Teknillinen korkeakoulu
Teknillisen fysiikan ja matematiikan osasto

Sampsa Pursiainen

Numerical Methods in Statistical EIT

Diplomi-insin6érin tutkintoa varten tarkastettavaksi jatetty diplomityo

Espoo 13.10.2003

Tyon valvoja:  professori Erkki Somersalo
Tydn ohjaaja: professori Erkki Somersalo



TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
TEKNILLISEN FYSIIKAN JA MATEMATIIKAN OSASTO

Tekija: Sampsa Pursiainen

Osasto: Teknillisen fysiikan ja matematiikan osasto
Pésaine: Matematiikka

Sivuaine: Mekaniikka

Ty6n nimi: Tilastollisen EIT-ongelman numeeriset menetelmét
Title in English: Numerical Methods in Statistical EIT
Professuurin koodi ja nimi: Mat-1 Matematiikka

Tyo6n valvoja: Professori Erkki Somersalo

Tyo6n ohjaaja: Professori Erkki Somersalo

Tiivistelma:

Impedanssitomografia (EIT) on kuvantamismenetelma, jolla selvitetdén kaksi tai kolmiulotteisen
kappaleen sdhkémagneettisia ominaisuuksia perustuen kappaleen reunalla tehtéviin mittauksiin.
Téssé tydsséd tuntematon on skalaariarvoinen johtavuusjakauma, kappaleeseen syotetdédn virtoja
sen reunalle kiinnitetyjen elektrodien avulla ja virtojen aiheuttamat potentiaalit mitataan.

Tyon tarkoitus on esitelld menetelmié, joiden voidaan melko yleisesti sanoa sopivan hyvin EIT-
ongelman numeeriseen ratkaisemiseen. Lisidksi menetelmié sovelletaan yksinkertaisen esimerkki-
tapauksen ratkaisemiseen. Numeerisen ratkaisemisen vaatima laskennallinen tydméara on yleensé
suuri ja riippuu sovellettujen menetelmien tehokkuudesta. Tavoitteena on 16ytaéd tyomaaraltaan
mahdollisimman halpoja menetelmié.

Tyossd keskitytddn kidnteisongelman Bayeslaiseen ratkaisemisemiseen, jossa tehtdvin tunte-
matonta mallinnetaan tiettyd todennédkoéisyysjakaumaa, nk. posteriorijakeumaa noudattavana
satunnaismuuttujana. Posteriorijakauman ominaisuuksia estimoidaan nk. MCMC-menetelmien
(Markov chain Monte Carlo) avulla. MCMC menetelmét ovat tilastollisia algoritmeja, joilla voi-
daan tuotettaa otoksia mielivaltaisista todennikoéisyysjakaumista. Tavoitteena kehittda algorit-
mi, joka konvergoisi mahdollisimman nopeasti, ts. vaatisi mahdollisimman pienen otoksen tuot-
tamista. Posteriorijakauman ominaisuuksien arvioiminen vaatii diskreetin suoran ongelman tois-
tuvaa ratkaisemista. Toinen tarked tavoite onkin 16ytd4 mahdollisimman nopea lineaarialgebralli-
nen menetelmé suoran ongelman ratkaisemiseen. Tilastollisen menetelmén antamia estimaatteja
verrataan regularisoidun pienimmén nelidsumman menetelmien antamiin estimaatteihin.

Simulaatioissa rajoitutaan yksinkertaiseen tapaukseen, jossa vakiojohtavuudesta etsitddn ano-
maliaa, ts. pientd poikkeamaa. Tehokas menetelmi pienten poikkeamien 16ytédmiseksi on tarpeel-
linen kdytdnnon sovelluksissa. Esimerkkitapausta vastaava kasvaim pehmeédssd kudoksessa.

Saatujen tulosten perusteella on selvid, ettd kunnollisen numeerisen ratkaisun 18ytdminen on
usein mahdotonta, miki johtuu ongelman erittdin héiridalttiista ja epélineaarisesta luonteesta.
Tilastollisen menetelman antamat tulokset ovat selvisti parempia kuin pienimman nelisumman
menetelmén ratkaisut vain, jos johtavuusjakaumasta tiedetddn etukiteen tarpeeksi paljon. Eri-
tyisesti tapauksessa, jossa johtavuus on luonteeltaan hyvin epédjatkuva tilastollinen menetelma
on edullinen.
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Abstract:

FElectrical Impedance Tomography (EIT) is an imaging method that provides information about
the electromagnetic properties within a 2D- or 3D-body 2 based on voltage measurements on
the boundary 0€2. In this case, the sought quantity is a scalar-valued conductivity distribution o
within Q. Voltage measurements refer to a finite set of potential values that are measured by an
array of contact electrodes attached on 0€2. The voltage data is generated by injecting currents
into the domain through the electrodes.

The issue of this work is to discuss numerical methods that can be applied to the discretized math-
ematical model of the EIT problem and also to use them in connection with some demonstrative
numerical simulations. The computational work that has to be performed before resulting in
a proper solution is usually large and can often be diminished remarkably by optimizing the
efficiency of the applied numerical methods. One of the central aims of this thesis is to introduce
methods that can rather commonly be told to be suitable for solving the EIT problem.

The major interest is concentrated on solving the inverse problem in terms of Bayesian statistics
by treating o as a random variable with some posterior probability distribution and by employ-
ing Markov chain Monte Carlo (MCMC) sampling methods for estimating the properties of the
posterior distribution. The purpose is to develop such a Monte Carlo algorithm that finding a
proper approximative solution would necessitate as small sample enesembles as possible. Drawing
a sample from the posterior distribution demands for solving one or more forward problems, i.e.
linear systems. Consequently, another important issue is to discover an effective linear algebraic
method of solving the forward problem. Statistical solutions are measured against regularized
least-squares solutions which appear more frequently in literature.

In the simulations, we restrict ourselves to cases where ¢ known in most parts of €2 and only
a relatively small anomaly is sought. The need for a method of locating small perturbations
arises in connection with various real world applications of EIT such as detecting and classifying
tumors from breast tissue.

Summarizing the findings, due to the strong ill-conditioned nature and non-linearity of the in-
verse problem it is often difficult to obtain any appropriate numerical solutions. The statistical
model is preferable to the least-squares approach only if there is accurate enough a priori knowl-
edge available. Especially in cases where the nature of the conductivity distribution is strongly
discontinuous it is advantageous to use the statistical formulation.
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Chapter 1

Introduction

FElectrical Impedance Tomography (EIT) is an imaging method that provides infor-
mation about the electromagnetic properties within a 2D- or 3D-body 2 based on
voltage measurements on the boundary 0€2. In this case, the sought quantity is a
scalar-valued conductivity distribution o within €. Voltage measurements refer to
a finite set of potential values that are measured by an array of contact electrodes
attached on 9€2. The voltage data is generated by injecting currents into the domain
through the electrodes.

The focus of this work is to discuss numerical methods and computational techniques
that can be applied to the discretized mathematical model of the EIT problem and
also to use them in connection with some demonstrative numerical simulations. The
computational work that has to be performed before resulting in a proper solution is
usually large and can often be diminished remarkably by optimizing the efficiency of
the applied numerical methods. One of the central aims of this thesis is to introduce
methods that can rather commonly be told to be suitable for solving the EIT problem.

The EIT problem is divided into the forward problem, which is to solve the electrode
voltages corresponding to a given o, and the inverse problem, that is to find out
o on the basis of the measured electrode voltages. The forward problem can be
formulated mathematically as an H'(Q)-elliptic boundary value problem and dis-
cretized through the finite element method (FEM) yielding a solvable linear system
of equations. In contrast, the inverse problem is non-linear and #ll-conditioned, i.e.
small errors in measured data can cause large errors to the solution. Therefore,
there is no direct method providing the solution. In this thesis, the major interest
is concentrated on solving the inverse problem in a statistical sense by treating o
as a random variable with some posterior probability distribution and by employing
Markov chain Monte Carlo (MCMC) methods for estimating the properties of the
posterior distribution. MCMC methods are relatively simple algorithms that enable
creating random but statistically dependent samples from an arbitrary probability
distribution. The purpose is to develop such a Monte Carlo algorithm that the con-
vergence would necessitate as small sample size as possible. In the case of the EIT
problem drawing a sample from the posterior distribution demands for solving one or
more forward problems, i.e. linear systems. Consequently, another important issue
is to discover an effective method of solving the forward problem.

The inverse problem cannot be solved without having a priori information about



the structure of o. This is due to the ill-conditioned nature of the problem, the in-
completeness of the measured boundary data, the noise in the measurements as well
as the limited computational power of the computers. Again, finding out the most
workable numerical methods is a most case-specific task. We are particularly inter-
ested in discovering methods that are applicable to the numerical demonstrations.
Therefore, we attempt to construct the setups in such a way that the demonstra-
tions would be at the same time both simple and close to some imaginable real world
application.

In the demonstrations, we restrict ourselves to cases where ¢ known in most parts
of 2 and only a relatively small anomaly is sought. Loosely taken the conductivity
distribution is a priori assumed to be of the form

0 =0pg+0

where oy, is some background conductivity distribution having some rather well-
known structure and d is a small deviation having a small-sized support. The problem
is mainly concentrated on locating d of right size and value of conductivity. The need
for a method of locating small perturbations arises in connection with various real
world applications of EIT such as detecting and classifying tumors from breast tissue.

1.1 Outline of the Thesis

In chapter 2, we introduce the mathematical model of the EIT problem. We apply
an electrode model, where the voltages are measured by a finite number of contact
electrodes lying on 9Q. The forward problem is formulated as an H'(f)-elliptic
boundary value problem and discretized by employing the finite element method.
The inverse problem is formulated both as a regularized least-squares (LS) problem
and in terms of Bayesian statistics.

Monte Carlo methods are discussed in the chapter 3. We introduce the idea of
Monte Carlo sampling techniques, the basics of the Markov chain Monte Carlo and
a number of potentially applicable MCMC algorithms.

In chapter 4, we introduce a number of linear algebraic methods. Both direct and
iterative methods are discussed. The aim is to find out methods that provide a fast
way to solve the discretized forward problem. Workability of a method depends on
the dimension of the system, the applied sampling method as well as the a priori
knowledge of the structure of the conductivity distribution. Since it is laborious to
compare the computational efficiencies in practice, we give just some rough estimates
of the computational work loads.

In chapter 5, a small anomaly is sought in some numerical experiments by employing
the methods introduced in the previous chapters. We implement both regularized
least-squares and statistical algorithms.



Chapter 2

EIT Problem

This section introduces the mathematical model of both the forward problem and the
inverse problem. The representation adopts largely the format of [1]. The statistical
formulation of the inverse problem discussed in the last section is based also on [2].

2.1 The Forward Problem

Let © € R", n = 2,3 be a bounded, simply connected domain with a connected
complement. We assume that ) has a smooth boundary. Here, {2 represents the body
with known electromagnetic properties. We consider time-harmonic electromagnetic
fields in €2 with low frequencies. In the quasi-static approximation, the fields can be
described in terms of scalar voltage potential w satisfying the equation

V.-oVu=0 (2.1)

in €. Within this approximation, the function o is complex valued and describes the
admittivity ( i.e. the inverse of impeditivity ) of the body. We restrict ourselves to
cases where the admittivity is real and positive, describing the conductivity of the
body, i.e. o : Q — R4. Physically, this corresponds to the static measurement.

The following definition fixes the admissible class of conductivities.

Definition 1 A conductivity distribution o : Q — Ry is in the admissible class of
conductivities, denoted by A = A(Q), if the following conditions are satisfied:

1. For some N > 1, there is a family {Qj}é-v:l of open disjoint sets, §1; C Q,
having piecewise smooth boundaries and for which

N
a=a.
j=1

Furthermore, we require that a]Qj € C(Q;), 1 <j <N, ie., o restricted to
each subset 2 allows a continuous extension up to the boundary of the subset.



2. For some constants ¢ and C,

0<c<o(xz)<C<oo Ve

In medical applications the subsets 2; in the forward problem may represent the
organs. In the inverse problem, the set of admissible conductivities provides a natural
discretion basis.

Due to the possible discontinuities of o € A, the equation (2.1) must be interpreted
in the weak sense, discussed in detail below.

To describe the current injection and voltage measurements on the surface of the
body, we define a set of surface patches ey C 02, 1 < ¢ < L, as a mathematical
model of the contact electrodes. The electrodes are strictly disjoint, i.e. e, Nep =0
for ¢ # k. If Q € R?, the electrodes are strictly disjoint intervals of the boundary,
and in the case Q € R3, they are sets with a piecewise smooth simple boundary curve
on 0f). Let Iy be the electric current injected through the electrode e;. We call the
vector I = (I, ...,I)"T € RY a current pattern if it satisfies the charge conservation

condition
L
1 =0. (2.2)
(=1

Let Uy denote the voltage on the ¢th electrode, the ground voltage being chosen so
that

L
> Ui=o. (2.3)
/=1

The vector U = (Uy,...,Ur)T € RE is called a voltage vector. In terms of the
current patterns and voltages, the appropriate boundary condition for the electric
potential is given as

0
/atwszzh,1gegg (2.4)
e, ON
ou
— = 0, 2.5
Uc?n o0\ Uey (2.5)
0
Ut 2ol = U, 1<(<L (2.6)
on
Here, the numbers z, are presumably known contact impedances between the elec-
trodes and the body. We use the notation z = (21,...,27)7 in what follows. For

simplicity, we assume that the contact impedances are real. Note that in the forward
problem, only the current patterns on the boundary are specified. However, condi-
tions (2.2) and (2.3) alone are not sufficient to uniquely determine the potential w,
but one needs to require u+ zp0u/0n to be constant Uy on ey. Finding these voltages
is part of the forward problem.

The following proposition was proved in [11]. In the following, we use the notation
H=H Q) ® RE, (2.7)
where H'(Q) is the L%-based Sobolev-space. Further, we denote

H = H/R (2.8)



equipped with the quotient norm,

1w, Ul = inf ll(w = .U = &) (2.9

Thus, (u,U) € H and (v, V) € H are equivalent in H if
u—v=U; -V, =-.-=Ur — V[ = constant. (2.10)
With these notations, the following proposition fixes the notion of the weak solution

of the electrode model.

Proposition 1 Let o € A(S2). The problem (2.1), (2.4)-(2.6) has a unique weak
solution (u,U) € H in the following sense. There is a unique (u,U) € H satisfying
the equation

L
Bo:((w,U), (0,V) =Y LV, (2.11)
/=1

for all (v,V) € H, where the quadratic form B is given as

By ((u, 1), (0, V) = /

L
1
oVu-Vvdr + E / (u—Up)(v—"V,)dS. (2.12)
Q /=1 Zg €y

Furthermore, the quadratic form is coercive in ]H[, i.e., we have the inequalities
aoll(u, U)|[}y < Bos((u,U), (u,U)) < an|(u, U)|[} (2.13)

for some constants 0 < ap < a1 < 00.

2.1.1 Numerical Implementation of the Forward Problem

We apply the finite element method (FEM) [3| for the forward problem.

In order to simplify the numerics, §2 is approximated with a polygonal domain Q,
which is partitioned by generating triangulation 7, = {T1,...,Ta} such that T; N
T; = 0 for ¢ # j and Q= UM_ {T,.}. The subindex & indicates the mesh size.
Additionally, we suppose that o € Hy, C A(ﬁ), where

Hj, = span{xr,, |1 <m < M}, (2.14)

i.e. the basis functions of the discrete subspace Hj coincide with the characteristic
functions of the triangles. The triangles of the partition 75 are called pixels and
Hj,-functions pixelwise constant functions. We write 0 = Zf\i 1 oin; and identify o
with a vector in RM.

The discrete potential field is represented by using a piecewise linear nodal basis
{¢1,...,0n,} of the triangulation 7j, i.e. a set of piecewise linear functions which
take on a nonzero value at precisely one of the nodes of 7;,. We define

Sp =span{yg; |1 <i < N,} (2.15)



The finite element approximation uj € Sy, satisfying the equations (2.1), (2.4)-(2.6)
in the sense of proposition 1 is written as

Nn
uh = Zaigoi (2.16)
i=1
In order that the condition (2.3) is satisfied, the voltage vector is represented as
L—1
T (217
j=1

where the vectors n; € R% are chosen as
ni=(1-10...0)7,
ng = (10-1...0)7,
np1=(10...-1)". (2.18)

By applying the theory of finite elements [3], a substitution of the approximations
(2.16) and (2.17) to the weak form (2.11) yields a matrix equation

Az = f, (2.19)
where z = (o, 8)T € N,, + L — 1 and the data vector f is
0 0
= = . 2.20
/ (Zfl fe(nj)z) (CTI> (220
where 0 = (0,...,0)" € RN» and C € REX(E=1) ig a sparse matrix given as
1 1 1 ... 1
-1 0 ... 0
o -1 0 ... :
c=| . N (2.21)
0o . -1

The stiffness matrix A € RN»TL=1D)x(Nn+L=1) ig the sparse block matrix of the form

B C
A= <CT G) (2.22)
with
L
1 S
Bi; = /awiw d:c+2/ pip;jdS, 1<i, j< N, (2.23)
@ =1 “t e
1 1 . .
Cij —(/soz'dS— / Sﬁids>,1§ZSNn, 1<j<L-1224)
Zl €1 Z]+1 €j+1
L
Gij = / (ni)e(n;)e dS (2.25)
=1 e
z1 ) J
— {eh T (2.26)
21 Zj+1




By solving equation (2.19) an approximate solution for the forward problem is ob-
tained. The N, first coefficients in  give the solution u” in the nodes and the last
L — 1 coefficients give the referenced voltages 3 = (B1,...,0-1)" on the electrodes.
The potentials Uy on the electrodes are calculated with the aid of (2.17) yielding

Uy = Cp (2.27)

2.2 The Inverse Problem

To solve the finite dimensional EIT inverse problem is to estimate the unknown
conductivity distribution o € A(£2) on the basis of the voltage measurements on the
boundary.

Since we want to get as much boundary data as possible, instead of injecting just one
current pattern we inject a set of linearly independent current patterns {I (k)}szl,
I®) ¢ RE, K < L — 1 where L is the number of electrodes. Due to the condition
(2.2) L — 1 is the maximum number of linearly independent current patterns that
can be generated.

The set of measured voltages corresponding to the set {/ (k)}szl is denoted as {
v () },If:l, V(#) ¢ RE. The true measurements are noisy whereas the mathematical
model of the forward problem excludes the noise. The set of electrode voltages
corresponding to the current pattern I (k) and the conductivity distribution o is
denoted by U® (o).

The solution is found iteratively based on the idea of seeking o such that the set
{U®) (o)}, is in some sense the best possible estimate of the set {V*)}K . Bach
set {U®) ()} | is computed by solving a column vector form of the finite dimen-
sional forward problem (2.19)

A, X, =F (2.28)

where X, = (a:((,l),...,a:((,K)) and F = (f(l), N .7f(K))_

2.2.1 Current Patterns

The methods of injecting current patterns can be classified into pair drive methods
and multiple drive methods. In pair drive methods, current is applied each time
between a pair of electrodes. In multiple drive methods current is injected simulta-
neously to more than two electrodes.

Pair drive methods are advantageous over multiple drive methods in the sense that
they are less sensitive to uncertainty in the values of the contact impedances, since in
pair drive methods one does not usually measure voltages with the electrodes inject-
ing currents. Multiple drive methods are better in terms of so called distinguishability
which is defined as follows.

Two conductivity distributions o7 and o9 are distinguishable with measurement pre-
cision € if there exist a current pattern ||I|| = 1 such that

[|U(o1) — Ulo9)|| > € (2.29)



An optimal current pattern to distinguish oy from o9 is the current vector I which
maximizes the distinguishability, i.e.

|U (1) = Uoa)]]
max T (2.30)

It can be shown that the trigonometric current patterns

(k) _ {ImaxCOS(keg)7 1<(<L 1<k<Zk

¢ : L (2.31)
Imaxsin((k — L/2)0;), 1<{<L, 5§<k<L-1

where the constant Imax denotes the amplitude of the current, 8y = 27¢/L is the
angular location of the midpoint of electrode e, and k is the spatial frequency, are
optimal current patterns to distinguish a centered rotation invariant annulus from
a homogenous disc. As a general rule, low frequency current patterns of the form
(2.31) yield the best sensitivity to the deeper regions of € and the high frequency
patterns as (2.31) are mostly sensitive to the regions in vicinity of 9€2.

2.3 Least-Squares Methods

The most commonly used method for solving the above described inverse problem

is the Least-squares approzimation (LS) where the idea is to minimize the error
1G(0) = VI%.

2.3.1 Gauss-Newton Reconstruction

In Gauss-Newton reconstruction one minimizes the functional
O, (0) = |[U(0) — VI[iy + ad(o), (2.32)

where

K L
U@ -VIE = 3 wa o) - v, (2.33)

k=1 1=1
U(o) = UW(0),...,UB)(5)), (2.34)
v = (v, . vy, (2.35)

W = (wpy,;) is a symmetric positive definite weight matrix, A(o) is a regularizing
functional and o > 0. The regularization method is known as generalized Tikhonov
reqularization. Usually ®,(0) is minimized by employing some iterative gradient-
based optimization algorithms. The Gauss-Newton iteration is

o) = 50 _ \D(FD)=1400) (2.36)

HO = (YT J<z>+%aD2A(0<z>) (2.37)
. . . 1 ,

gV = (W) - V) + SaDA"). (2.38)

where J( is a differential and H(gj) € RMXM iq 4 regularized Hessian matrix of the
map o — U(o) evaluated at 0@, g = V&, (6®), DA(¢®) is a differential of the
map 0 — A(o), (D?A(c), = (02A/dar00;)| ) and A% > 0 is a relaxation
parameter controlling the step size.



2.3.2 NOSER Algorithm

Another approach to least-squares approximation is the Newton’s one-step error re-
constructor (NOSER) which performs one Gauss-Newton iteration step starting from
an optimally chosen background to minimize ||U(c) — V|[2. The reconstruction is
computed as

o=09 + (H + adiag(H)) g, (2.39)

where a > 0 is a regularization parameter and
H = (JOJO, 9= NV -0, (2.40)

Since the Jacobian is an ill-conditioned matrix, computing its inverse requires for
regularization which, here, means adding a diagonal weight a diag(H).

2.4 Statistical Model

Since the voltage measurements are assumed to be noisy, it seems reasonable to take
a statistical approach to the inverse problem so as to get solutions as accurate as
possible. Surely, no model can completely represent every detail of reality, but the
aim is to abstract the key features of the problem into a workable mathematical form.
The procedure of drawing conclusions concerning unobserved quantities on the basis
of a probabilistic model is known as statistical inference.

2.4.1 Bayesian Methodology

We formulate the inverse problem in terms of Bayesian methodology. The idea of
Bayesian statistics is to embed all sorts of problem related information and un-
certainty, such as prior knowledge and physical randomness, in a joint probability
distribution by treating all quantities involved in the model as random variables. The
goal is to derive all inferential statements based purely on an appropriate conditional
distribution of unknown variables.

Below, random variables are denoted by capital letters and their values are denoted
by lower case letters.

Let (S, B, P) denote a probability space, B being the o-algebra of measurable subsets
of S and P : B — [0,1] a probability measure. Let

(X,N): S —R"k yv.§ R" (2.41)

Vector (X, N) represents all those quantities that cannot be directly measured while
V represents a vector of observable quantities. X € R"™ represents those variables
that we are primarily interested in while N € R¥ contains unknown but uninteresting
variables.

In terms of Bayesian statistics (X, N) is a random vector following a prior density

7Tpr($7n),



which is typically regarded as known to the researcher independently of the data
under analysis and contains the prior knowledge of the value of (X, N). The prob-
ability of observing V corresponding to a given realization of (X, N) follows a so
called likelihood density

w(v|x,n). (2.42)

More generally, we call a likelihood function any function that is proportional to
the likelihood density. The realized value of (X, N) based the observations V is
summarized in the posterior density , which is typically a conditional distribution
obtained through an application of the well-known Bayes theorem:

m(v,z,n)  7w(v|z,n)Tpr(z,n)

Wpost($,n|v)= () = o) o m(v|z,n)mpr(z,n). (2.43)

The process of a typical Bayesian analysis can be described as consisting of three
main steps:

1. Setting up a full probability model, the joint distribution 7(v,x,n) capturing
the relationship among all variables in consideration. A standard procedure is
to formulate the scientific question of interest through the use of a probabilistic
model, based on which one can write down the likelihood density. The joint
probability density can then be represented as

(v, z,n) = 7(v|z,n)Tpr(z,n) (2.44)

2. Summarizing the findings for particular quantities of interest by appropriate
posterior distributions. Usually, this means employing the formula (2.43).
Moreover, since the realization of N is uninteresting, one often integrates n
out from the density 7ot (2,7 | v).

3. Evaluating the appropriateness of the model and suggesting improvements.

2.4.2 Setting Up the Probability Model

The observation is assumed to follow a deterministic law; that is, we assume that X
and N determine the observable V' uniquely,

V = F(X,N). (2.45)

Here, X and N are assumed to take values X = z € R” and N = n € R¥ and
F :R™* — R™ is assumed to be a known deterministic function. The probability
distribution of the random variable V' is formally given by

m(v|z,n) =0(v— F(z,n)) (2.46)

where § is the Dirac delta in R™. Let mpr(z,n) denote the prior probability density
of the unknown vector (X, N). The joint probability density of (X, N) and V can
be written as

m(x,n,v) = 7(v|z,n)mpr(z,n) = 0(v — F(z,n))mpr(z,n). (2.47)
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Since we have arranged the variables so that N represents all the variables whose
values are not of primary interest, we integrate the variable n out and define the
joint probability density of the variables X and V' as a marginal distribution

w(x,v) = /Rk w(x,n,v)dn = . d(v — F(z,n))mpr(z,n)dn (2.48)

For simplicity, we consider a simple model where the variables X and N are inde-
pendent. This can be written as

mpr (2, n) = Tpr(T) T 6ige (1) (2.49)

where the variable N is identified as noise and is assumed to be additive quantity,
i.e. the model equation (2.45) is of the form

V=fX)+N (2.50)

and the integral (2.48) is written as
k
m(x,v) = /R d(v — f(z) — n)mpr(2) T oi5e (1) dn = Tpr(2) 76150 (v — f(2)). (2.51)

The posterior distribution of X is given by the Bayes formula

m(x,v)

Tpost () = m(z|v) = T(z,v)dz (2.52)

Writing 7(v|z) = 7 4ige (v—f(2)) We have mpas (2) = 7([v) o mpr(z)m(v]z), where
7(v|x) is the likelihood density.

2.4.3 Estimates from the Posterior Distribution

In the formal Bayesian procedure, solution of the inverse problem is the posterior dis-
tribution of X. However, to be able to draw representative images of the conductivity
distribution within €2 one has somehow to estimate the realization of X. Therefore,
the word solution is, as well, used to refer to some estimate of some property of the
posterior distribution.

A commonly used estimate is the (possibly non-unique) mazimum a posteriori (MAP)
estimate
xpap = argmax m(z|v) (2.53)
x

Computation of the MAP estimate leads to an optimization problem.

The maximum likelihood estimate amounts to determination of the maximum of the
likelihood density; that is
Xy = argmax 7(v|x) (2.54)
xT

In highly non-linear and ill-conditioned problems ML estimates are often useless.

It is also common to estimate the conditional expectation

x|y = /n xr(x|v)de. (2.55)

11



2.4.4 Implementation of the Bayesian Model

In terms of the above described probability model, the sought posterior distribution
of the EIT inverse problem is Fpost(O') = 7(o|V), o € Hy, being the discrete ap-
proximation of the unknown conductivity distribution and V containing the voltage
measurements as in (2.35).

We assume the random noise N of the measurements to be additive and independent
of 0. Thus, similarly as in (2.50) we have

V=U(e)+ N (2.56)
The contact impedances are assumed to be known. For convenience, we assume that
the basis functions n, € Hj, are positive.
In this thesis, we employ prior distributions of the form
mpr(o) = my(0)Tpr(o), (2.57)
where 7 is the positivity prior of the form

(o) 1, 0<o0<0j <0omar <0 (2.58)
(o) = .
* 0, otherwise

and 7pr is a subspace constraint
Tpr (2) o< Xspr (€), (2.59)

where XSpr is the characteristic function of Spr denoting a subset of Hj, chosen on
the ground of the prior information. Often, it is not enough just to restrict the
problem to some subspace, but more sophisticated prior distributions have to be
applied (e.g. regularizing priors favoring anomalies of certain size).

In the computations, the noise vector N is a zero mean Gaussian random vector with
positive definite covariance matrix C'. With this choice, the posterior distribution
given by formulae (2.51) and (2.52) is written as

(o[ V) o<y (o) xspy (0) exp(—%(U(U) -~ V)IC7H(U(0) - V). (2.60)

The least squares solution discussed in section 2.3 corresponds to the MAP solution
of (2.60) when W = 1C~1.
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Chapter 3

MCMC Integration

Examining the posterior distribution numerically is usually quite problematic, since
the dimension of the sample space is often large.

For instance, estimation of the conditional expectation requires for evaluation of the
integral (2.55). Applying a standard numerical n-dimensional quadrature is often
impossible, since the computational work load increases rapidly as a function of n.

In this work, the conditional expectation is estimated in a statistical sense through
MCMC sampling methods, a class of relatively simple algorithms that by generating
sample ensembles enable the exploration of an arbitrary probability distribution.
MCMC methods offer a way to solve both integration and optimization problems.
The use of MCMC is profitable in connection with high dimensional problems, since
instead of the dimension the convergence rate depends on the size of the generated
sample ensemble and the exactitude of a priori information.

In this section, we discuss the general idea of the MCMC methods and introduce some
sampling strategies that appear frequently in the literature. We lay the emphasis on
MCMC integration. The main references are [1], [7] and [2].

3.1 Motivation of Monte Carlo Techniques

The fundamental idea behind the Monte Carlo methodology is that the integral

I—/Df(x)dx, (3.1)

over a compact D C R™ can be estimated in a statistical sense by drawing inde-
pendent and uniformly (7 ~ xp) distributed random samples M 20 from D.
The law of large numbers states that the average of large number of independent
random variables with common mean and finite variances tends to stabilize at their
common mean. Therefore, we can approximate

N

I% = (fE) 4o 4 fE)). (32)
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because limy, o0 Im = I, with probability 1. The convergence rate is assessed by the
central limit theorem:

Vm(I, —I) — N(0,~?), in distribution, (3.3)

where

= var{f (@} = [ (£~ Pao (34)

Thus, the error of the approximation (3.2) is O(1/y/m), regardless of the dimension-
ality of x.

Deterministic methods of evaluating (3.1), such as the Riemann approximation and
Simpson’s rule, do not scale well as the dimension of D increases. For example, in
n-dimensional space with D = [0,1]", one will have to evaluate O(m!°) grid points
in order to achieve an accuracy of O(m™!). Hence, due to the property (3.3) the
Monte Carlo approach is especially advantageous when the dimension of D is large.

3.1.1 Example: Importance Sampling

In applications, achieving a feasible convergence rate can be problematic. The vari-
ance 72 can be formidably small indicating that only a small subset of the sample
space D affects notably the value of (3.1), due to which the convergence rate of the
estimate (3.2) would be slow. For similar reasons, an exceedingly large value of ~?
causes slow convergence. It is also possible that one may not be able to produce
uniform random samples in an arbitrary region D.

One way to overcome these difficulties is importance sampling in which the inde-
pendent random samples {9:(1), . 7a:(m)} are generated from a nonuniform easy-to-
sample trial distribution g(x) that puts more probability mass on "important" parts
of the state space D and then correcting the bias by incorporating the importance
weight f(z1))/g(z9)). The integral (3.1) is estimated as

33(]
= Z N (3.5)

Jlg

which has the variance

v =vanisior= [ (£-(2)) oar 3:5)

Thus, a good candidate for g(+) is the one that is close to f(-). By properly choosing
g(+), one can reduce the variance of the estimate substantially. In the most fortu-
nate case, we are able to choose 7(x) ~ g(x), but this is virtually never feasible in
applications.

Because of the great potential of Monte Carlo methodology, various techniques have
been developed by researchers in their respective fields. A fundamental step in all
Monte Carlo methods is to generate random samples from a probability distribution
function 7, often known only up to a normalizing constant. As directly generating
independent samples from the target distribution 7 is usually not feasible, it is often
the case that either the distribution used to generate the samples is different from 7,
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or the generated samples have to be dependent. Schemes that make use of samples
generated from a a trial distribution g, which differs from, but should be similar
to, the target distribution m, are the rejection method, importance sampling and
sampling-importance-resampling.

3.1.2 The General Idea of Markov Chain Monte Carlo

The idea behind the MCMC methods is generating random but statistically depen-
dent samples from an arbitrary probability distribution m. The advance of using
MCMUC is, that even the generated samples are not independent, one does not neces-
sarily have to know much about the structure of 7 in order to draw a representative
sample ensemble.

Below, we introduce some fundamental definitions concerning Markov chains in order
to facilitate the closer inspection of the MCMC methods. We restrict ourselves to
cases where the state space is R".

Definition 2 Let B denote the Borel sets over R™. A mapping A : R" x B — [0, 1]
is called a transition function (also transition kernel), if

1. For each B € B, the mapping A : R" — [0,1], z — A(x, B) is a measurable
function;
2. For each x € R™, the mapping B — [0,1], B — A(x, B) is a probability mea-

sure.

Definition 3 A time-homogenous Markov chain with the transition function A is a
stochastic process {X(J)}‘;‘;l if the transition function satisfies

PxUtD e B xM .. xU)) = pxUt) e B|x), (3.7)
A(z,B) = P(XU*Y e B| XUV =2) Vj (3.8)
More generally, we define
AR (2, B) = PXUTH ¢ B|XU) = z)
= /nA(:c,B)A(k_l)(m,dy),

where AV (z, B) = A(zx, B).

Definition 4 If 7 is a probability measure of XY and f is a scalar or vector-valued
measurable function on R", f € L' (w(dx)), then the distribution of XUt is defined

by

(mA)(B) = . A(z, B)m(dx). (3.9)

Af and wf are defined as
(Af)(z) = . f(y)A(z, dy) (3.10)
wf = [ s (.11)



Definition 5 The measure 7 is an invariant measure of A(x, B) if TA = 7, i.e., the
distribution of the random variable after one transition step is the same as before the
step.

Definition 6 Given a probability measure w. The transition kernel A is called m-
irreducibile with respect to 7 if for each x € R™ and B € B with w(B) > 0 there
ezists an integer k such that A% (x,B) > 0. Thus, regardless of the starting point,
the Markov chain enters with a positive probability any set of positive measure.

Definition 7 A w-irreducible transition function A is periodic if for some integer
m > 2 there is a set of disjoint non-empty sets {E1, ..., En} CR™ such that for all

j=1,...,mand all x € Ej, A(x’Ej—f—l(mOdm)) = 1. Otherwise, A is aperiodic.

Definition 8 A m-irreducible chain {X(j)}]o-il with invariant distribution T is re-
current if, for each B with w(B) > 0,

P{X™ € Bio. | XD =2} > 0 for allz, (3.12)
P{X(”) c Bi.o. |X(0) =z} = 1 form-almost allx. (3.13)

The notation {X(”) € Bz’.o.|X(0) = x} meaning that the Markov chain starting
from x wvisits B infinitely often i.e. Y xmcpl = 00. The chain is Harris recurrent
if P{X™ € Bi.o.| X© =z} =1 for all z.

Definition 9 A w-irreducible recurrent Markov chain is positive recurrent if it has
an invariant distribution, total mass of which is finite; otherwise it 4s null recurrent.

Definition 10 A Markov chain is called ergodic if it is positive Harris recurrent and
apertodic. If SE denotes the hitting time for set B for a chain starting from x, then
an ergodic chain with invariant distribution m is ergodic of degree 2 if

/B (dz)E[(S5)2] < oo (3.14)

In traditional Markov chain analysis, one is often given the transition function and is
interested in knowing what the stationary distribution is, whereas in Markov chain
Monte Carlo simulations, one knows the equilibrium distribution and is interested
in prescribing an efficient transition rule so as to reach the equiblirium. The Monte
Carlo approximation

Ta= 23000 = [ f@ynd) = (3.15)
i=1

converges, since the law of large numbers and the central limit theorem apply also
to the Markov chains [7].

Theorem 1 (a law of large numbers) Suppose {X(j)};?il is ergodic with equi-
librium distribution ™ and suppose [ is real and m|f| < oo. Then for any initial
distribution, f, — wf almost surely.
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Theorem 2 (the central limit theorem) Suppose {X(j)};?';l is ergodic of degree

2 with equilibrium distribution ™ and suppose f is real-valued and 7(f?) < oco. Then
there exists a real number v(f) such that the distribution of

V(fn = 7f) = N(0,7(f)?) (3.16)

weakly (i.e., in distribution) for any initial distribution on z(©).

3.2 Metropolis-Hastings Algorithm

Metropolis- Hastings algorithm prescribes the transition rule based on a "trial - and
- error” strategy. It uses a symmetric proposal function T'(z,y) to suggest a possible
move from z to y and then via an acceptance-rejection rule ensures that the target
distribution 7 is the equilibrium distribution of this chain.

Algorithm 3.2.1 (Metropolis-Hastings)

o Given the current state ) and a proposal function T(z,y) that satisfies T(xz,y) >
0 if and only if T(y,x) > 0.
o Draw y from the proposal distribution T(z®, y).

e Draw U ~ Uniform|0,1] and update

1 < ®)
$(t+1) — Y, Zf U = T('I ay) (317)
20 otherwise
where ()T (v.2)
gy W) Ty,
r(x,y) = min {1, @) T(z,y) } (3.18)

The algorithm is a generalization of the Metropolis algorithm, cornerstone of all

MCMC techniques, which additionally sets a symmetry requirement 7'(z,y) = T(y, z).
Apparently, choice of the proposal function has a great effect on the convergence

rate, which is why the Metropolis-Hastings algorithm is useful in many connections:

it does not set serious restrictions on the proposal probability.

3.2.1 The Detailed Balance

To show that the Metropolis-Hastings algorithm prescribes a valid transition rule
A(z,y) with invariant distribution 7(x) we have to show that

/W(.T)A(l‘, y)dx = w(y). (3.19)

A(z,y) can be written down explicitly: For any x # y, the probability that we
actually make the move from x to y is equal to T'(x,y) multiplied by the acceptance
probability, i.e.

A(z,y) = T(z,y) min {1, :rr(y)T(y,:B)}? (3.20)
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for x # y. Hence,

_ : ()T (y,x)
m(x)A(z,y) = w(x)T(x,y) mm{l,m}
= min{r(2)T(z,y), 7(y)T(z,y)} = 7(y)Aly, =),  (3.21)

which is the detailed balance condition implying that (3.19) holds, since

[r@ i@y o= [w@aw.)de =) [Awe) i =x) G2

by symmetry. Thus, the samples M 2@ produced by the chain can be regarded
as approximately following the target dlstrlbution .

3.3 Algorithms Based on the Metropolis-Hastings Rule

We are especially interested in employing the Metropolis-Hastings transition rule
for the EIT inverse problem as it allows adapting the proposal distribution to the
structure of the posterior distribution (2.60). This section introduces some widely
used algorithms based on this rule.

3.3.1 Metropolized Independence Sampler (MIS)

One of the most simple proposal transition functions is an independent trial density
T(z,y) = g(y), which generates the proposed move y independently from the from
the previous state (. This method is an alternative to the importance sampling.

Algorithm 3.3.1 (MIS)

o Given the current state z*).
e Drawy ~ g(y).
o Simulate U ~ Uniform[0,1] and let

: : w(y)
L) Y, if U < min {1, w(I(w)} (3.23)
2O otherwise,

where w(x) = w(x)/g(x) is the usual importance sampling weight

The efficiency of MIS depends on how close the trial density is to the target distri-
bution 7(y).

Being a primitive sampling technique MIS can be applied in connection with more
sophisticated algorithms. For instance, it is possible to insert a couple of MIS steps
into Gibbs sampler iteration described in section 3.5 when correctly sampling from
a conditional distribution is difficult. With low variances the conditional distribu-
tion differs virtually from zero only in a very close neighborhood of the point where
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it attains the maximum value. Therefore, drawing random numbers from the con-
ditional distribution by employing regular grids can be very inefficient in terms of
computing time and requires for treating numbers very unequal in magnitudes. In
many Bayesian computations sampling from the conditional distribution can be per-
formed reasonably well using MIS and a Gaussian approximation of the posterior
distribution as g(y). This might be worth trying also in connection with the EIT
problem. Moreover, dealing with numbers of different magnitudes is not a problem
when using MIS since (3.24) can be written as

LD — {i% if log(U) < min {0,1og(w(y)) — log(w(x(t)))}

z® . otherwise,

(3.24)

3.3.2 Random-walk Metropolis

The random-walk Metropolis algorithm is based on perturbing the current configu-
ration z® by adding a random "error" so that the proposed candidate position is
y =z + ¢ where € ~ g~ is identically distributed for all ¢. The parameter v is the
"range" of the exploration controlled by the user.

When one does not have much information about the structure of the target distri-
bution, g, is often chosen to be a spherically symmetric distribution. Typically, g,
is the spherical Gaussian distribution N(0,~72I). The algorithm is,

Algorithm 3.3.2 (Random-walk Metropolis)

o (Given the current state z(®

e Draw € ~ g, and set y = +® + €, where Gy ~ N(0,42I). The variances v is
chosen by the user.

o Simulate U ~ Uniform[0,1] and update

- (y)
2 — {y’ U S 260 (3.25)

2O otherwise

It has been suggested that v should be chosen so that a 25% to 35% acceptance rate
is maintained. Despite of the fact that the Metropolis-Hastings algorithm (3.2.1)
allows one to use asymmetric proposal functions, a simple random-walk proposal is
still most frequently seen in practice, since finding a good proposal transition kernel
is rather difficult. However, in order to achieve an adequate acceptance rate, one is
often bound to use very small step-size in the proposal transition, which will easily
result in exceedingly slow movement of the corresponding Markov chain. In such
case, convergence rate of the algorithm would arguably be very slow.

3.3.3 Multiple-Try Metropolis (MTM)

Multiple-Try Metropolis (MTM) is a generalization of the Metropolis-Hastings’ tran-
sition rule allowing the sampler to take larger jumps without lowering the acceptance
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rate. The idea is to generate weighted samples by defining a weight function
w(z,y) = m(x)T(x,y)A(z,y), (3.26)
where T'(x,y) is an arbitrary proposal transition function and A(z,y) is a non-

negative symmetric function that can be chosen by the user. A modest requirement
is that both T'(y,x) > 0 and A(x,y) > 0 whenever T'(x,y) > 0.

Algorithm 3.3.3 (MTM)

Given the current state x®

Draw k independent trial proposals y1, ..., yk, from T(x(t), -). Compute

w(yj, x(t)) = W(x(t))T(x(t), yj))\(x(t), Yj) (3.27)

Select y among the trial set {y1, ..., yx} with probability proportional to w(y;, z(t)),
Jj=1,...,k. Then, produce a "reference set" by drawing x7,...,x;_, from the

distribution T(y, ). Let 2} = z®.

Accept y with probability

w(y171)3(t)) t+o- w(ykvx(t)) }

w(zy,y) + - +wzy,y) (3.28)

Tg = mm{l,

and reject it with probability 1 — ry. The quantity ry is called the generalized
M-H ratio.

A straightforward (but boring) calculation shows that the method fulfils the detailed
balance condition. A; is often chosen to be a constant function, but it is also usual
to give larger weights to larger j’s in order to increase the step-size. For symmetric
T(x,y), one can choose A(x,y) = T (x,y). Then, w(z,y) = 7(x). The resulting
algorithm is known as orientational bias Monte Carlo (OBMC).

Algorithm 3.3.4 (OBMC)

o Given the current state x(*)
o Draw k trials y1,...,yr from a symmetric proposal function T(x(t), ).

o Select y =y, among the y’s with probability proportional to 7(y;), 7 =1,...,k;
then, draw the reference points xi,...,x;_y from the distribution T(y,-). Let

o Accept y; with probability

pow(y) 4+ ()
mln{l, @) -+ () } (3.29)

and reject with the remaining probability.
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Combining MTM algorithm with Metropolized independence sampler (3.3.1) results
in multiple-trial Metropolized independence sampler (MTMIS) algorithm. Since the
trial samples are generated independently one does not need to generate another
"reference set".

Algorithm 3.3.5 (MTMIS)

o (Given the current state z®

o Generate a trial set of i.i.d samples by drawing y; ~ g, j = 1,...,k, in-
dependently, where g is a trial distribution chosen by the user. Compute

w(y;) =m(y;)/9(y;) and W =35 w(y;).
e Draw y from the trial set {yi1,...,yx} with probability proportional to w(y).

o Let 2D =y with probability

min{1, W_w(ngw(x)} (3.30)

and let £t = 2 with the remaining probability.

3.3.4 Correlated Multipoint Proposals

A more general scheme is provided by the multipoint method. For simplicity We use
the notation

Yy = W1, 95)
Yy = (y]7ay1)

in the following. Multipoint method chooses the proposed move from multiple cor-
related proposals at each iteration step. Let y; ~ P;(-|z) and let

yi ~ Pi(-lz,y1,..y5-1), J=2,...,k
Pi(ypygle) = Pule) - Pi(yjle, yps-1),

In this case, the weight function is defined as
Wi (z, y[l:j]) = 7T(x)ljj(y[l:j] |$))\] (z, y[l:j])v (3.31)
where ); is a sequentially symmetric function, i.e.
Aj(a,b,...,2) = Xj(z,...,b,a)

The algorithm is as follows:
Algorithm 3.3.6 (Multipoint method)

e Given the current state (V).

e Sample y from the trial set {yi,...,yx} with probability of y; proportional to
w(y[l:”,m(t)). Suppose y; is chosen.

21



o Create a reference set by letting x; = y;—; forl=1,...,7 =1, 3:;

drawing
xin ~ Pm(‘y7 xf]_;m—]_])?

form=j5+1,... k.

Let (Y =y with probability

and let 2 = 2O with the remaining probability.

= 2® and

(3.32)

(3.33)

A particular case of the multipoint method is the random grid Monte Carlo algorithm.

Algorithm 3.3.7 (Random grid method)

Given the current state x(0).
Randomly generate o direction e € R™ and a grid size r € R.
Construct the candidate set as

y=x+10l-7-e

forl=1,... k.

(3.34)

Drawy = y; from {y1,...,yx} with probability proportional to w(y;) = u;m(y;),

where w; is a constant chosen by the user (e.g. u; =+/7).

Construct the reference set by letting xj7 = y—1-r-e for | =1,..., k. Therefore,

x;=yj1 forl <jandxf =2 — (1 —j)-r-eforl>j.
Accept the candidate y with probability
p=min {1,Y w(u)/ Y ()}
=1 I=1

and reject with the remaining probability

(3.35)

Above, we have been able to choose \; = u;/P;, which is a sequentially symmetric

function, since the trial set {yi,...

trial proposal P; is sequentially symmetric, i.e.

Pj(?/[l:j]‘x) = Pj(x‘y[jzl})'
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3.4 Dynamic Weighting

The use of dynamic weighted samples (2, w®) € (R”,R*) for controlling Markov
chain simulation was introduced in [13]. The dynamic weighting scheme has proved
to be exceptionally useful as a tool for solving high dimensional integration problems.
Below, we introduce two algorithms so as to illustrate the idea of employing dynamic
weights.

Algorithm 3.4.1 (R-type move)

e Given the current state (), w®).

e Draw y from T(w(t), y) and compute the Metropolis-Hastings ratio

m(y)T (y, =)

® ) — .
T = O T, y)

(3.37)

e Choose 0 = 0(w®, ) >0, and draw U from Uniform(0,1). Then let

t t - w®r(z® y)
(2D D)y = (y, w' )ct()x( ()t,)y) (:L) 9), U< wBr(z® y)+6 (3.38)
’ (m(t)’ wi® (w Té‘r ’y)+9)>, otherwise

Algorithm 3.4.2 (Q-type move)

e Given the current state (), w®).

e Propose the next state y from the proposal T(m(t), -) and compute the Metropolis
ratio

W(y)T(me) (3.39)

t) _
T = LT y)

o Choose 8 = O(w®, 21) >0, and draw U ~ Uniform(0,1). Update (2, w®)
to (‘,I;(t+1)7w(t+1)) as

(alth) gy _ @ max(0uOra®, ), if U < min1uOr(?,4)/0)
’ (z®, aw®), otherwise
(3.40)
where a > 1 can either be a constant or a random variable independent of all
other variables.

Instead of the Monte Carlo approximation (3.2) 7f is estimated by employing the
standard importance sampling estimate

fn - w(l) + .o+ w(m) R TI'f, (3.41)

The purpose of bringing importance weights into the dynamic Monte Carlo process
is to provide enable large transitions not allowable by the standard Metropolis tran-
sition rules. Firstly, w®) tends to increase in value as far as z(t) = z(®) ie. the
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proposed y is not accepted. Secondly, the probability of accepting the proposed move
increases as the value of w® increases. As a result, the algorithm is not as likely
stuck into local modes as the standard Metropolis would be.

Although the way of updating the weight variable allows an adjustment of the bias
induced by the non-Metropolis moves, neither R-type move nor Q-type move does not
have 7 as the equilibrium distribution. The above scheme is justified by employing
the following two definitions.

Definition 11 Random wvariable x is called correctly weighted by w with respect to
7 if Yo, wf(zr,w) < w(z), where f(x,w) is the joint distribution of (x,w).

Definition 12 (IWIW) A transition rule is said to be invariant with respect to
importance weighting (IWIW) if it maintains the correctly weightedness of (x,w).

R-type move satisfies the IWIW property, whereas Q-type move does not. In both
cases, it is still possible that the weight variable does not have a stable distribution or
it may have an infinite expectation, which is the case with R-type move with 6 = 1.
By a general weak law of large numbers [14] the approximation (3.41) converges even
if the expectation would be infinite, but the convergence rate in such a case would
apparently be too slow for implementing the algorithm in applications.

Generally, the theory of dynamic weighting is still rather subtle, although it has been
applied successfully in many difficult problems.

3.5 The Gibbs Sampler

The above described algorithms are based on "trial-and-error" strategy. In contrast,
the Gibbs sampler is a conditional sampling technique no rejection being incurred
at any of its sampling steps. The Markov transition rules of the algorithm are built
upon conditional distributions derived from the target distribution.

Suppose that the random variable can be decomposed into d components, i.e. x =
(x1,...,24). In Gibbs sampler, one randomly or systematically chooses a coordinate,
say xi, and then updates it with a new sample z} drawn from the conditional distri-
bution 7(:|z(_1]), where x[_ 4 refers to {z;, j € A°} for any subset A of the coordinate
indices. Algorithmically, we describe two types of Gibbs sampling strategy.

Algorithm 3.5.1 (Random-scan Gibbs sampler) Let () = (xgt), e ,xg)) for
iteration t. Then, at iteration t + 1, we conduct the following steps:

e Randomly select a coordinate i from {1,...,d} according to a given probability
vector (au,...,aq) [e.g. (1/d, ..., 1/d)].
(t )

3 +1) from the conditional distribution 7r(-|x[_ﬂ) and leave the remaining
components unchanged; that is, let

o Drawx
o =af?, (3.42)
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Algorithm 3.5.2 (Systematic-scan Gibbs sampler) Let () = (a:gt), . ,acg)).

At the t + 1 iteration:

(

o We draw :L’itﬂ) from the conditional distribution

(x| 1‘§t+1), ey Z(tjll), xl@l, ey xét)) (3.43)

fori=1,...,d

It is easy to check that every conditional update step in the Gibbs sampler leaves 7
invariant. To see this, suppose z(!) ~ 7. Then, :BE?Z] follows its marginal distribution
under m. Thus,

(t+1) () (®)

m(ay Y 2f) < mlaly) = w2 ), (3.44)

i (i)’ Ti
which means that after one conditional update, the new configuration still follows

distribution .

More detailed discussion of applying the Gibbs sampler to the EIT problem can be
found in [1]. The Gibbs sampler is not implemented in this thesis, which is largely
due to the difficulties that occurred in connection with drawing random samples from
conditional distributions.

3.6 Surrogate Transitions

It is typical in Monte Carlo simulations that evaluation of 7(z) involves expensive
computation, although it is cheap to obtain a relatively good approximation 7*(z).
In the EIT inverse problem, evaluation of the posterior density mp,st(c) requires for
solving the discretized forward problem, i.e. linear system of equations, the size of
which depends on the resolution of the discretion. It is, however, often sufficient to
speed up calculations simply by linearizing the mapping o — U(o) around the initial
guess og and by approximating

U(o) =~ U*(o)=U(o)+ DU(0¢)(0 — 09), (3.45)
7TI70315(0—) ~ W;ost(a) (346)

where DU (o) is the Jacobian matrix and 7, (o) is the value of the posterior density

corresponding to the approximation U*(o). The method simplifies considerably the
numerics and has been successfully applied in [1].

The idea of the surrogate transition method is to draw samples from the target dis-
tribution 7 with aid of the approximation 7*. We assume that one can conduct a
reversible Markov transition S(z,y) leaving 7* invariant, i.e. the detailed balance

T (2)S(x,y) = 7 (y)S(y, x) (3.47)

is satisfied. A valid surrogate transition can be devised by making use of the Metropo-
lis principle on 7*(x)

Algorithm 3.6.1 (Surrogate transition method)
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o Given a current sample x(0).
o Let yo =™ and recursively
Yi ~ S(Yi-1,"), (3.48)
fori=1,... k.

o Update 2V =y with probability

: m(yr) /7" (y
min {1, W(x(t];)/w*(z];t)) } (3.49)

and let 2D = 2 with the remaining probability.

The proposal transition from yy to y can be written as
S®) (o, yi,) = /"'/S(y07yl) - S(Yk-1, Yk )dy1 - - - dyk—1

In words, S®)(-,-) is the k-step transition function for the surrogate Markov chain
defined by S. It is easy to see that 7*(x)S®) (x,y) = 7*(y)S® (y, ), Thus, the
actual transition function from z® to (1 =y # z has the form

o) = SO (o) i d 1. FW)/ T (Y)
A(z,y) = SW (2, y) {LW(:E)/W*(@}. (3.50)

Hence,

m(x)A(z,y) = Tr*(x)S(k)(a:,y)min{

— Tr*(y)S(k)(y,a:) mln{ 7I'(.CL‘) ’ ﬂ-(y) }
= 7(y) Ay, v), (3.51)

which is the detailed balance.

3.7 Simulated Annealing

Besides integration, MCMC methods can also be applied to solve high dimensional
optimization problems. In connection with EIT inverse problem an optimization
method is needed if one wants to evaluate MAP or ML estimate. As an example of
an optimization algorithm we introduce the simulated annealing (SA) method.

Suppose our task is to find the minimum of a target function h(x). This is equivalent
to finding the maximum of

m(x) x exp{—h(x)/T} (3.52)

at any given temperature 7. Let 171 > 15 > --- > T} > --- be a sequence of mono-
tone decreasing temperatures in which 77 is reasonably large and limg_,, T = O.
At each temperature T} we run Nj steps of the Metropolis-Hastings (M-H) or
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Gibbs sampling scheme with 7 (x) o exp{—h(x)/T;} as the equilibrium distri-
bution. An important mathematical observation is that for any system in which
[ exp{—h(z)/T}dz < oo for all T > 0, distribution 7, as k increases, puts more
and more of its probability mass into a vicinity of the global minimum of h(z) when
T}, is close to zero. Theoretically, at least, we should be able to obtain good samples
from 7 if we let the number of M-H iterations Ny be sufficiently large. Decreasing
the temperature during computation can be termed as variance reduction and is
commonly used in the field of MCMC computing.

Algorithm 3.7.1 (SA)

o Initialize at an arbitrary configuration (9 and temperature level T .

e For each k, we run Ny, iterations of an MCMC scheme with 7 (x) as its target
distribution. Pass the final configuration of x to the next iteration.

o Increase k to k+ 1.

It can be shown that the global minimum of hA(z) can be reached by SA with prob-
ability 1 if the temperature variable T}, decreases sufficiently slowly.

3.8 Implementation Issues

Although MCMC algorithms are simple, there are several practical implementation
issues that need to be considered before MCMC can be applied to examine a posterior
distribution. It is commonly agreed that finding an ideal proposal chain is an art. In
practice, one always tends to feel unsatisfied in settling down on any proposal chain.

3.8.1 Burn-in Phase

Usually, after starting a chain a number of iteration steps have to be taken before the
chain has reached the important parts of the target distribution and starts to produce
appropriate samples. The beginning of the chain is often called a burn-in phase.
The length varies largely depending on the implemented sampling technique. A long
burn-in phase is a problem occurring especially in connection with the random-step
Metropolis algorithm and small step sizes.

3.8.2 Choosing a Sampling Plan

There are several ways to draw extesive sample enesembles through Markov chains.
At one extreme, it is possible to generate n independent realizations from the poste-
rior distribution by using n separate runs, each of length m, and retaining the final
states from each chain. The run length m is to be chosen large enough to ensure that
the chain has passed the burn-in phase. The other extreme is to use a single long run,
or perhaps a small number of long runs. Experience appear to favor the use of long
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runs. The major drawback of using short runs is that it is virtually impossible to tell
when a run is long enough based on such runs. Even using long runs, determining
how much the initial series is affected by the starting state is difficult.

A complication that arises from the statistical dependence when using a single series
is that variances of estimates are more difficult to obtain. One way to increase the
level of independence is to retain every rth point of a sample path. Often, behavioral
characteristics of a chain is analyzed in terms of autocorrelation curves. Below, the
level of independence is studied in terms of autocorrelation.

3.8.3 Determining the Run Length

According to the traditional form of the central limit theorem the variance of the
Monte Carlo estimate f,, decays as v2(f)//m supposing that the samples are inde-
pendent and identically distributed. The Markov chain based sampling scheme was
introduced, since drawing correlated samples eases generation of sample ensembles.
However, correlation between samples usually decreases the statistical reliability of
the estimate. Thus, it seems justified to argue, that the less correlated are the con-
secutive samples the faster is the convergence rate of the Monte Carlo estimate f,,
and the shorter run lengths are needed. The concept of autocorrelation provides us
an advantageous way to study the algorithm efficiency.

Let the Markov chain be such that the assumptions of the theorems 1 and 2 are
satisfied. Suppose we have drawn samples (), ..., (™ via an MCMC sampler with
7(x) as its equilibrium distribution. Let us further assume the process has run long
enough needed for the equilibration of the chain. Then, the variance of the estimate
can be approximated as

m

mvar{f,,} = mvar{ S+t f(ac(m))} = Y(f) [1 + ZmZ_:l (1 - %)pj}
j=1

Q

P(H[1+ 2§jm} (3.53)
j=1

where 42(f) = var{f(x)} and p; = corr{ f(zM), f(zU+1))}. We define the integrated
autocorrelation time of f as

)= 5+ D 05 (354
j=1
using which _
mvar{ f,,} = QTiTLt(f)’YZ(f)- (3.55)

In effect, this variance is equal to that of an estimator with m/[27;,:(f)] independent
random samples. Thus, we call m/27;,¢(f) the effective sample size.

Often, p; decays exponentially. Therefore, we can model the autocorrelation curve
as

Iojl scexp { - TZ o (3.56)
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where

Teap(f) = lim sup (3.57)

j—oo — log |pj]

is known as ezponential autocorrelation time. When 7., (f) is large, the integrated
autocorrelation time can be expressed as

<. 1 1 1
. ~ 7.7/7-61 (f)_,: —_ -
Tznt(f) ;:0 e P 2 1 —e— 1/Tegjp(f) 2 Teﬂfp(f) (358)

The relaxation time of the system is defined as

Tezp = SUDP  Teap(f) (3.59)
heL?(m)

As an example showing that the concepts of autocorrelation and relaxation time
are closely related to the convergence rate, suppose the state space of the Markov
chain is finite and let f be an eigenfunction corresponding to an eigenvalue A of the
transition matrix, then it can be shown that p;(f) = M. Thus,

14+ A 1
Tint(f) = 2(17_)\)’ Teap(f) = —m> (3.60)
and the relaxation time is 1
U — .61
Teap Tog gl (3.61)

where Ay is the second largest eigenvalue of the transition matrix, which reflects
the convergence rate of the Markov chain also on the basis of the theory of Markov
Chains [2].
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Chapter 4

Linear Algebra

The computational work load required for evaluation of the posterior density mpost(o)
is mainly concentrated in solving the discretized forward problem (2.19). Thus,
the convergence rate of the implemented MCMC algorithm depends highly on the
efficiency of applied linear algebra in terms of CPU time.

In this section, we introduce some linear algebra methods that can be applied to
(2.19). Since the appropriateness of a method depends on both the prior informa-
tion and the implemented sampling scheme, we give only fairly rough trendsetting
estimates of the computational efficiency. Generally, the goal in discovering an effec-
tive method is to derive benefit from the property that the sampler typically perturbs
o only in a relatively small-dimensional subspace of Hy,.

Determining the minimal computational effort needed for solving a linear system is
an interesting issue. For instance, suppose a n X n system is such that the set of
multiplying constants in each equation can be obtained by permuting the multipliers
of an other equation and suppose the right hand sides of the equations are equals.
Then, due to the symmetry argument we can deduce that the set of unknowns satisfy
1 = Ty = ... = Ty. Provided that the symmetry property is known solving the
system requires for dividing the right hand side by the sum of the multipliers. This
takes O(cn) floating point operations. Apparently, the knowledge of symmetry di-
minishes drastically the computational effort which otherwise would be of magnitude
O(cen?). Still, it is also apparent that there is no sense in checking the symmetry
condition if there is no reason to believe that symmetry exists.

4.1 Updating the System Matrix

In order to simplify the notation, we denote the total number of the degrees of
freedom as Ny = N,, + L — 1 in further discussion. Let ¢t € R and d € R™ such that

1, fortel
di _ ore . (41)
0, otherwise

where the number of entries in [ is equal to k, which is the dimension of the finite
element mesh underlying the support of the Hj, function corresponding to d. Suppose
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the conductivity distribution is updated as
o—o+td (4.2)

The corresponding update to the system matrix A, € R¥*Ns can be written as

Agytg = Ay + tVaAgVE, (4.3)
where V; € RNVsXF v, = (el ey ... ek,), where 7th column is the I;th standard
basis vector, i.e.

1, forj=1

(i) = {0: othirwisle ’ (44)

and Ag € R*¥** is symmetric and positive definite matrix of the form

Vo - Voide, i,7€l
(Aa)ij = Jo Vi Ve, I (4.5)
0, otherwise

On the basis of (4.3) it is clear that the rank of the update is k. Often, k is a
relatively small number. For instance, & = 3 in a two dimensional case, where the
update is d = (0,...,1,...,0), the local-basis functions of Hj, are the characteristic
functions of FEM elements and the basis of FEM mesh is piecewise linear. In the
following sections, we show that the system (2.19) is especially easily solved in the
case of low-rank updates.

4.2 The Residual Form

Suppose the X, is known and the task is to solve X,414q. Thus, we may write
Xottd = Xo + Ryy1d, where R4 is the solution of a residual form of the equation
Av1tdaXo1ta = F and can be written as

(Ag + tViAV] ) Roira = —tVaAgV] X, (4.6)
Additionally, it is convenient to define
Royta = —tZ4 A VE X, (4.7)
where Zg’t is found as a solution of the equation
(Ay + tVyA VI 2 = V. (4.8)

z3 e RNs*k since k being the dimension of the update is independent of the
number of current patterns L —1. When £ is small enough the number of columns in
Z%' is smaller than the number of columns in Xotta- Thus, it is favorable to apply
(4.8). The residual form is especially important when using an iterative solver, since
in that case the computational workload depends usually linearly on the number of
load vectors.

In the section (4.6) we will show that the residual form is useful if the sampler
operates only in a small subset of 2.
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4.3 Choleski factorization

The linear system (2.19) is symmetric and positive definite. Thus, the system matrix
can be factorized as A = LLT, which is the well-known Choleski factorization. The
lower triangular matrix L can be calculated as

forj=1:n

i—1
ij = \/m
fori=j+1:n
Lij = (Aij — 02  LinLiy) /Ly
end
end.

which can be easily verified in a straightforward manner. The standard process
of solving a symmetric and positive linear system Ax = b employs the Choleski
factorization as follows:

Factorization Factor the matrix A into LL~.

Triangular solution Solve Ly = b and L7z = y.

The process of solving Ly = b is known as backward substitution and is written as

fori—1: n
2= (b — 325\ Lijz) / Lis
end

4.3.1 Computational Work Load

We can approximate the number of floating-point operations needed for computing
L as

n

N SDDETI TR VEI () SF R ore)
j=1 j=1

j=1i=j+1 j=1
B 2<n2(n+1) B n(n+1)(2n—|—1)>
B 2 6
nd  nd n?
2( - ) == :
= 2(5 3) 3’ (4.9)

since both the jth outer and the jth inner loop perform both 7 multiplications and
J summations. With similar arguments we conclude that the backward substitution
takes approximately

- 2 1
o<Z2z‘="(”2+> o n? (4.10)
=1
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floating-point operations. Thus, solving an arbitrary symmetric and positive definite
linear system takes O(n?/3) operations as a whole.

4.4 Choleski Factorization of a Sparse Matrix

The system (2.19) is sparse meaning that the matrix consists largely of zeros. Sparse-
ness can be taken into account in the computational process the entire manoeuvre
being

Ordering Find a "good" ordering (permutation P) for the given matrix A.

Storage allocation Determine the necessary information about the Choleski factor
L of PAPT to ensure correct data structures. This is known as symbolic
factorization.

Factorization Factor the permuted matrix PAPT into LLT.
Triangular solution Solve Ly = b and L'z = y. Then set x = P72,
The first two phases are so called symbolic part. The second phase, symbolic fac-

torization, is discussed more closely in [8]. In this thesis, we discuss only the first
phase.

The purpose of permuting the system matrix before factoring is to decrease the
number of nonzero elements in L. Generally, the number of nonzeros is largely
predetermined by the bandwith of the system matrix, which we define as

Definition 13 We call d > 0 the bandwidth of the matrizx A € R™™ provided that
A =0, Vk—4>d 1<k l<n (4.11)

Suppose that A € R™*™ is a symmetric and positive definite matrix having a band-
width d. Then, the first column of its Choleski factor L is

L1 = VA

Lil :Aij/Lllu for i:27...n,

since Ap; = 0 for all |1 — k| > d. Thus, Lijgre1 =0forall 1 <¢{<n-d-1
Assuming that

Lk+d+€,k:07 V1Sk<]7 1§£§n_d_k7 (412)
we have
Jj—1 1 Jj—1
Ljvarej = (0+ Z LjxLjvayer)/Ljj = I Z LjkLj-1)+dv@e+1)k
k=1 I k=1
1
:L—ZLj7k~o=0, Vi<é<n—d—j (4.13)
X R

33



and we can inductively deduce that
Lpe=0,foral [{—Fk| >d (4.14)
Thus, the bandwidth of L is < d.

In practice, it is reasonable to assume that the bandwidth of A is equal to the
bandwidth of L, since it is justified to assume that the element of L is nonzero as
far as it cannot be shown to be zero. However, on the basis of (4.14) we see that the
Choleski factor L can be obtained as

for j=1:n

— j—1 2
ij - \/A” B ;:max{l,j—d} L’L]
for i =75+ 1:min{j +d,n}

i—1

Lij = (Aij = 24— mmax1,j—ay LikLin)/ Lj
end
end,

and the corresponding backward substitution can be written as

fori=1:n

zi = (b — Zé:nax{l,i_d} Lijzj)/ Lii-
end

4.4.1 Computational Work Load

In this case, the inner loop depends on d. Thus, the number of floating-point oper-
ations is approximated as

n j+d n
x> Y 2d+1)=> d(d+1)xnd (4.15)
Jj=li=j+1 j=1

and the number of floating-point operations taken by the backward substitution is
simply
n
x Zd = nd x O(dn). (4.16)
i=1
indicating that the number of operation needed for solving a sparse system is prede-

termined by the factorization. Thus, the total number of operations is of magnitude
O(nd?).

Bandwidth of the System Matrix

Excluding the boundary conditions we can approximate the bandwidth of the matrix
(2.22) supposing that

Aij == / O'V(pi . Vgoj d.SU, (417)
Q
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which is the standard FEM stiffness matrix. Since we use piecewise linear basis
functions ¢, A;; differs from zero, if and only if both ¢; and ¢; are connected to the
same triangle. Hence, if we want to constrict the bandwidth as small as possible, the
system has to be ordered (permuted) so that all the degrees of freedom connected to
an arbitrarily chosen triangle are numbered close to each other.

It can be shown that the bandwidth corresponding to an optimal numbering is in
one dimensional case of magnitude d 1, in two dimensional case d x /n and in
three dimensional case d oc n?/3. This is motivated by the figure (4.1). Hence, we
can estimate the number of floating-point operations required for sparse Choleski
factorization as

1D : Ofen)
2D : O(cn?)
3D : O(en™?)

[ | | | | | ]
n

Figure 4.1: The square shaped lattice is
numbered so that the distance between any
two degrees of freedom connected to an ar-
bitrarily chosen triangle is of magnitude
\/n. The corresponding distance in the one
dimensional lattice does not depend on n.

4.5 Sherman-Morrison-Woodbury —formula

Let A € R™™ be invertible, Uy, Uy € R™*F and let I+U§A_1Ul be invertible. Then,
[4]
A+ UH =4t — A\ (T+ UF AUy tuT AL (4.18)
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Thus, rank k correction to the matrix A causes a rank k correction to its inverse.

The equation (4.18) is known as the Sherman-Morrison-Woodbury —formula. The
validity can be proven in a straightforward manner simply by expanding the product

(A + U1U2T)71(A + U1U2T)

(A — A7l (1 + UT Ao~ tuf A-YA+ Ul . (4.19)

Suppose that d, o € Hy, and t € R is chosen so that also 0+td is admissible. We apply
(4.18) to updating the inverse matrix of (2.22) by choosing A = A,, U; = tVzA4 and
Us = Vy. Then, A+ U U = A, + tVyAV)] and

I+ULF A7 U = T +tVE ATV A, (4.20)
is invertible, which can be shown as follows.

Since o + td is admissible, the matrix A,y is positive definite. Moreover, we can
choose s > max{—t,0} so that the condition

0<c<(oc—sd)(z)<C<oo Vzel
is satisfied. Thus, o — sd is also admissible and we may write
Agitg = Ag_sa + (s + ) VgAV] (4.21)

where Ay 144, As—sq and Ay are positive definite matrixes. As a consequence, A;l
and A,_s, exist and are positive definite. Hence, we have

eV (AP + VA Ve = 2T (AN + (t+ s)VaAS V)

=T A e + (t+ s) (V)T ALY

o—sd

(Vaz) >0 (4.22)

for all x # 0, since s was chosen so that s +t > 0, from which we see that
A;l + tVdTAleVd is positive definite and invertible and we may write

(I+tVI AT VA ™ = A (A + VAT V)L (4.23)
As a result, we conclude that the inverse of A,1g can be written as

Aot = (A + tVaAgV )™

At —tAZIVA (T +tVEAZIW VA ) VAL (4.24)

4.5.1 Computational Work Load

Supposing that the dimension of the update &k is much smaller than the dimension of
the whole system, i.e. £ << Ng. Then, it is preferable to compute first the inverse of
the full k x k -matrix Ag(I+tV] A=1Vy), which is known to take not more than O(k?)
floating point operations. Taking into account that AV represent just picking the
columns I from A, ! we conclude that the product

K1 = [Ad(I + tVdTA(;lVdA@*l] [VdTAgl]

k x N kxk k x N (4.25)
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requires for evaluating k?N, separate multiplications of floating-point values and
k(k — 1)Ns additions, thus, O(k(2k — 1)Ns) flops as a whole. Similarly, computing
the product

Ky =1 [A;lvd] [Kl]

4.2
N, X Ny Ny x k k x Ny (4.26)
requires for O((2k — 1) N2) operations. In the summation
Ao +tVahgVI) = A K.
(Ao + tVahaVy) o T2 (4.27)

Ng x Ny Ng x Ny Ng X N
N2 elements are added together taking O(IN?) operations.

Hence, computational work load of updating the inverse matrix by employing the
Sherman-Morrison-Woodbury —formula (4.24) is of magnitude

O(k3) 4+ O(k(2k — 1)N,) + O((2k — 1)N?2) + O(N?) = O(2kN?) (4.28)

Comparing this to the work load required for the Choleski factorization, we see that
there is no sense in updating the whole inverse of (2.22). However, supposing that
we do updates only in a small subspace of R™s, the Sherman-Morrison-Woodbury
—formula provides a fast solution method, which is shown in the following section.

4.6 Restriction to a Submatrix

Multiplying the equation (4.24) from right by Vj gives

-1
AU-‘rtd

Vi =AWy —tA7 Va1 + tV A Vaha) T VAT, (4.29)
Employing the notation introduced in section (4.2) and denoting Z¢ = Z&Y this is
Zyira =28 =231 +tVFZINg) VT 74, (4.30)

Thus, supposing that Z¢ is known the solution of (4.8) can be obtained very easily.
Again, multiplying (4.24) from right gives

Xoita=Xo —tZ3(I +tVIZIN) "WV X,. (4.31)
and we see that by knowing Z¢ one is able to directly correct the solution X,.
More generally, suppose that we do contiguous updates; that is,
01— o1 +tidi =09 — 09 +tedys =03 — ..., (4.32)

such that d; € W c RNs for all d;, where the dimension of W is Nyy. Let W be a
matrix consisting of the standard basis vectors of W

W = (€W1 ew, ... eWNW) (4.33)

Multiplying the equation (4.24) corresponding to the update o; — o; + t;d; from

right and by denoting ZCI,/YH = Zg‘;tidi = A;ﬁrtidiW we have
Z) =2y —tZ8 (I + V] Z3 Ng)) VI Z) (4.34)
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By noting that W is a submatrix of identity matrix we see that Z},"; is a submatrix
of A;il. Again, V. is a submatrix of W indicating that Zc‘,ii is submatrix of ng.
Hence, we obtain th_/ﬂ, if we know ZZ‘;.

To summarize, if the updates are restricted to the subspace W, it is enough to correct
only Nyy columns of AJ1; that is, the matrix A 1W.

To give an example, the MCMC sampling strategies are based either on acceptance-
rejection strategy or sampling from conditional distributions, due to which it is,
apparently, possible to construct an algorithm in which a number of t— or d— values
have to be tested before one is accepted. In such a case, we could proceed as

Algorithm 4.6.1

o Start with o and a proposed update 0 — o +td € Hy, de W.

o Solve X,1tq employing (4.31) and, then, evaluate the posterior density.

o [f the proposed update is accepted, solve errtd using (4.34) and set o0 = o +1d.
Above, the idea is each time to update as small number of columns as possible.

Generally, (4.31) is cheaper operation than (4.34). However, Z}fitd has to be solved
before setting o = o + td, since Z, is needed in (4.31).

4.6.1 Computational Work Load

Evidently, updating each column of A, ! with Sherman-Morrison-Woodbury —formula
requires for a similar computational effort, since the columns can be updated inde-
pendently from each other. Thus, supposing that

Nw
= . 4.35
o= (435)
it seems justified to estimate the computational work load of (4.34) as
O(20kN?) (4.36)

on the basis of (4.28). Hence, the efficiency seems to depend linearly on the ratio a.

4.7 Domain Decomposition

When the updates 0 — o + td are not restricted to a small dimensional subset the
Sherman-Morrison-Woodbury is not a workable method. Generally, in the case of
global updates there is no faster direct method of solving the forward problem than
the sparse Choleski factorization. However, it is possible that the structure of the
global updates can be taken into account when determining a method of solution.
To give an example of such a case we introduce the idea of domain decomposition
methods.

38



Let the polygonal domain € be decomposed so that = va A}, where the sub-
domains € satlsfy Q; ﬂQ =0, for all i # j and Q; = {T )}k T () € Tp, i.e. each
subdomain ( is polygonal and coincides with some subset of the trlangulatlon Th.

Suppose first that conductivity distribution has a cylindrical structure illustrated in
figure 77 the decomposition being Q@ = 0 U 0. The value of conductivity is
constant in both € and . Then, the matrix (2.22) can be partitioned as

(1+t,)AlY 0 (1+t,)A%Y)
A= 0 (1+12)A (1+1)AP) (4.37)

(1+4)AG) (L+8)AR) (14t +t)Apy + (1 + b + 1) AT,

where t1,t2 € R, B refers to the set of nodes lying on 8()1 N 8@2 and I refers
to other degrees of freedom related to the subdomain indicated by the superior
index. To update the system matrix is to update either ¢; or t2. A straightforward
multiplication shows that A can be written as

A=LDL" = LD\ D,L" (4.38)
where L and D are sparse block matrices of the form

I 0 0

L= 0 I o, (4.39)
1 1)y — 2 2)\ —

Ay (A AR (AR T

(1+t1) A

Dy = (1+t2)A% |, (4.40)

I

I

Dy=| I . (4.41)

S 4 §(2)

S and S@ are Schur complements of the form

SW = (L4t +t)AY) — (14 1) AG (A7) 1Al (442)
SO = (L4t +t2)AT) — (1 + o) AT (AT 1AT). (4.43)
Denoting
x?) f(l)
= xgz) . f= (2) (4.44)
TB fB

In terms of (4.38) the equation Az = f can be equivalently written as DoLTx =
DL e

10 (A)-1ADN [ (14 t)AlM)-1 0 0
071 (AP 1AB | [ 2P| = 0 (1+t)AP)"1 0| x (4.45)
00 SW 453 B 0 0 I

I 0 0\ [r"

0 I 0 )|




a block wise backward substitution yields the solution. Since matrices Ay[) and Ag%
are now independent of o, the computational effort of solving (4.46) after updating
the conductivity distribution is largely determined by the undermost equation

(S(l) n 5(2))$B — fp— Ag}(z‘l%))_lff) _ A(BQ}(Ag))—lfl(?) (4.46)

A similar treatment applies to the general case. Suppose that the number of sub-
domains is N and let R; be a restriction matrix such that R;u corresponds to the
nodes lying on the boundary 0¢2;. Denoting up = Zf\il ﬁ?ug) the generalization of
(4.46) can be written as

N N
(Z RZTS@RZ-)UB = f5— Y RFAG (AG) 1 p (4.47)
i=1 1=1

4.7.1 Computational Work Load

Apparently, the computational work load is a function of the length of Ufil o
The Schur complement S®) is practically always a full matrix, since (Agll))_1 is full
as an inverse matrix. Thus, the workability of the method decreases rapidly as
the boundaries 9 lengthen. Therefore, it is not evident whether the method is

applicable in practice.

Figure 4.2: A circular domain ) that has
been decomposed in Q1 and Q. o is as-
sumed to be constant in each subdomain.
The red circle indicates the boundary Bis.

4.8 Conjugate Gradients (CG)

According to the well-known discrepancy principle, due to the noise in the measure-
ments one cannot expect an approximate solution U*(0) ~ U(co) yield a smaller
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residual error than what is the measurement error; that is, an approximation U* (o)
can be considered to be accurate enough provided that

U (e) = Ulo)]| <, (4.48)

where € is an overall estimate of the noise level. Thus, in some cases it might
be sufficient just to find an approximate solution X of (2.19). Therefore, it seems
possible that some iterative linear algebraic method could turn out to be a preferable
way to solve the forward problem.

To give an example of an iterative method, we introduce the conjugate gradient (CG)
method, which is one of the most often used iterative methods applied for solving
symmetric and positive definite linear systems.

4.8.1 Quadratic Function J

To be able to motivate the idea behind conjugate gradients, we introduce first some
concepts of crucial importance.

Let J : R® — R be a quadratic function,
1
J(y) =y Ay —y"b. (4.49)

Let A € R™™ ™ be a symmetric and positive definite matrix and let Ax = b. Then, J
attains its minimum at x = A~1b.

This is easily verified by writing

1
Ja+y) = S@+y) A +y) - (@+y)"
1
= §(xTA:z + 22T Ay + 4T Ay) — (z +4)Tb
1
= §(bTA’1b + 267y +yT Ay) — T Ao —yTh

1l p L,
= —y Ay — =b" A
2y Y 2b b

—%bTA_lb — J(z+0) = J(z). (4.50)

v

J is a convex function (i.e. J(Az+(1—N)y) < J(Az)+J((1—-N)y), forall 0 < A < 1),
since it is convex in all directions p € R™, which we see by writing

d? d? 1 1
—J (w0 +tp) = —=[= (w0 + tp)T A(zo + tp) — (w0 + tp)Tb] = —p" Ap.  (4.51)
dt dt?'2 2
Therefore, the minimum
pr = argmin J(zy +tpy), (4.52)
is attained provided that
d? 1 . T
7715 (@ + awpr)” Alwy + aipr) — (25 + akpr) 8] = 0 (4.53)
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implying that aypl A(zy, + agpy) = pLb, which is equivalent to

_ pg(b — Axy)

4.54
pF Apy (4:34)

g

Please note that unlike solution of the complete linear system, the minimum of
J(zk + tpr) with respect to t, since computing oy requires only for evaluating the
matrix-vector product Apg, summation of two vectors plus evaluation of two inner
products.

The gradient of J(zy) is
VJ(z) = Az, — b= —rp. (4.55)

Thus, the residual rp = b — Az, is the direction in which J decreases most rapidly.

4.8.2 CG Algorithm

In the conjugate gradient method, the solution of a symmetric and positive definite
system Az = b, A € R™" ig found based on the idea of updating the candidate
solution x; as

T4l = T + QP (4.56)
where oy, is chosen as in (4.54) and po, . . ., pr are so-called congugate directions; that,
is

prAp; =0, forall j=1,...,k—1 (4.57)

Consequently, kth step minimizes J in the direction py and due to the effective way
of choosing the consecutive directions the exact solution of the complete system is
reached in not more than n steps. Moreover, evaluation of ay is computationally
cheap operation and each conjugate direction pr can easily be computed from the
gradient 75_1.

Algorithm 4.8.1 (Conjugate Gradient Method)
:L‘(]:O, Tflzrozb,pflzo

for k=0,1,2,...

p = [ral? /e ]

Dk = MkDk—1 + Tk

ay = [[ril[*/pf Api

Th+1 = Tk + OkPE

Tht1 = Tk — g Apy,

end

The following result states the validity of the algorithm.

Theorem 3 Let A € R™™ "™ be symmetric and positive definite and let Ax = b. Then,
the conjugate gradient method satisfies

1. Tpa1, Dk, 7k lie in the Krylov-space K, i.e.

Th+1,Pk, Tk € Kk-i—l = span{b, Ab7 s Akb}a (458)
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2. The residuals are orthogonal, i.e. Tg?”j =0, for all k # j and the directions
p; are A-orthogonal, i.e. p{Apj = 0 for oll k # j. Moreover, provided that

Tk ?é 0;
span{ry,...,r} = span{p1,...,pr} = Kk (4.59)
8. Let
I-[la:R* =R, [lylla = vy"Ay. (4.60)

The function g(y) = ||z — y||4 satisfies g(y) > g(xx) for all y € K.

4. The algorithm converges to the exact solution in not more than n steps; that
18, 7, = 0 for some k < n. Consequently,

P dimgen) = 0 (4.61)

Proof.

1. Since pg = pop—1 + 10 = 10 and 1 = g + Qppg = Qgrp, We can assume
that (4.58) holds for some k. Then, rp11 = 1y — apApk. Thus, 11 € Kiyq.
Because pri1 = pey1Pk + rr+1 and Tpypo = Tpy1 + Qpp1Prr1, we have also
Th+2, Pk+1 € Kit1-

2. Since rg = po, a straightforward calculation gives

|lpol[?
Apo)
P& Apo
= |lpol® = llpol/> = 0 (4.62)

réry = rg (ro — coApo) = pg (po —

Additionally, 7o — 11 = Apy/ap implying that

1 1
piFAPO = *P{(TO —r1) = —(1ro + 7“1)T(7“0 —71)
(&)} (&7))
1
= —(ullrol* = |m|*) =0 (4.63)
Qg

Suppose both r;-frj =0 and piTApj =0 for all j < ¢ < k. Apparently, this is
true with k£ = 1. Moreover,

|Ir& ||
Tk = (re — o Ap) Tre = [|rl|? — T Ap (Pk — prpr—2)"
k
= |lrll® = [l = 0 (4.64)
Tty = (i — axApy)Try = arpi Arj = aypl A(pj — pjpj—1)
—0, j<k (4.65)

Thus, rZ-Trj =0 for all j < ¢ < k+ 1 implying that Tgrj = 0 for all k # j.
Particularly, the residuals are linearly independent.

Since r; € K for all j < k, we have span{rg,r1,...,7,} C Kj. Again,
dim(Kx) < k and due to the linear independence dim(span{ry,...,rx}) = k.

Thus, we can deduce
span{ry,...,rp} = Kk. (4.66)
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Consequently, p; € K; L g, ie. rgpj =0 for all j < k. Hence,

Pry1Apr = ;k(ﬂk+1pk +rps1) (7l — TEy)
1
= OTk(,uk-i-l(Mkpk—l +7%) + 1) (k= Tha)
1
= ;k(uk+1’\rk’\2 —|Ires1l?) =0 (4.67)

1 .
(1jpj—1 + Tj)T(TkH —rgro) =0 j < k(4.68)

Pho1Ap; = pj Appp = —
g

which is p] Ap; = 0 for all j < i < k+ 1. Thus, p;{Apj =0 for all k # j. The
positive definiteness of A implies the linear independence:

k k
Y Bpi=0 = plAY Bipi=Blpli=0 = B=0  (469)
Jj=1 Jj=1

Again, we have
Spa‘n{pla s 7pk} = le (470)

3. On the basis of (4.59), we can write

Yo := argminex, ||z — yllh = Argminyespan po} 1% — yll4
= ||A7"b — Bopol 3 = B3pg Apo — 260b"po + 6T AT, (4.71)

which is a polynomial of order two with respect ro By. Thus,

bT'po ||ro| |2
Bo = - - (4.72)
pdApo  pLApo

where we have used the identity b = pg = 9. Hence, we have yg = agpo =
To + aopo = Z1.

Now, let yr = zp for some k, i.e. we suppose that x; minimizes the func-
tion g(y) = ||z — y||a in K. On the basis of (4.59) and A-orthogonalization
span{pit1} = Kiy1 \ Ki and p{_Hy =0 for all y € Ki11. Hence,

Ye+1 = argmingei, |2 — ylla = 2 + Brr1prt1
|z = yesalla = |z — zl[d + 2Bk1Ph 1 AAT D — 21) + By |kl A

= [lo — 2[4 + 2685+19h410 + Bt [P [ (4.73)

Since g(y) > g(xg) for all y € K11, we have ||z — zk||a < ||z — zx||. Thus,
2, = k. Again, By is obtained as

Ve (0= Az ok v (e (epe—1 + TR) 4 TRg)
Bry1 = = =
DPk+1ADPk+1 DPk+1APk+1 Pk+1ADk+1
furi1 el 2 ||7pg1l?
g g = ak 1- 474
Pr+1ADkr1 Prt1APR+1 * (4.74)
As a result,

Yktl = Tk + Qp1Pk1 = Thoyl (4.75)

Now, an inductive deduction implies that y; = x; for all k.
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4. Provided that ro # 0,...,r,—1 # 0, we have dim(span{ro,...,m,}) = n. Thus,
x € span{ro,...,r,} = K,. Consequently,

T, :argminyeKHHx—yHi: ||l —x||la=0 (4.76)

from which we see that the finding the exact solution takes not more than < n
steps. The equation (4.59) indicates that

dim(span{ro, ..., }) < dim(K,) (4.77)
for all K < n. Due to the orthogonality we conclude that

4.8.3 Convergence Rate

Since (3) states that xp € K, we have z = pr_1(A)b, where pr_1 € Pr_1 is a
polynomial of order £ — 1 at the utmost. Again, (3) implies that

||z — xl[4 = min [[z —y[l4 = min Hw— p(A)b|[a
pEPL_

yeK

— — Ap(A 1b = mi — Ap(A
o, Il = ApAT = g, fle = ApA)ella

=  min Az 4.79
i lp(A)ela (4.79)

Since A being a symmetric and positive definite n X n-matrix has n orthonormal
eigenvectors, we can write A = ZTAZ, where Z is an orthogonal matrix. Thus,

Ip(A)z||% = 2"p(A)Ap(A)z = 2" Zp(A)Ap(A) Z"x

:Z\p IPXNZT )52 < maxc |p(W)? D A (27 ),

1<i<n
s Ol < omax pVElelf} (4.80)

Additionally, it not very difficult to show that

)\max + )\mzn -1

min max AN =
PEPE,p(0)=1 AE[A1,An] |p( )‘ b ()\mam — Amin
k41,1 VE—1\k
— ¢ < 2( ) : 481
) WS (4.81)
where t; is a Tshebytsev polynomial of order k£ and Aq,..., A, are the eigenvalues of
A. Hence,

Hx—kaA§2(\/%:)k|ya:—xo\|A, (4.82)

where £(A) = Mnaz/Amin = ||A7|||A]| is the so-called condition number of A.
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4.8.4 Computational Work Load

Let €2 be a two dimensional domain. It can be shown [3] that there are constants ¢;
and ¢y independent from the mesh size h such that

c1h™ < k(A) < coh™2, (4.83)

for a system matrix corresponding to any H!(Q)-elliptic, problem discretized by
using FEM. Assuming that 2 is a two dimensional domain and the triangulation is
regular, we can, apparently, estimate the mesh size as h o< 1/n2. Thus, we have

K <cyr(A) <ch ' <eyn (4.84)

Taking into account that the condition number is likely to be >> 1 we obtain the
following approximation

VAR S S VAV/I SR B S VSR S SO 3
it irive T R TryvE ¢ \/g)z’vl A

since 1/(1+t) ~ 1—t and t? ~ 0 for small t. Again, log(1+t) = t for small t. Hence,

||z — zk||a k(A)—1 2 c
log i >cklog | Y——=—) > cklog (1 — — ) > k—. 4.86
B, 2 s () 2kl (1= 5) 2h e (489

Thus, supposing that the convergence criterium is of the form ||z —x n||/||z—x0|| < €,
i.e. we qualify x for a solution provided that the relative residual is < e, we have

N < cve <evn (4.87)

In conjugate gradient method, the work load required for taking one step is largely
predetermined by the product Apg. In a regular triangulation the number of neigh-
boring triangles is proportional to some constant implying that every column of A
has a standard number of non-zeros. Thus, it seems justified to estimate the num-
ber of floating-point operations required for Apy to be of magnitude O(cn). This
together with (4.87) indicates that the exact solution is found in not more than

O(cny/n) (4.88)

2

floating-point operations.

4.8.5 Diffusion of Information

So as to give an mental picture of the structure of the Krylov-space
K, = span{b, Ab, ..., A" b},
we assume that the system matrix is of the simple form
2 -1
-1 2 -1
-1 2 -1

4.
nxn (489)
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and the load vector is b = e; = (1 0 ... O)T. Then, the exact solution z =
A7'b = (1,...,1)T and the basis of the Krylov-space is constructed as

2 -1 1 2
-1 2 -1 0 -1
-1 2 -1 0 0
-1 2 -1 0 0
Ab = _
-1 2 -1 0 0
-1 2 -1 0 0
-2 2 0 0
2 -1 2 5
-1 2 -1 -1 0
-1 2 -1 0 1
-1 2 -1 0 0
A’b = A(Ab) = S =
-1 2 0 0
-1 2 -1 0 0
-2 2 0 0
A3b = A(A%) =
(4.90)
indicating that
(Akb); =0, forall i> k. (4.91)

Thus, (1,...,1)T =2 ¢ K for k < n. In this case, the conjugate gradient iteration
cannot reach the exact solution in less than n steps, since z € K according to (3).

The above described phenomenon occurs when the conjugate gradient method is
applied to the problem (2.19). In order to demonstrate this, suppose that we want
to solve the residual Z, 4.

Since CG algorithm is based on computing products Apy, each column of Z,, 44 has
to be solved separately. Restricting ourselves to one single column we can write the
system (4.8) as

Az =e. (4.92)

where e = (0,...,1,... ,O)T. Thus the problem related Krylov-space is
K, = span{e, Ae, A%, ..., A" e}

Since A;; is nonzero, if and only if the measure of the set supp{¢;} N supp{y;} is
strictly positive, i.e. the degrees of freedom i and j are close to each other, we have
to take a few iteration steps before the every element of the candidate solution x
differs from zero. This is illustrated by the figure 1. Generalizing, provided that
A;j = 0 updating the value of (xj); does not affect the value of (z44); for I < g,
where [; depends on the distance between ¢ and j. In terms of nodes the diameter of
Q can be approximated as o< 1/h < \/n. Thus, supposing that the convergence rate
is predetermined by the diameter the number of floating-point operations is again

x ny/n (4.93)
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Figure 4.3: The Q"-counterpart of e dif-
fers from zero in the dark region. The
nested circles represent the regions, where
Qh counterparts of the residuals ro, 71,72
and r3 differ from zero. The arrows show
the direction of the diffusion.

The phenomenon can be interpreted as diffusion of information. The system matrix
A in (2.22) can be considered as a discretized diffusion operator. Operating with A
causes diffusion, which we see by writing

Ou—V - (cVu) =0 (4.94)

and by approximating
w —Ary=0 = @ =2 + hAz (4.95)
Thus, it seems that we can equate {xzg,z1,...,rx} with a diffusion process equi-

librium of which is the exact solution 2 = A~'e and the convergence rate of the
iteration is predetermined by the rate of the diffusion.

Practically all the iterative linear algebraic methods are one way or other based on
computing matrix-vector products. Therefore, the problem with diffusion is likely to
occur also in connection with other methods.

4.8.6 Preconditioned Conjugate Gradients (PCG)

The preconditioned conjugate gradient method is simply the conjugate gradient
method applied to the trinity £ = Sz, T = Szy, b=S"1thand A = S—tAS—1
where S is a symmetric and positive definite matrix. We denote M = S? and call
M a preconditioner. The algorithm can be written as
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Algorithm 4.8.2 (Preconditioned Conjugate Gradients)
x0=0,7r_1=r9=0,p_1=0

for k=0,1,2,...

Mz =1

e =} 2 /T 2em1

Dk = MkDk—1 + 2k

Qp = ngk/pgApk

Th+1 = Tk + QPk

Tkl = Tk — R Apy

end

By writing
(STTAS™MZ=AZ & AS'Z=85"1ST1AS™HZ=(M"T1A)ST1Z (4.96)

we see that M~'A has same eigenvalues as A. Thus, k(A) = k(M1 A). A straight-
forward calculation shows that equation (3) applied to PCG states that

Tkl € spanSfl{l;,Al;,...,flkl;}
= (Mo, (MTAM b, (MTARM b)Y (4.97)

Apparently, the convergence rate can be estimated as

Ve 1A>_1)k\|x—5:oy,4 (4.98)

(I
R(M—TA)+1

e = alla < 2(

Thus, the number of iterations can is approximated as
K <cyk(M—1A) (4.99)

It is easy to show that the better M ! estimates A~' the smaller is the value of
k(M~1A). Again, M~! can be interpreted as a diffusion operator and the precondi-
tioned iteration as a diffusion process the convergence rate of which is the faster the
closer M1 is to A.

In applications, PCG is usually preferred to CG.

4.8.7 Complete Preconditioning

The matrix M = A, a complete preconditioner. By denoting Cy := A;IVdAdVdT,
we have

M Ap g = AN (A, + VAV = T+ LAYV AV =T +tCy,  (4.100)
using which gives

(Zosta)k € span{M Vg, (M Ag e )M WVa, ..., (M7 Appa)" ' M1V}
= span{Cy, C3, ..., CH IV AL (4.101)

Since rank(A4) = m, we see that rank(C) = m. Thus,

dim(span{C;, CZ,...,CF}) <m, Vk=0,1,...,n. (4.102)
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This together with (3) implies, that using A, as a preconditioner causes PCG to
converge to the exact solution in not more than < m steps.

Even though m is often a relatively small number, complete preconditioning does
not ensure a fast solution in terms of CPU time, since computing

Mz, = Agzi, = 1y, (4.103)

requires for relatively heavy computation. Clearly, it is possible to factorize A, as
A, = LULUT in advance, in which case computing zx = L=TL71r, is the only required
operation. Thus, on the basis of (4.10) we can approximate the computational work
load of complete preconditioning to be of magnitude O(cNsy/Ns). Employing A, as
a preconditioner is studied more closely in [15].

4.8.8 SSOR preconditioning

One of the most often used ways of preconditioning is SSOR, where
M = [w(2 - w)] YDy — wLy)D; (D, — wLl), (4.104)

where 0 < w < 2 is the relaxation parameter, D, is the diagonal of A, and L, is a
lower triangular part of A,. It can be shown [3] that with optimal value of w, the
condition number is k(M ~1A) o 1/h o< /n. Thus, on the basis of (4.99), it seems
that

K < ent/* (4.105)

indicating that the SSOR preconditioned PCG demands for
< end/t (4.106)

floating-point operations. Again, due to the problem with diffusion we cannot expect
much faster convergence.
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Chapter 5

Numerical Experiments

In this chapter, we demonstrate how the introduced methods are applied to the
EIT problem. We are not interested in simulating any realistic application but just
describing some general phenomena. For simplicity, the computations are performed

in the unit disc
Q= B(0,1) c R (5.1)

Voltages are measured with six electrodes (i. e. L = 6) evenly distributed along
the boundary curve. The contact impedances are assumed to be equal to one, i.e.
z1 = 29 = ... = z2 = 1, and the noise in the measured electrode potentials to be
independent. In this model, the impedances are known exactly. Thus, we use L—1 =
5 current patterns of the form (2.31) so as to get the best possible distinguishability
in the sense of (2.30).

5.1 Small Perturbations

We seek a small circular perturbation (anomaly) from . That is, the exact conduc-
tivity distribution 0 € A(€) is a priori assumed to be of the form,

o (x) = opg(z) +0“(2), (5.2)
opg(z) = 1, forallzeQ, X
0*(x) = 1+t, forall xz € Ble,r), (5.4)

where ¢ = (c1,c2) € R%,t,r € R are unknown constants. The task is to find out the
quadruple r,t, c1,co. We denote

o= € R (5.5)

Please note that in the computations the conductivity distribution is a pixelwise
constant function. Thus, it is not feasible to exactly implement this model, but the
circular objects are approximated in the framework of the triangulation.
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An imaginable real life application analogous to this scheme could be detecting a
tumor from breast tissue, where the background conductivity is close to a constant.
We explore both the least-squares approximation and statistical modelling.

5.1.1 Setup

The triangulation 7, = {T,,}*_, that is used in the following computations is il-
lustrated in (figure 5.1). A uniform triangulation is used, i.e. all the triangles are
nearly equal in size. The variation of the potential distribution is fastest near to the
boundary, due to which the triangular mesh is often refined towards the boundary
in order to make the discretion error small. However, the number of electrodes is in
this case so small that no refinement is made.

In the computations, the true conductivity distribution is
o= (0125 —0.9 0.5 0.2)" (5.6)

Since only discrete problems can be solved numerically, we generate the measure-
ment data V by approximating ¢* with a function that is pixelwise constant in a
refined triangulation (figure 5.1) denoted as 7j, /2- This is obtained simply by divid-
ing each triangle of 7j, into four subtriangles. Depending on the connection, we use
the super index ex to refer either to a A(Q2) function defined by (5.2)-(5.4), to its
H}, jo-approximation or to a vector in RAM - The H}, j2-approximation of the exact
conductivity distribution is illustrated in figure 5.2. The data V is obtained by solv-
ing the forward problem (2.19) corresponding to the approximation. We add to the
measurements gaussian zero mean random noise N ~ N(0,107%7) so that

N N
MNllro 14, el,” o —_ ~6.5% (5.7)
max;,j Vij HU(G ) - U(O—bg)Hfro

The data is generated with the aid of the refined mesh, since otherwise the solver
would be likely to find too good’ candidate solutions. Using the same mesh in both
generating the data and solving the inverse problem is known as committing an
wnverse crime. The discretion error is measured as

HU(Jbg) - U(U§§)| |fr0

[0(0%) = U(og2) 1o

~ 35%, (5.8)

5.2 Least-Squares Approximation

In order to get some idea how accurate solutions can obtained through the least-
squares approximation, we explore the NOSER method

e =5 4 (H + adiag(H)) 'y, (5.9)

and a simple Gauss-Newton reconstruction, which is obtained by performing one step
of Gauss-Newton iteration. Since the measurements are assumed to be independent
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which is obtained by writing B; ; of (2.23
=1
0A
o,

M

m

(JONT JO) 4
(2.19) with respect to oy, results in

o© —\(H,

(m)

K.
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7j

e

Q
AV,
<A
N

Ky

VAN

Figure 5.1: The triangulation Ty, (left) and the refined mesh

T2 (right), which is used when generating the data V.
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Computation of the Jacobian Matrix

AV

In general, taking more than just one step seldom leads to considerably better esti-

we choose W = I and the algorithm is written as
mates. In this connection, taking one step seems to be enough.
Both algorithms are based on the use of the Jacobian matrix

Differentiation of equation

5.2.1



Figure 5.2: Hy, j9-approzimation of the exact conductivity
distribution 0¢*=(0.125,—0.9,0.5,0.2)7. The red circle de-
notes the right size and location.

Using the relation X = A1 F, we obtain

oF 0A

. _ A1
Bor = A 5o F (5.15)
DA —o2, K™ 0

The electrode voltages U*) are obtained as in (2.27):that is
vk = (0 ¢)f® (5.17)
Differentiating this and using (5.15) yields

oU ) _, 0A

——(0 C)4 ), (5.18)

Oom oom

Since there is no sense in evaluating a whole inverse matrix the Jacobian is attained in

practice by first solving A~! (O CT)T and A~!F after which the partial derivatives
are given by (5.18).

5.2.2 Smoothness Regularization

In the Gauss-Newton reconstruction we use A(o) of the form
A(o) =|lloll[3, = 0" Byo (5.19)

where v > 0, k € N and Bﬁ is the kth exponent of the matrix B, € RM*M which is
obtained as

(By)ij = /QVgof . V(p;l dxdy + vd;j, (5.20)

where 0;; is the Kronecker’s delta and {go‘f, ey goﬁl\/[} is the piecewise linear nodal
basis of a delaunay triangulation ’Z;Ld (i.e. a set of triangles such that no data points
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are contained in any triangle’s circumcircle ) that is generated with respect to the
nodal basis formed by the set of circumcenters of the triangulation 7, (figure 5.3).
Additionally, we define

Si = span{pf, ..., o4} (5.21)

Apparently, B, is symmetric and positive definite. Each o € Hj, has an uniquely
determined piecewise linear counterpart o € Sff such that o — o? vanishes in the set
of circumcenters {Pi,..., Py} of the triangulation 7. Thus, by identifying o and

o as vectors in RM we have o = (o1,...,00m) = (0¢,...,0%,) and

M
llollly1 = 0" Byo > 00V} - Ve dady + 7 o]]”

,j=1

M
= > ooVl Vel dedy + 70"
ij=1
= [[VoI* + Al (5.22)
Hence, we see that A(c) is small provided that the S¢ counterpart o¢ is smooth
in the sense of the norm ||Vao?||. Moreover, decreasing the value of y increases the

importance of smoothness. We call 5.19 smoothness regularization. By noticing that
lloll13,1 = 7llol| and by writing

ol = (D ciz) (D eirbz) = Mt = [||o]]
i J

2 /29 (5.23)
l

where \; is an eigenvalue of B, z; is the corresponding eigenvector and ¢; is some
constant, we can deduce that

Yol = o llly,s,  fort > s. (5.24)

Hence, we see that |||o|||,x increases while k increases. The larger is the value of k
the stronger is the smoothing effect of the regularization.

In order to demonstrate the structures generated by the regularization method, we
draw so-called white noise random samples W € RM W oc N(0,1) and set X =

By"*W . Then,

IWI[?=wWTw = xTB¥?B*?x = XTBF X = ||| x]|12,, (5.25)
i.e. the white noise regularization and the smoothness regularization are of equal
order. The random draws are plotted in figures 5.4 and 5.5, first columns of which
are identical. The random structures in the 4th column of 5.4 are of same size but
much smoother that in the 2nd column of 5.5. Thus, it seems that by varying the

value of v we can control the size of the structures whereas varying k seems to have
greater effect on the level of smoothness.

The measured voltages are much less sensitive to the values of ¢ in the central parts
of Q than to the values close to the boundary 0f2. In other words, the sensitivity
of the EIT reconstruction to the measurement noise increases when moving towards
the center of 2. That is why increasing noise level arises a need to decrease the
order of regularization towards the center. Achieving feasible results with high noise
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Figure 5.8: The set of circumcenters of the triangulation 7p,
(left) and the corresponding delaunay triangulation ’Thd

levels seems to require for increasing ’stiffness’ of the regularization in the vicinity
of the boundary. Therefore, in the computations, we let the boundary block of B,
be identity, i.e. R

B;j = (51'3‘, for {’L,j | diSt(Pij, 0N) < 6}, (5.26)

where P;; denotes a circumcenter of the triangle T;;.

5.2.3 Results

Both NOSER and Gauss-Newton reconstruction yield very similar results. Both
methods seem to give rather credible information about the location of the anomaly
but the exact size and value of conductivity remain uncertain. The reconstructions
are plotted in figure (5.6). On the basis of the figure the output of NOSER algorithm
can be ranked as less regular. This is, apparently, due to its not so sophisticated
regularization method, which does not assume anything of the structure of the tri-
angulation.

Since least-squares reconstructions are easily computed and seem to localize the
anomaly relatively confidentially, we use least-squares approximation as a method of
determining a so-called region of interest, i.e. a subset R, C €2 in which the anomaly
lies with high reliability. The idea is to fasten the convergence of more complicated
methods.

We determine the region of interest in a heuristic way.
Rpr = {2 € Q] |oM(2) — 0O (2)| > rstd{cM}}, (5.27)

where ¢(©) is the initial guess, o} the least squares solution, std{c(1} its standard
deviation and k > 0 some real-valued constant. This appeared to work pretty well
in practice.
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Figure 5.4: Four realizations of W (1th column) and the
realizations of X = Bl_kW corresponding to k = 2 (2nd
column), k =4 (8rd column) and k = 8 (4th column,).

5.3 Statistical Solution

In this section, the anomaly is sought by employing the Bayesian model and MCMC
integration. Statistical solution refers in this case to a Monte Carlo approximation
of the conditional expectation

W 4. gm
T = 2 R A / 0Tpost (0) do (5.28)
RM

m

The idea is both to develop an efficient sampling technique and to compare statistical
solutions with least-squares solutions.

In practice, achieving an reasonably accurate Monte Carlo estimate requires for heavy
computation compared to least-squares approximation. Therefore, statistical solu-
tions should be at least in some sense more precise than the corresponding least-
squares solutions. Again, the applied sampling technique and linear algebra have a
significant effect on the convergence rate and thereby the usability of the statistical
approach.

The convergence of the statistical algorithms is studied both on the basis of auto-
correlation series and by plotting estimates of the conditional expectation.
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Figure 5.5: Four realizations of W (1th column) and the
realizations of X = B;ZW corresponding to v = 0.1 (2nd
column,), v = 0.01 (8rd column) and v = 0.001 (4th column,).

5.3.1 Prior and Posterior Densities

We suppose that the anomaly is a priori known to be of the form (5.2) and lies some-
where in the region of interest R, that is determined based on the Gauss-Newton
reconstruction as in (5.27). In other words, we hypothesize that the conductivity
distribution can be written as in (5.5), i.e.

c=(r t o cz)T, (5.29)

where r,c and t are realizations of random variables R, C and T. We do not as-
sume anything particular of the shape of the prior distribution (e.g. Gaussian
distribution), but let R, C and T be independent and uniformly distributed, i.e.
R ~ Uniform[0, diam(R;,)], C ~ Uniform{R,,}, T ~ Uniform(—1, 1] and

Tpr (0) ox T4 (U)X[o,diam(RW)] (7")9672;,7~ (C)X(—l,l] (1), (5.30)

where 7 (o) is a positivity prior defined in (2.58). In the computations, each sampled
conductivity distribution is a Hp-function. Since there are no exactly circular shaped
objects in Hp, we cannot draw samples exactly distributed as mpr, since circles have
to be approximated in the sense of Hy. Two Hp-approximations of random draws
from 7pr are plotted in figure (5.8).

The posterior density is of the form (2.60), where the covariance matrix C' = 21,
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where a = 0.15, A(-) = || - |36 - In both cases, the region
0.02

of interest is determined as in (5.27) with k = 2.2. (right

column,).

since the electrode potentials are assumed to be independent. Thus, we have

1

’7'('(0'|\/)OC’7'('pI'eXp(—2—,y2

(U(o) — V)T (U(0) — V)). (5.31)

Since the problem is restricted as (5.30), the integration task (5.28) is only four di-
mensional. Therefore, MCMC integration is not necessarily needed in this particular
case. However, a similar approach is workable also in more complex cases where the
background conductivity oy, has to be included into the statistical model (e.g. some
shell structured o).

5.3.2 Linear Algebra

As the computations are restricted to the region of interest we know a priori that
the perturbations are small. Hence, each sampled conductivity can be represented
as 0 = 0Opg + td so that the number of non-zeros in d is small. Thus, on the basis
of discussion in sections 4.5 and 4.6 it is advantageous to solve the forward problem
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Figure 5.7: Two Hp-approrimations of random draws from
Tpr- The red circle shows the ezact size and shape.

through the Sherman-Morrison-Woodbury -formula as

Xo = Xoy, — 128, (I +tV] Z3 Na) "'V Xo,. (5.32)

Obg
Since we correct each time the background solution X, , the computational workload
can be diminished by directly correcting the potential values as

U(o) = Ulong) =t (0 C) 23, (I +tV] Z5, Aa)"'Vi Xo,, (5.33)

where the product (O C) Zgbg can be calculated in advance. It is easy to see that

in this case the computational effort is largely determined by the effort of evaluating
(I+tV{Z5 Aa)~' e RFE,

5.3.3 The Sampling Plan

The sampling plan is excessively straightforward. We choose

0)

o0 = opg = 1. (5.34)

Since op is known to be close to the exact distribution, we neglect the burn-in
phase. The samples {o(1), ..., (™} are generated in a single long run accepting all
the generated samples.

The statistical efficiency is analyzed on the basis of values o) (z#®), ¢U)(z?), o\ (2*),
o) (z9) and oU) (z*), j = 1,2,...,m, where m is the size of the sample. The points
z®, 2%, 2* 2% and 2* are plotted in figure (5.3.3).

Autocorrelation of the sample ensemble is estimated as
pi(x) = corr{oV(x), sV (@)} ~ j(x) = Fj(x) /0 () (5.35)

where 7;(z) is an estimator of the autocovariance calculated as

3

=
(09(x) = T (2)) (0 (&) — T (). (5.36)
1

1
Yi(x) = m l
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Figure 5.8: Locations of points z® 2%, 2%, 2% and z*.

So as to be able to compare the algorithm efficiencies we approximate the integrated
autocorrelation time as

J
Tint(0) & 5 + > 15l (5.37)
j=1

5.3.4 Metropolized Independence Sampler (MIS)

At first, we apply the MIS sampling method introduced in section 3.3.1, since it
is easily implemented and all the proposed moves are independent. The proposal
distribution is chosen to be

9(:) = mpr (), (5.38)
where mpr is as in (5.30). Performing one step of the algorithm is simply to draw o
from prior distribution and to check the acceptance-rejection condition.

5.3.5 Random-walk Metropolis

Another implemented algorithm is the random-walk Metropolis, one of the most
often used MCMC algorithms. Since we do not have much information about the
structure of the posterior density, the proposal is chosen to be spherically symmetric
Gaussian distribution similarly as in algorithm 3.3.2.

Goar ~ N(0,7%1), (5.39)

where I is identity matrix in R**4. In the random-walk Metropolis, the proposed
moves are not independent from each other. The advance of the method is that by
varying the step size user can efficiently control the acceptance rate.

5.3.6 Correlated Multipoint Proposals

To give an example of slightly more complicated algorithm based on the Metropolis
transition rule, we implement the multipoint method, i.e. algorithm 3.3.6, applied
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for two proposal functions. Again, we employ spherically symmetric Gaussian dis-
tributions as proposals; that is, we draw

e~ N(0,7T) (5.40)
&2 ~ N(0,73D), (5.41)

where D = diag(1,1,0,0) and set y1 = x + €1, y2 = = + sign(ez)||e2]|. The weight
functions A\; and Ao are constants. The idea is to propose two moves of different
sizes on each step. Due to the shape of the posterior distribution the longer moves
are restricted to the first and third quadrant of the rt-plane. The probability of
accepting a large move is increased by choosing A2 >> A;.

5.3.7 Surrogate Transitions

The workability of surrogate transition method is also experimented by examining
the accurateness of the approximation

U(o) = U*(0) =U(o) + DU (09p)(0 — 09) (5.42)

In this demonstrative case, the Sherman-Morrison-Woodbury -formula functions so
well, that applying (5.42) is not reasonable. In cases, where the sampler perturbs
the conductivity distribution more globally, the surrogate transition method can,
however, be of great importance.

5.3.8 Results

Although the proposed samples in MIS are independent, the acceptance ratio is
exceedingly low. Apparently, this is because the variance of the posterior density is
small compared to the variance of the prior density. Convergence of the method is
plotted in figure (5.9).

The random-walk metropolis algorithm was implemented by choosing 72 = 0.02,
that resulted in acceptance rate of 29%. Although the acceptance rate is feasible
the overall level of movement remains slow, which is illustrated by the figure (5.10).
The autocorrelation curves indicate that the convergence is exceptionally slow close
to the most important parts of the distribution. This can be explained to be due to
the awkward shape of mpost.

The posterior distribution is banana shaped in the rt-plane ( i.e. the plane, where the
center of the anomaly is fixed ) and suffers from local minima, which is illustrated by
the figure (5.17). According to |2|, the random-walk metropolis commonly fails in ba-
nana shaped distributions. Finding an appropriate step size is often impossible, since
small enough step sizes tend result in slow movement of the chain. Banana structure
results from nonlinearity of the map U(-) and low variance of ||V — U(-)||. Local
minima are due to the fact that the inverse problem is outstandingly ill-conditioned
in the rt-plane; that is, various combinations of r- and t-values result in electrode
voltages very close to the measured voltage values. Figure (5.18) shows how two
concentric anomalies unequal in size perturb the potential distribution in a similar
way.
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Multipoint method was implemented in order to allow random-walk to take larger
steps in rt-plane and thereby increase the level of general movement. The parameters
were chosen as

o= 002 N =1

7 = 0.1 A2 = 1000. (5.43)

In the implementation the acceptance rate was 30% 7% of all the accepted moves
being longer moves. Figure (5.11) illustrates that the level of global movement
is indeed increased compared to the simple random walk. Autocorrelation curves
indicate more balanced behavior. It is also clearly seen that the algorithm does not
converge to the exact solution. Monte Carlo estimates after 10000 and 50000 are
plotted in the figure (5.3.8). The images are close to identical. Thus, it seems that
10000 is a large enough sample size.

Interestingly, the random walk metropolis yields fairly reasonable solutions and rapid
convergence rates provided that either r or ¢ is fixed to its true value. This is illus-
trated by figures (5.12), (5.13) and (5.3.8). Yet, accuracy of the obtained estimates
diminishes remarkably if the forward problem is solved only approximately through
the linearization (5.42).
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Figure 5.9: MIS. The acceptance rate is extremely low. From
top to bottom, values o) (z®), oW (z?), o) (z*), ¢0)(2?)
and o(xz®), j = 1,...,10000 (left) and the corresponding
autocorrelation curves (right).
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Figure 5.10: Random walk metropolis. Due to the shape of
the posterior distribution choosing a feasible step size is dif-
ficult. In this case, the acceptance rate is sufficient but the
overall movement of the chain is relatively slow. The au-
tocorrelation curves indicate that the level of independency
remains low. From top to bottom, values o) (z®), 0@ (z©),
oD (%), e (%) and o) (z*), j = 1,...,10000 (left) and

the corresponding autocorrelation curves (right).
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Figure 5.11: Multipoint method. The overall movement is
faster than i random walk algorithm, which is indicated by the
autocorrelation curves. It is clearly seen, that the estimate
does not approach the exact solution due to the inadequate
a priori information. From top to bottom, values o) (az‘),
oD (), eU)(z*), e (%) and oW (z®), j = 1,...,10000
(left) and the corresponding autocorrelation curves (right).
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Figure 5.12: Random walk metropolis. The radius of the
anomaly is fized to the exact value r = 0.125 due to which
the algorithm converges rapidly. From top to bottom, val-
ues oW (x®), oW (z?), cW(z*), ¢U)(zY) and o) (z®),
j=1,...,10000 (left) and the corresponding autocorrelation
curves (right).
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Figure 5.13: Random walk metropolis. t is fized to the ex-
act value t = —0.9. Again, the algorithm converges rapidly.
From top to bottom, values o) (z®), oU)(z®), oU)(z*),
oY) and o9 (x*), j =1,...,10000 (left) and the corre-
sponding autocorrelation curves (right).
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Figure 5.14: Surrogate Markov chain generated through the
approzimation (3.45). From top to bottom, values oU)(z®),
oD (), eU)(2*), o) (%) and oW (z*), j = 1,...,10000
(left) and the corresponding autocorrelation curves (right).

69



Figure 5.15: Monte Carlo estimates after 10000 samples
(left) and 50000 samples (right). The algorithms from top to
bottom: MIS, random walk metropolis, multipoint method.
MIS estimates (1st row) differ noticeably from each other,
which indicates that the algorithm has not yet converged. In
contrast, estimates attained through multipoint method (3rd
row) are nearly indentical.
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Figure 5.16: Monte Carlo estimates after 10000 samples
(left) and 50000 samples (right). From top to bottom: ran-
dom walk metropolis with r fized, random walk metropolis
with t fized, random walk conditional mean estimate based
on a surrogate Markov chain produced by the linearization
(3.45). Upper two random walks produce rather substantial
estimates. When the forward problem is solved using (3.45)
(3rd row) the anomaly is mislocated.
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Figure 5.17: Contour plot of the posterior distribution
Tpost(0), 0={r,(0.5;0.2),t}, i.e. the center of the anomaly
is fized to its exact value. Radius (x-azis) and the value of
conductivity (y-azis) are varied. The distribution is banana-
shaped (left) and suffers from local minima (right) which ex-
plains the slow movement of the random walk sampler.

Figure 5.18: Two illustrations of how the potential distri-
bution corresponding to o = o4 is perturbed after adding a
circular anomaly. Although the added anomalies are of dif-
ferent size both cases yield very similar electrode potentials.
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Chapter 6

Discussion

In the numerical examples, both least-squares approximation and Bayesian modeling
succeed rather well in locating the anomaly, i.e. in finding c, but the two other sought
quantities r and ¢ remain uncertain. In cases where either r or ¢ is fixed to the true
value the conditional mean estimate is fairly close to the exact solution in eyeball
norm. Yet, modifying the statistical model by solving the discrete forward problem
approximately through (3.45) diminishes the accuracy remarkably.

It seems that the more one has a priori knowledge of o the more preferable is the
statistical approach. A priori information can more easily be decoded into a prior dis-
tribution than into a regularizing functional, since implementing the Gauss-Newton
algorithm by applying any regularization method favoring discontinuous conductivi-
ties, such as anomalies of certain size and shape, is problematic, since Gauss-Newton
is based on differentiability of the map 0 — A(c). Again, obtaining any confidence
intervals of the Gauss-Newton reconstruction is difficult since there is no strict statis-
tical interpretation of the method. Therefore, achieving a practicable least-squares
estimate is more or less an art of fixing the free-floating parameters so that the out-
come is close to the optimal. The result is often a compromise between smoothness
and resolution. In the demonstrated cases, the numerical least-squares estimates are
rather comparable to their counterparts obtained through the statistical modelling
as far as both r and ¢ are to be solved. Only assuming either of the quantities to
be given caused a distinct difference between least-squares and conditional mean
estimates.

Although the statistical problem is restricted to seeking the anomaly from a reason-
ably small region of interest R, C €2, applied MCMC algorithm has a strong effect
on the converge rate of the Monte Carlo estimate. The explanation is the awkward
characteristics of the target distribution. In the demonstrations, the posterior dis-
tribution suffers from low variance, generic shape of a banana as well as a number
of local minima. On the basis of the results it is clear that all of these properties
have to be taken into account so as to construct an efficient proposal function; that
is, the sampler has to be adapted to follow both the local and global dynamics of
the target distribution. Due to the nonlinearity and strong ill-conditioned nature
of the inverse problem it is apparent that the posterior distribution is more com-
plex in cases where o}y is not a constant function. Thus, also the structure of the
background conductivity sets requirements for the sampler.
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Since the conductivity distribution is updated only in the region of interest, the
exact solution of the forward problem is easily obtained by employing the Sherman-
Morrison-Woodbury —formula. More global updates would require for more costly
linear algebra. Since computational cost of the linear approximation (3.45) is inde-
pendent from the structure of o, it is interesting to study whether it is possible to
use it as a substitute for the exact solution or in generating surrogate Markov chains
introduced in section 3.6. The numerical experiments indicate that employing the
linearization as a pure substitute diminishes the accuracy of the conditional mean
estimate considerably. The anomaly is distinctly mislocated even though its size is
given. Due to the clear mislocation applying the approximation to generate surro-
gate Markov chains does not seem a reasonable idea: each time the actual chain
would come close to the true location, the surrogate chain would be likely to drift
away from it. Therefore, the most efficient way to derive benefit from (3.45) appears
to be using it as a pure substitute for the solution while running the burn-in phase,
yet, performing the actual sampling through rigorous linear algebra.

In the experiments, conception of the anomaly is analogous to an electromagnetic
dipole with unknown length and charge within a vacuum cavity. Writing the equation
(2.1) as

V- (obg + )V (upg +us) =0 (6.1)

and noting that V - oy Vg, = 0 yields
V - (obg +9)Vus = =V - §Vuy,. (6.2)

Since the support of the perturbation § is small it seems reasonable to assume that
adding § to the background conductivity does not affect greatly the directions of the
currents within 2. Thus, we estimate Vus ~ cVuy,, where c is some scalar-valued
function. Substitution to (6.2) plus a slight manipulation gives

1+c¢

Obg

Au§ ~ — V- 5Vubg, (6.3)

where 044 has been treated as a scalar-valued constant. Accordingly, the potential
field us is approximately induced by a small supported electromagnetic field dVus.
Therefore, the inverse problem can be considered to be parallel to finding an electro-
magnetic dipole with unknown length and charge within a vacuum cavity based on
voltage measurements on the boundary. The problem is ill-conditioned, since both
varying the length and varying the charge results in very similar changes far from the
dipole. Contrary to the charge, the length has a slight effect on the shape of the po-
tential distribution on the boundary. To be able to find out the solution, one has to
be able to distinguish these changes. Certainly, this is not possible if the number of
voltage measurements is too small. Again, the number of injected currents is closely
related to the oscillation frequency of Vuyg, that on the basis of the right hand side
of (6.3) reflects the resolution of the installation. Hence, despite the simplicity of the
demonstrative problem the number of electrodes, apparently affects considerably the
accuracy of the estimates.

The error due to discretion is relatively large and much less random than the error
due to the noise in the measurements. Apparently, the statistical solutions would be
more accurate if the discretion error was somehow taken into account in the a priori
distribution.
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Most of the Real life applications would undoubtedly utilize more than six electrodes.
However, inserting electrodes to the model, would arise a need for refining the tri-
angulation 7, so as to keep the discretization error at the same level, since injecting
more currents to {2 would make Vu to oscillate more frequently. The limited memory
capacity of the available computer hardware did not allow significant refinements.
Therefore, the influence of increasing the number of measurements is not studied in
this thesis.

6.1 Summary and Conclusions

The findings and conclusions of this thesis can be formulated as follows.

e In addition to the traditional least-squares approach, the EIT problem can be
formulated in terms of Bayesian statistics.

e The Bayesian statistics treat all sorts of uncertainty as random variables, which
enables inclusion of the measurement noise into the mathematical model and
effective utilization of all available a priori knowledge about the conductivity
distribution.

e Numerical implementation of the Bayesian model results in need for effective
high dimensional integration or optimization method.

e Monte Carlo sampling techniques offer a versatile collection of statistical in-
tegration and optimization methods, the convergence rate of which do not
depend on the dimension but on how well the sampler is adapted to follow the
posterior probability distribution.

e The numerical forward problem can be solved through various methods work-
ability of which depends on the available information of the structure of the
conductivity distribution, the applied sampling tehcnique and the level of mea-
surement noise.

e Due to the strong ill-conditioned nature and non-linearity of the inverse prob-
lem it is often difficult to obtain any appropriate numerical solutions.

o Workability of the least-squares approach depends on the applied regularization
method. It was found that a regularization method favoring smooth solutions
can be produced effectively with the aid of the finite element method as de-
scribed in secion (5.2.2). Tt is, yet, difficult to construct regularization method
favoring arbitrary structures, e.g. strongly discontinuous conductivities.

e The statistical model is preferable to the least-squares approach only if there
is accurate enough a priori knowledge available; In the numerical examples,
statistical model was superior only if either the size or the value of conductivity
of the anomaly was given.

e Since even the seemingly primitive demonstrative problem described in the
numerical experiments chapter turned out to be difficult, further analysis of
the EIT problem would be a natural continuation of the study.
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