), where in the last inequality we have used Lemma 5.6. Together with
Theorem 5.2 we get the desired lower bound by summing up. �

From the above theorem we can obtain a symmetric upper and lower bound on the
capacity of a cylinder, which tells us that the parabolic capacity of a cylinder is essentially
the sum of the elliptic capacity of the lateral part integrated and the parabolic capacity
of the bottom disc.
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Corollary 2. Let Qr = B(0, r)× (t0 − τ, t0) be such that Q2r ⊂ Ω∞. Then

capvar(Qr,Ω∞) ≈ rn + τrn−p.

Proof. From Lemma 5.3, and Lemma 5.4 we get that

τrn−p

c
≤ capvar(Qr,ΩT ) ≤ c(rn + τrn−p).

To improve the lower bound, note that B(0, r)× {t0} ⊂ Qr, hence we can use Theorem
5.7 and Theorem 4.8 to get

capvar(Qr,ΩT ) ≥ rn

c
. �

If the hyper-graph bends up, we can establish a symmetric upper and lower bound
even in this case.

Corollary 3. Let Q+
r (τ) = B(0, r)×(t0, t0 +τ) be such that Q+

2r(τ) ⊂ Ω∞ and let H be as

above. Suppose furthermore that H ⊂ (x0, t0) + (Q
+

r (τ) \ Q+

r/M(τ/M)) for some M > 1.
Then

c−1
(
rn + τ rn−p

)
≤ cap(H,ΩT ) ≤ c

(
rn + τ rn−p

)
,

for c = c(n, p,M).

Proof. The upper bound follows from Lemma 5.4. The lower bound, on the other hand,
is a consequence of the fact that

cape(πt(H),Ω) ≥ rn/c,

and thus Theorem 5.7 yields the result. �
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