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Tiivistelmä:

Impedanssitomogra�a (EIT) on kuvantamismenetelmä, jolla selvitetään kaksi tai kolmiulotteisen
kappaleen sähkömagneettisia ominaisuuksia perustuen kappaleen reunalla tehtäviin mittauksiin.
Tässä työssä tuntematon on skalaariarvoinen johtavuusjakauma, kappaleeseen syötetään virtoja
sen reunalle kiinnitetyjen elektrodien avulla ja virtojen aiheuttamat potentiaalit mitataan.

Työn tarkoitus on esitellä menetelmiä, joiden voidaan melko yleisesti sanoa sopivan hyvin EIT-
ongelman numeeriseen ratkaisemiseen. Lisäksi menetelmiä sovelletaan yksinkertaisen esimerkki-
tapauksen ratkaisemiseen. Numeerisen ratkaisemisen vaatima laskennallinen työmäärä on yleensä
suuri ja riippuu sovellettujen menetelmien tehokkuudesta. Tavoitteena on löytää työmäärältään
mahdollisimman halpoja menetelmiä.

Työssä keskitytään käänteisongelman Bayeslaiseen ratkaisemisemiseen, jossa tehtävän tunte-
matonta mallinnetaan tiettyä todennäköisyysjakaumaa, nk. posteriorijakaumaa noudattavana
satunnaismuuttujana. Posteriorijakauman ominaisuuksia estimoidaan nk. MCMC-menetelmien
(Markov chain Monte Carlo) avulla. MCMC menetelmät ovat tilastollisia algoritmeja, joilla voi-
daan tuotettaa otoksia mielivaltaisista todennäköisyysjakaumista. Tavoitteena kehittää algorit-
mi, joka konvergoisi mahdollisimman nopeasti, ts. vaatisi mahdollisimman pienen otoksen tuot-
tamista. Posteriorijakauman ominaisuuksien arvioiminen vaatii diskreetin suoran ongelman tois-
tuvaa ratkaisemista. Toinen tärkeä tavoite onkin löytää mahdollisimman nopea lineaarialgebralli-
nen menetelmä suoran ongelman ratkaisemiseen. Tilastollisen menetelmän antamia estimaatteja
verrataan regularisoidun pienimmän neliösumman menetelmien antamiin estimaatteihin.

Simulaatioissa rajoitutaan yksinkertaiseen tapaukseen, jossa vakiojohtavuudesta etsitään ano-
maliaa, ts. pientä poikkeamaa. Tehokas menetelmä pienten poikkeamien löytämiseksi on tarpeel-
linen käytännön sovelluksissa. Esimerkkitapausta vastaava kasvaim pehmeässä kudoksessa.

Saatujen tulosten perusteella on selvää, että kunnollisen numeerisen ratkaisun löytäminen on
usein mahdotonta, mikä johtuu ongelman erittäin häiriöalttiista ja epälineaarisesta luonteesta.
Tilastollisen menetelmän antamat tulokset ovat selvästi parempia kuin pienimmän nelisumman
menetelmän ratkaisut vain, jos johtavuusjakaumasta tiedetään etukäteen tarpeeksi paljon. Eri-
tyisesti tapauksessa, jossa johtavuus on luonteeltaan hyvin epäjatkuva tilastollinen menetelmä
on edullinen.
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Abstract:

Electrical Impedance Tomography (EIT) is an imaging method that provides information about
the electromagnetic properties within a 2D- or 3D-body Ω based on voltage measurements on
the boundary ∂Ω. In this case, the sought quantity is a scalar-valued conductivity distribution σ
within Ω. Voltage measurements refer to a �nite set of potential values that are measured by an
array of contact electrodes attached on ∂Ω. The voltage data is generated by injecting currents
into the domain through the electrodes.

The issue of this work is to discuss numerical methods that can be applied to the discretized math-
ematical model of the EIT problem and also to use them in connection with some demonstrative
numerical simulations. The computational work that has to be performed before resulting in
a proper solution is usually large and can often be diminished remarkably by optimizing the
e�ciency of the applied numerical methods. One of the central aims of this thesis is to introduce
methods that can rather commonly be told to be suitable for solving the EIT problem.

The major interest is concentrated on solving the inverse problem in terms of Bayesian statistics
by treating σ as a random variable with some posterior probability distribution and by employ-
ing Markov chain Monte Carlo (MCMC) sampling methods for estimating the properties of the
posterior distribution. The purpose is to develop such a Monte Carlo algorithm that �nding a
proper approximative solution would necessitate as small sample enesembles as possible. Drawing
a sample from the posterior distribution demands for solving one or more forward problems, i.e.
linear systems. Consequently, another important issue is to discover an e�ective linear algebraic
method of solving the forward problem. Statistical solutions are measured against regularized
least-squares solutions which appear more frequently in literature.

In the simulations, we restrict ourselves to cases where σ known in most parts of Ω and only
a relatively small anomaly is sought. The need for a method of locating small perturbations
arises in connection with various real world applications of EIT such as detecting and classifying
tumors from breast tissue.

Summarizing the �ndings, due to the strong ill-conditioned nature and non-linearity of the in-
verse problem it is often di�cult to obtain any appropriate numerical solutions. The statistical
model is preferable to the least-squares approach only if there is accurate enough a priori knowl-
edge available. Especially in cases where the nature of the conductivity distribution is strongly
discontinuous it is advantageous to use the statistical formulation.
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Chapter 1

Introduction

Electrical Impedance Tomography (EIT) is an imaging method that provides infor-
mation about the electromagnetic properties within a 2D- or 3D-body Ω based on
voltage measurements on the boundary ∂Ω. In this case, the sought quantity is a
scalar-valued conductivity distribution σ within Ω. Voltage measurements refer to
a �nite set of potential values that are measured by an array of contact electrodes
attached on ∂Ω. The voltage data is generated by injecting currents into the domain
through the electrodes.

The focus of this work is to discuss numerical methods and computational techniques
that can be applied to the discretized mathematical model of the EIT problem and
also to use them in connection with some demonstrative numerical simulations. The
computational work that has to be performed before resulting in a proper solution is
usually large and can often be diminished remarkably by optimizing the e�ciency of
the applied numerical methods. One of the central aims of this thesis is to introduce
methods that can rather commonly be told to be suitable for solving the EIT problem.

The EIT problem is divided into the forward problem, which is to solve the electrode
voltages corresponding to a given σ, and the inverse problem, that is to �nd out
σ on the basis of the measured electrode voltages. The forward problem can be
formulated mathematically as an H1(Ω)-elliptic boundary value problem and dis-
cretized through the �nite element method (FEM) yielding a solvable linear system
of equations. In contrast, the inverse problem is non-linear and ill-conditioned, i.e.
small errors in measured data can cause large errors to the solution. Therefore,
there is no direct method providing the solution. In this thesis, the major interest
is concentrated on solving the inverse problem in a statistical sense by treating σ
as a random variable with some posterior probability distribution and by employing
Markov chain Monte Carlo (MCMC) methods for estimating the properties of the
posterior distribution. MCMC methods are relatively simple algorithms that enable
creating random but statistically dependent samples from an arbitrary probability
distribution. The purpose is to develop such a Monte Carlo algorithm that the con-
vergence would necessitate as small sample size as possible. In the case of the EIT
problem drawing a sample from the posterior distribution demands for solving one or
more forward problems, i.e. linear systems. Consequently, another important issue
is to discover an e�ective method of solving the forward problem.

The inverse problem cannot be solved without having a priori information about
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the structure of σ. This is due to the ill-conditioned nature of the problem, the in-
completeness of the measured boundary data, the noise in the measurements as well
as the limited computational power of the computers. Again, �nding out the most
workable numerical methods is a most case-speci�c task. We are particularly inter-
ested in discovering methods that are applicable to the numerical demonstrations.
Therefore, we attempt to construct the setups in such a way that the demonstra-
tions would be at the same time both simple and close to some imaginable real world
application.

In the demonstrations, we restrict ourselves to cases where σ known in most parts
of Ω and only a relatively small anomaly is sought. Loosely taken the conductivity
distribution is a priori assumed to be of the form

σ = σbg + δ

where σbg is some background conductivity distribution having some rather well-
known structure and δ is a small deviation having a small-sized support. The problem
is mainly concentrated on locating δ of right size and value of conductivity. The need
for a method of locating small perturbations arises in connection with various real
world applications of EIT such as detecting and classifying tumors from breast tissue.

1.1 Outline of the Thesis

In chapter 2, we introduce the mathematical model of the EIT problem. We apply
an electrode model, where the voltages are measured by a �nite number of contact
electrodes lying on ∂Ω. The forward problem is formulated as an H1(Ω)-elliptic
boundary value problem and discretized by employing the �nite element method.
The inverse problem is formulated both as a regularized least-squares (LS) problem
and in terms of Bayesian statistics.

Monte Carlo methods are discussed in the chapter 3. We introduce the idea of
Monte Carlo sampling techniques, the basics of the Markov chain Monte Carlo and
a number of potentially applicable MCMC algorithms.

In chapter 4, we introduce a number of linear algebraic methods. Both direct and
iterative methods are discussed. The aim is to �nd out methods that provide a fast
way to solve the discretized forward problem. Workability of a method depends on
the dimension of the system, the applied sampling method as well as the a priori
knowledge of the structure of the conductivity distribution. Since it is laborious to
compare the computational e�ciencies in practice, we give just some rough estimates
of the computational work loads.

In chapter 5, a small anomaly is sought in some numerical experiments by employing
the methods introduced in the previous chapters. We implement both regularized
least-squares and statistical algorithms.
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Chapter 2

EIT Problem

This section introduces the mathematical model of both the forward problem and the
inverse problem. The representation adopts largely the format of [1]. The statistical
formulation of the inverse problem discussed in the last section is based also on [2].

2.1 The Forward Problem

Let Ω ∈ Rn, n = 2, 3 be a bounded, simply connected domain with a connected
complement. We assume that Ω has a smooth boundary. Here, Ω represents the body
with known electromagnetic properties. We consider time-harmonic electromagnetic
�elds in Ω with low frequencies. In the quasi-static approximation, the �elds can be
described in terms of scalar voltage potential u satisfying the equation

∇ · σ∇u = 0 (2.1)

in Ω. Within this approximation, the function σ is complex valued and describes the
admittivity ( i.e. the inverse of impeditivity ) of the body. We restrict ourselves to
cases where the admittivity is real and positive, describing the conductivity of the
body, i.e. σ : Ω → R+. Physically, this corresponds to the static measurement.

The following de�nition �xes the admissible class of conductivities.

De�nition 1 A conductivity distribution σ : Ω → R+ is in the admissible class of
conductivities, denoted by A = A(Ω), if the following conditions are satis�ed:

1. For some N ≥ 1, there is a family {Ωj}N
j=1 of open disjoint sets, Ωj ⊂ Ω,

having piecewise smooth boundaries and for which

Ω =
N⋃

j=1

Ωj .

Furthermore, we require that σ|Ωj ∈ C(Ωj), 1 ≤ j ≤ N , i.e., σ restricted to
each subset Ωj allows a continuous extension up to the boundary of the subset.
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2. For some constants c and C,

0 < c ≤ σ(x) ≤ C < ∞ ∀x ∈ Ω

In medical applications the subsets Ωj in the forward problem may represent the
organs. In the inverse problem, the set of admissible conductivities provides a natural
discretion basis.

Due to the possible discontinuities of σ ∈ A, the equation (2.1) must be interpreted
in the weak sense, discussed in detail below.

To describe the current injection and voltage measurements on the surface of the
body, we de�ne a set of surface patches e` ⊂ ∂Ω, 1 ≤ ` ≤ L, as a mathematical
model of the contact electrodes. The electrodes are strictly disjoint, i.e. e` ∩ ek = ∅
for ` 6= k. If Ω ∈ R2, the electrodes are strictly disjoint intervals of the boundary,
and in the case Ω ∈ R3, they are sets with a piecewise smooth simple boundary curve
on ∂Ω. Let I` be the electric current injected through the electrode e`. We call the
vector I = (I1, . . . , IL)T ∈ RL a current pattern if it satis�es the charge conservation
condition

L∑

`=1

I` = 0. (2.2)

Let U` denote the voltage on the `th electrode, the ground voltage being chosen so
that

L∑

`=1

U` = 0. (2.3)

The vector U = (U1, . . . , UL)T ∈ RL is called a voltage vector. In terms of the
current patterns and voltages, the appropriate boundary condition for the electric
potential is given as

∫

e`

σ
∂u

∂n
dS = I`, 1 ≤ ` ≤ L, (2.4)

σ
∂u

∂n

∣∣∣
∂Ω\∪e`

= 0, (2.5)

u + z`σ
∂u

∂n
= U`, 1 ≤ ` ≤ L (2.6)

Here, the numbers z` are presumably known contact impedances between the elec-
trodes and the body. We use the notation z = (z1, . . . , zL)T in what follows. For
simplicity, we assume that the contact impedances are real. Note that in the forward
problem, only the current patterns on the boundary are speci�ed. However, condi-
tions (2.2) and (2.3) alone are not su�cient to uniquely determine the potential u,
but one needs to require u+z`∂u/∂n to be constant U` on e`. Finding these voltages
is part of the forward problem.

The following proposition was proved in [11]. In the following, we use the notation

H = H1(Ω)⊕ RL, (2.7)

where H1(Ω) is the L2-based Sobolev-space. Further, we denote

Ḣ = H/R (2.8)
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equipped with the quotient norm,

||(u,U)||Ḣ = inf
c∈R

||(u− c, U − c)||H. (2.9)

Thus, (u, U) ∈ H and (v, V ) ∈ H are equivalent in Ḣ if

u− v = U1 − V1 = · · · = UL − VL = constant. (2.10)

With these notations, the following proposition �xes the notion of the weak solution
of the electrode model.

Proposition 1 Let σ ∈ A(Ω). The problem (2.1), (2.4)-(2.6) has a unique weak
solution (u,U) ∈ Ḣ in the following sense. There is a unique (u,U) ∈ Ḣ satisfying
the equation

Bσ,z((u, U), (v, V )) =
L∑

`=1

I`V` (2.11)

for all (v, V ) ∈ Ḣ, where the quadratic form Bσ,z is given as

Bσ,z((u,U), (v, V )) =
∫

Ω
σ∇u · ∇v dx +

L∑

`=1

1
z`

∫

e`

(u− U`)(v − V`) dS. (2.12)

Furthermore, the quadratic form is coercive in Ḣ, i.e., we have the inequalities

α0||(u,U)||2Ḣ ≤ Bσ,z((u,U), (u,U)) ≤ α1||(u,U)||2Ḣ (2.13)

for some constants 0 < α0 ≤ α1 < ∞.

2.1.1 Numerical Implementation of the Forward Problem

We apply the �nite element method (FEM) [3] for the forward problem.

In order to simplify the numerics, Ω is approximated with a polygonal domain Ω̂,
which is partitioned by generating triangulation Th = {T1, . . . , TM} such that Ti ∩
Tj = ∅ for i 6= j and Ω̂ =

⋃M
m=1{Tm}. The subindex h indicates the mesh size.

Additionally, we suppose that σ ∈ Hh ⊂ A(Ω̂), where

Hh := span{χTm | 1 ≤ m ≤ M }, (2.14)

i.e. the basis functions of the discrete subspace Hh coincide with the characteristic
functions of the triangles. The triangles of the partition Th are called pixels and
Hh-functions pixelwise constant functions. We write σ =

∑M
i=1 σiηi and identify σ

with a vector in RM .

The discrete potential �eld is represented by using a piecewise linear nodal basis
{ϕ1, . . . , ϕNn} of the triangulation Th, i.e. a set of piecewise linear functions which
take on a nonzero value at precisely one of the nodes of Th. We de�ne

Sh = span{ϕi | 1 ≤ i ≤ Nn} (2.15)
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The �nite element approximation uh ∈ Sh satisfying the equations (2.1), (2.4)-(2.6)
in the sense of proposition 1 is written as

uh =
Nn∑

i=1

αiϕi (2.16)

In order that the condition (2.3) is satis�ed, the voltage vector is represented as

Uh =
L−1∑

j=1

βjnj , (2.17)

where the vectors nj ∈ RL are chosen as

n1 =
(
1 −1 0 . . . 0

)T
,

n2 =
(
1 0 −1 . . . 0

)T
,

nL−1 =
(
1 0 . . . −1

)T
. (2.18)

By applying the theory of �nite elements [3], a substitution of the approximations
(2.16) and (2.17) to the weak form (2.11) yields a matrix equation

Ax = f, (2.19)

where x = (α, β)T ∈ Nn + L− 1 and the data vector f is

f =
(

0∑L
`=1 I`(nj)`

)
=

(
0
CT I

)
. (2.20)

where 0 = (0, . . . , 0)T ∈ RNn and C ∈ RL×(L−1) is a sparse matrix given as

C =




1 1 1 . . . 1
−1 0 . . . 0

0 −1 0 . . .
...

... . . .
. . .

0
. . . −1




(2.21)

The sti�ness matrix A ∈ R(Nn+L−1)×(Nn+L−1) is the sparse block matrix of the form

A =
(

B C
CT G

)
(2.22)

with

Bi,j =
∫

Ω
σ∇ϕi · ϕj dx +

L∑

`=1

1
z`

∫

e`

ϕiϕj dS, 1 ≤ i, j ≤ Nn, (2.23)

Ci,j = −
( 1

z1

∫

e1

ϕi dS − 1
zj+1

∫

ej+1

ϕi dS
)
, 1 ≤ i ≤ Nn, 1 ≤ j ≤ L− 1(2.24)

Gi,j =
L∑

`=1

1
z`

∫

e`

(ni)`(nj)` dS (2.25)

=

{ |e1|
z1

, i 6= j
|e1|
z1

+ ej+1

zj+1
, i = j,

(2.26)
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By solving equation (2.19) an approximate solution for the forward problem is ob-
tained. The Nn �rst coe�cients in x give the solution uh in the nodes and the last
L− 1 coe�cients give the referenced voltages β = (β1, . . . , βL−1)T on the electrodes.
The potentials U` on the electrodes are calculated with the aid of (2.17) yielding

Uh = Cβ (2.27)

2.2 The Inverse Problem

To solve the �nite dimensional EIT inverse problem is to estimate the unknown
conductivity distribution σ ∈ A(Ω) on the basis of the voltage measurements on the
boundary.

Since we want to get as much boundary data as possible, instead of injecting just one
current pattern we inject a set of linearly independent current patterns {I(k)}K

k=1,
I(k) ⊂ RL, K ≤ L − 1 where L is the number of electrodes. Due to the condition
(2.2) L − 1 is the maximum number of linearly independent current patterns that
can be generated.

The set of measured voltages corresponding to the set {I(k)}K
k=1 is denoted as {

V (k) }K
k=1, V (k) ⊂ RL. The true measurements are noisy whereas the mathematical

model of the forward problem excludes the noise. The set of electrode voltages
corresponding to the current pattern I(k) and the conductivity distribution σ is
denoted by U (k)(σ).

The solution is found iteratively based on the idea of seeking σ such that the set
{U (k)(σ)}K

k=1 is in some sense the best possible estimate of the set {V (k)}K
k=1. Each

set {U (k)(σ)}K
k=1 is computed by solving a column vector form of the �nite dimen-

sional forward problem (2.19)
AσXσ = F (2.28)

where Xσ = (x(1)
σ , . . . , x

(K)
σ ) and F = (f (1), . . . , f (K)).

2.2.1 Current Patterns

The methods of injecting current patterns can be classi�ed into pair drive methods
and multiple drive methods. In pair drive methods, current is applied each time
between a pair of electrodes. In multiple drive methods current is injected simulta-
neously to more than two electrodes.

Pair drive methods are advantageous over multiple drive methods in the sense that
they are less sensitive to uncertainty in the values of the contact impedances, since in
pair drive methods one does not usually measure voltages with the electrodes inject-
ing currents. Multiple drive methods are better in terms of so called distinguishability
which is de�ned as follows.

Two conductivity distributions σ1 and σ2 are distinguishable with measurement pre-
cision ε if there exist a current pattern ||I|| = 1 such that

||U(σ1)− U(σ2)|| > ε (2.29)
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An optimal current pattern to distinguish σ1 from σ2 is the current vector I which
maximizes the distinguishability, i.e.

max
I

||U(σ1)− U(σ2)||
||I|| (2.30)

It can be shown that the trigonometric current patterns

I
(k)
` =

{
Imax cos(kθ`), 1 ≤ ` ≤ L, 1 ≤ k ≤ L

2 ,

Imax sin((k − L/2)θ`), 1 ≤ ` ≤ L, L
2 < k ≤ L− 1

(2.31)

where the constant Imax denotes the amplitude of the current, θ` = 2π`/L is the
angular location of the midpoint of electrode e` and k is the spatial frequency, are
optimal current patterns to distinguish a centered rotation invariant annulus from
a homogenous disc. As a general rule, low frequency current patterns of the form
(2.31) yield the best sensitivity to the deeper regions of Ω and the high frequency
patterns as (2.31) are mostly sensitive to the regions in vicinity of ∂Ω.

2.3 Least-Squares Methods

The most commonly used method for solving the above described inverse problem
is the Least-squares approximation (LS) where the idea is to minimize the error
||U(σ)−V||2.

2.3.1 Gauss-Newton Reconstruction

In Gauss-Newton reconstruction one minimizes the functional
Φα(σ) = ||U(σ)−V||2W + αA(σ), (2.32)

where

||U(σ)−V||2W =
K∑

k=1

L∑

l=1

wk,l(U
(k)
` (σ)− V

(k)
` )2, (2.33)

U(σ) = (U (1)(σ), . . . , U (K)(σ)), (2.34)
V = (V (1), . . . , V (K)). (2.35)

W = (wk,l) is a symmetric positive de�nite weight matrix, A(σ) is a regularizing
functional and α > 0. The regularization method is known as generalized Tikhonov
regularization. Usually Φα(σ) is minimized by employing some iterative gradient-
based optimization algorithms. The Gauss-Newton iteration is

σ(i+1) = σ(i) − λ(i)
s (H(i)

α )−1g(i), (2.36)

H(i)
α = (J (i))T WJ (i) +

1
2
αD2A(σ(i)) (2.37)

g(i) = (J (i))T W (U(σ(i))−V) +
1
2
αDA(σ(i)). (2.38)

where J (i) is a di�erential and H
(i)
α ∈ RM×M is a regularized Hessian matrix of the

map σ → U(σ) evaluated at σ(i), g(i) = ∇Φα(σ(i)), DA(σ(i)) is a di�erential of the
map σ → A(σ), (D2A(σ(i)))k,l = (∂2A/∂σk∂σl)|σ(i) and λ

(i)
s > 0 is a relaxation

parameter controlling the step size.
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2.3.2 NOSER Algorithm

Another approach to least-squares approximation is the Newton's one-step error re-
constructor (NOSER) which performs one Gauss-Newton iteration step starting from
an optimally chosen background to minimize ||U(σ) −V||2. The reconstruction is
computed as

σ = σ(0) + (H + α diag(H))−1g, (2.39)
where α > 0 is a regularization parameter and

H = (J (0))T J (0), g = (J (0))T (V − U(σ(0))), (2.40)

Since the Jacobian is an ill-conditioned matrix, computing its inverse requires for
regularization which, here, means adding a diagonal weight α diag(H).

2.4 Statistical Model

Since the voltage measurements are assumed to be noisy, it seems reasonable to take
a statistical approach to the inverse problem so as to get solutions as accurate as
possible. Surely, no model can completely represent every detail of reality, but the
aim is to abstract the key features of the problem into a workable mathematical form.
The procedure of drawing conclusions concerning unobserved quantities on the basis
of a probabilistic model is known as statistical inference.

2.4.1 Bayesian Methodology

We formulate the inverse problem in terms of Bayesian methodology. The idea of
Bayesian statistics is to embed all sorts of problem related information and un-
certainty, such as prior knowledge and physical randomness, in a joint probability
distribution by treating all quantities involved in the model as random variables. The
goal is to derive all inferential statements based purely on an appropriate conditional
distribution of unknown variables.

Below, random variables are denoted by capital letters and their values are denoted
by lower case letters.

Let (S,B, P ) denote a probability space, B being the σ-algebra of measurable subsets
of S and P : B → [0, 1] a probability measure. Let

(X,N) : S → Rn+k, V : S → Rm (2.41)

Vector (X,N) represents all those quantities that cannot be directly measured while
V represents a vector of observable quantities. X ∈ Rn represents those variables
that we are primarily interested in while N ∈ Rk contains unknown but uninteresting
variables.

In terms of Bayesian statistics (X,N) is a random vector following a prior density

πpr(x, n),
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which is typically regarded as known to the researcher independently of the data
under analysis and contains the prior knowledge of the value of (X, N). The prob-
ability of observing V corresponding to a given realization of (X, N) follows a so
called likelihood density

π(v |x, n). (2.42)
More generally, we call a likelihood function any function that is proportional to
the likelihood density. The realized value of (X, N) based the observations V is
summarized in the posterior density , which is typically a conditional distribution
obtained through an application of the well-known Bayes theorem:

πpost(x, n | v) =
π(v, x, n)

π(v)
=

π(v |x, n)πpr(x, n)
p(y)

∝ π(v |x, n)πpr(x, n). (2.43)

The process of a typical Bayesian analysis can be described as consisting of three
main steps:

1. Setting up a full probability model, the joint distribution π(v, x, n) capturing
the relationship among all variables in consideration. A standard procedure is
to formulate the scienti�c question of interest through the use of a probabilistic
model, based on which one can write down the likelihood density. The joint
probability density can then be represented as

π(v, x, n) = π(v |x, n)πpr(x, n) (2.44)

2. Summarizing the �ndings for particular quantities of interest by appropriate
posterior distributions. Usually, this means employing the formula (2.43).
Moreover, since the realization of N is uninteresting, one often integrates n
out from the density πpost(x, n | v).

3. Evaluating the appropriateness of the model and suggesting improvements.

2.4.2 Setting Up the Probability Model

The observation is assumed to follow a deterministic law; that is, we assume that X
and N determine the observable V uniquely,

V = F (X, N). (2.45)

Here, X and N are assumed to take values X = x ∈ Rn and N = n ∈ Rk and
F : Rn+k → Rm is assumed to be a known deterministic function. The probability
distribution of the random variable V is formally given by

π(v |x, n) = δ(v − F (x, n)) (2.46)

where δ is the Dirac delta in Rm. Let πpr(x, n) denote the prior probability density
of the unknown vector (X,N). The joint probability density of (X,N) and V can
be written as

π(x, n, v) = π(v|x, n)πpr(x, n) = δ(v − F (x, n))πpr(x, n). (2.47)
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Since we have arranged the variables so that N represents all the variables whose
values are not of primary interest, we integrate the variable n out and de�ne the
joint probability density of the variables X and V as a marginal distribution

π(x, v) =
∫

Rk

π(x, n, v)dn =
∫

Rk

δ(v − F (x, n))πpr(x, n) dn (2.48)

For simplicity, we consider a simple model where the variables X and N are inde-
pendent. This can be written as

πpr(x, n) = πpr(x)πnoise(n) (2.49)

where the variable N is identi�ed as noise and is assumed to be additive quantity,
i.e. the model equation (2.45) is of the form

V = f(X) + N (2.50)

and the integral (2.48) is written as

π(x, v) =
∫ k

R
δ(v − f(x)− n)πpr(x)πnoise(n) dn = πpr(x)πnoise(v − f(x)). (2.51)

The posterior distribution of X is given by the Bayes formula

πpost(x) = π(x|v) =
π(x, v)∫
π(x, v)dx

(2.52)

Writing π(v|x) = πnoise(v−f(x)) we have πpost(x) = π(x|v) ∝ πpr(x)π(v|x), where
π(v|x) is the likelihood density.

2.4.3 Estimates from the Posterior Distribution

In the formal Bayesian procedure, solution of the inverse problem is the posterior dis-
tribution of X. However, to be able to draw representative images of the conductivity
distribution within Ω one has somehow to estimate the realization of X. Therefore,
the word solution is, as well, used to refer to some estimate of some property of the
posterior distribution.

A commonly used estimate is the (possibly non-unique)maximum a posteriori (MAP)
estimate

xMAP = arg max
x

π(x|v) (2.53)

Computation of the MAP estimate leads to an optimization problem.

The maximum likelihood estimate amounts to determination of the maximum of the
likelihood density; that is

XML = arg max
x

π(v|x) (2.54)

In highly non-linear and ill-conditioned problems ML estimates are often useless.

It is also common to estimate the conditional expectation

x|v =
∫

Rn

xπ(x|v)dx. (2.55)
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2.4.4 Implementation of the Bayesian Model

In terms of the above described probability model, the sought posterior distribution
of the EIT inverse problem is πpost(σ) = π(σ|V), σ ∈ Hh being the discrete ap-
proximation of the unknown conductivity distribution and V containing the voltage
measurements as in (2.35).

We assume the random noise N of the measurements to be additive and independent
of σ. Thus, similarly as in (2.50) we have

V = U(σ) + N (2.56)

The contact impedances are assumed to be known. For convenience, we assume that
the basis functions ηk ∈ Hh are positive.

In this thesis, we employ prior distributions of the form

πpr(σ) = π+(σ)π̃pr(σ), (2.57)

where π+ is the positivity prior of the form

π+(σ) =

{
1, 0 < σ ≤ σj ≤ σmax < ∞
0, otherwise

(2.58)

and π̃pr is a subspace constraint

π̃pr(x) ∝ χSpr(x), (2.59)

where χSpr is the characteristic function of Spr denoting a subset of Hh chosen on
the ground of the prior information. Often, it is not enough just to restrict the
problem to some subspace, but more sophisticated prior distributions have to be
applied (e.g. regularizing priors favoring anomalies of certain size).

In the computations, the noise vector N is a zero mean Gaussian random vector with
positive de�nite covariance matrix C. With this choice, the posterior distribution
given by formulae (2.51) and (2.52) is written as

π(σ |V) ∝ π+(σ)χSpr(σ) exp(−1
2
(U(σ)−V)T C−1(U(σ)−V)). (2.60)

The least squares solution discussed in section 2.3 corresponds to the MAP solution
of (2.60) when W = 1

2C−1.
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Chapter 3

MCMC Integration

Examining the posterior distribution numerically is usually quite problematic, since
the dimension of the sample space is often large.

For instance, estimation of the conditional expectation requires for evaluation of the
integral (2.55). Applying a standard numerical n-dimensional quadrature is often
impossible, since the computational work load increases rapidly as a function of n.

In this work, the conditional expectation is estimated in a statistical sense through
MCMC sampling methods, a class of relatively simple algorithms that by generating
sample ensembles enable the exploration of an arbitrary probability distribution.
MCMC methods o�er a way to solve both integration and optimization problems.
The use of MCMC is pro�table in connection with high dimensional problems, since
instead of the dimension the convergence rate depends on the size of the generated
sample ensemble and the exactitude of a priori information.

In this section, we discuss the general idea of the MCMCmethods and introduce some
sampling strategies that appear frequently in the literature. We lay the emphasis on
MCMC integration. The main references are [1], [7] and [2].

3.1 Motivation of Monte Carlo Techniques

The fundamental idea behind the Monte Carlo methodology is that the integral

I =
∫

D
f(x) dx, (3.1)

over a compact D ⊂ Rn can be estimated in a statistical sense by drawing inde-
pendent and uniformly (π ∼ χD) distributed random samples x(1), . . . , x(m) from D.
The law of large numbers states that the average of large number of independent
random variables with common mean and �nite variances tends to stabilize at their
common mean. Therefore, we can approximate

I ≈ Îm =
1
m
{f(x(1)) + · · ·+ f(x(m))}. (3.2)
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because limm→∞ Îm = I, with probability 1. The convergence rate is assessed by the
central limit theorem:

√
m(Îm − I) → N(0, γ2), in distribution, (3.3)

where
γ2 = var{f(x)} =

∫

D
(f − f)2 dx (3.4)

Thus, the error of the approximation (3.2) is O(1/
√

m), regardless of the dimension-
ality of x.

Deterministic methods of evaluating (3.1), such as the Riemann approximation and
Simpson's rule, do not scale well as the dimension of D increases. For example, in
n-dimensional space with D = [0, 1]n, one will have to evaluate O(m10) grid points
in order to achieve an accuracy of O(m−1). Hence, due to the property (3.3) the
Monte Carlo approach is especially advantageous when the dimension of D is large.

3.1.1 Example: Importance Sampling

In applications, achieving a feasible convergence rate can be problematic. The vari-
ance γ2 can be formidably small indicating that only a small subset of the sample
space D a�ects notably the value of (3.1), due to which the convergence rate of the
estimate (3.2) would be slow. For similar reasons, an exceedingly large value of γ2

causes slow convergence. It is also possible that one may not be able to produce
uniform random samples in an arbitrary region D.

One way to overcome these di�culties is importance sampling in which the inde-
pendent random samples {x(1), . . . , x(m)} are generated from a nonuniform easy-to-
sample trial distribution g(x) that puts more probability mass on "important" parts
of the state space D and then correcting the bias by incorporating the importance
weight f(x(j))/g(x(j)). The integral (3.1) is estimated as

Îm =
1
m

m∑

j=1

f(x(j))
g(x(j))

(3.5)

which has the variance

γ2
g = varg{f/g} =

∫

D

(f

g
−

(f

g

))2
gdx. (3.6)

Thus, a good candidate for g(·) is the one that is close to f(·). By properly choosing
g(·), one can reduce the variance of the estimate substantially. In the most fortu-
nate case, we are able to choose π(x) ∼ g(x), but this is virtually never feasible in
applications.

Because of the great potential of Monte Carlo methodology, various techniques have
been developed by researchers in their respective �elds. A fundamental step in all
Monte Carlo methods is to generate random samples from a probability distribution
function π, often known only up to a normalizing constant. As directly generating
independent samples from the target distribution π is usually not feasible, it is often
the case that either the distribution used to generate the samples is di�erent from π,
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or the generated samples have to be dependent. Schemes that make use of samples
generated from a a trial distribution g, which di�ers from, but should be similar
to, the target distribution π, are the rejection method, importance sampling and
sampling-importance-resampling.

3.1.2 The General Idea of Markov Chain Monte Carlo

The idea behind the MCMC methods is generating random but statistically depen-
dent samples from an arbitrary probability distribution π. The advance of using
MCMC is, that even the generated samples are not independent, one does not neces-
sarily have to know much about the structure of π in order to draw a representative
sample ensemble.

Below, we introduce some fundamental de�nitions concerning Markov chains in order
to facilitate the closer inspection of the MCMC methods. We restrict ourselves to
cases where the state space is Rn.

De�nition 2 Let B denote the Borel sets over Rn. A mapping A : Rn × B → [0, 1]
is called a transition function (also transition kernel), if

1. For each B ∈ B, the mapping A : Rn → [0, 1], x → A(x,B) is a measurable
function;

2. For each x ∈ Rn, the mapping B → [0, 1], B → A(x,B) is a probability mea-
sure.

De�nition 3 A time-homogenous Markov chain with the transition function A is a
stochastic process {X(j)}∞j=1 if the transition function satis�es

P (X(j+1) ∈ B |X(1), . . . , X(j)) = P (X(j+1) ∈ B |X(j)), (3.7)
A(x,B) = P (X(j+1) ∈ B |X(j) = x) ∀ j. (3.8)

More generally, we de�ne

A(k)(x,B) = P (X(j+k) ∈ B |X(j) = x)

=
∫

Rn

A(x,B)A(k−1)(x, dy),

where A(1)(x,B) = A(x,B).

De�nition 4 If π is a probability measure of X(j) and f is a scalar or vector-valued
measurable function on Rn, f ∈ L1(π(dx)), then the distribution of X(j+1), is de�ned
by

(πA)(B) =
∫

Rn

A(x,B)π(dx). (3.9)

Af and πf are de�ned as

(Af)(x) =
∫

Rn

f(y)A(x, dy) (3.10)

πf =
∫

Rn

f(y)π(dy) (3.11)
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De�nition 5 The measure π is an invariant measure of A(x,B) if πA = π, i.e., the
distribution of the random variable after one transition step is the same as before the
step.

De�nition 6 Given a probability measure π. The transition kernel A is called π-
irreducibile with respect to π if for each x ∈ Rn and B ∈ B with π(B) > 0 there
exists an integer k such that A(k)(x,B) > 0. Thus, regardless of the starting point,
the Markov chain enters with a positive probability any set of positive measure.

De�nition 7 A π-irreducible transition function A is periodic if for some integer
m ≥ 2 there is a set of disjoint non-empty sets {E1, . . . , Em} ⊂ Rn such that for all
j = 1, . . . , m and all x ∈ Ej, A(x,Ej+1 (modm)) = 1. Otherwise, A is aperiodic.

De�nition 8 A π-irreducible chain {X(j)}∞j=1 with invariant distribution π is re-
current if, for each B with π(B) > 0,

P{X(n) ∈ B i.o. |X(0) = x} > 0 for allx, (3.12)
P{X(n) ∈ B i.o. |X(0) = x} = 1 for π-almost allx. (3.13)

The notation {X(n) ∈ B i.o. |X(0) = x} meaning that the Markov chain starting
from x visits B in�nitely often i.e.

∑
X(n)∈B 1 = ∞. The chain is Harris recurrent

if P{X(n) ∈ B i.o. |X(0) = x} = 1 for all x.

De�nition 9 A π-irreducible recurrent Markov chain is positive recurrent if it has
an invariant distribution, total mass of which is �nite; otherwise it is null recurrent.

De�nition 10 A Markov chain is called ergodic if it is positive Harris recurrent and
aperiodic. If Sx

B denotes the hitting time for set B for a chain starting from x, then
an ergodic chain with invariant distribution π is ergodic of degree 2 if

∫

B
π(dx)E[(Sx

B)2] < ∞ (3.14)

In traditional Markov chain analysis, one is often given the transition function and is
interested in knowing what the stationary distribution is, whereas in Markov chain
Monte Carlo simulations, one knows the equilibrium distribution and is interested
in prescribing an e�cient transition rule so as to reach the equiblirium. The Monte
Carlo approximation

fn =
1
n

n∑

i=1

f(Xi) ≈
∫

Rn

f(x)π(dx) = πf (3.15)

converges, since the law of large numbers and the central limit theorem apply also
to the Markov chains [7].

Theorem 1 (a law of large numbers) Suppose {X(j)}∞j=1 is ergodic with equi-
librium distribution π and suppose f is real and π|f | < ∞. Then for any initial
distribution, fn → πf almost surely.
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Theorem 2 (the central limit theorem) Suppose {X(j)}∞j=1 is ergodic of degree
2 with equilibrium distribution π and suppose f is real-valued and π(f2) < ∞. Then
there exists a real number γ(f) such that the distribution of

√
n(fn − πf) → N(0, γ(f)2) (3.16)

weakly (i.e., in distribution) for any initial distribution on x(0).

3.2 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm prescribes the transition rule based on a "trial - and
- error" strategy. It uses a symmetric proposal function T (x, y) to suggest a possible
move from x to y and then via an acceptance-rejection rule ensures that the target
distribution π is the equilibrium distribution of this chain.

Algorithm 3.2.1 (Metropolis-Hastings)

• Given the current state x(t) and a proposal function T (x, y) that satis�es T (x, y) >
0 if and only if T (y, x) > 0.

• Draw y from the proposal distribution T (x(t), y).

• Draw U ∼ Uniform[0, 1] and update

x(t+1) =

{
y, if U ≤ r(x(t), y)
x(t) otherwise

(3.17)

where
r(x, y) = min

{
1,

π(y)T (y, x)
π(x)T (x, y)

}
. (3.18)

The algorithm is a generalization of the Metropolis algorithm, cornerstone of all
MCMC techniques, which additionally sets a symmetry requirement T (x, y) = T (y, x).
Apparently, choice of the proposal function has a great e�ect on the convergence
rate, which is why the Metropolis-Hastings algorithm is useful in many connections:
it does not set serious restrictions on the proposal probability.

3.2.1 The Detailed Balance

To show that the Metropolis-Hastings algorithm prescribes a valid transition rule
A(x, y) with invariant distribution π(x) we have to show that

∫
π(x)A(x, y) dx = π(y). (3.19)

A(x, y) can be written down explicitly: For any x 6= y, the probability that we
actually make the move from x to y is equal to T (x, y) multiplied by the acceptance
probability, i.e.

A(x, y) = T (x, y)min
{

1,
π(y)T (y, x)
π(x)T (x, y)

}
, (3.20)
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for x 6= y. Hence,

π(x)A(x, y) = π(x)T (x, y)min
{

1,
π(y)T (y, x)
π(x)T (x, y)

}

= min{π(x)T (x, y), π(y)T (x, y)} = π(y)A(y, x), (3.21)

which is the detailed balance condition implying that (3.19) holds, since
∫

π(x)A(x, y) dx =
∫

π(y)A(y, x) dx = π(y)
∫

A(y, x) dx = π(y) (3.22)

by symmetry. Thus, the samples x(1), x(2), . . . produced by the chain can be regarded
as approximately following the target distribution π.

3.3 Algorithms Based on the Metropolis-Hastings Rule

We are especially interested in employing the Metropolis-Hastings transition rule
for the EIT inverse problem as it allows adapting the proposal distribution to the
structure of the posterior distribution (2.60). This section introduces some widely
used algorithms based on this rule.

3.3.1 Metropolized Independence Sampler (MIS)

One of the most simple proposal transition functions is an independent trial density
T (x, y) = g(y), which generates the proposed move y independently from the from
the previous state x(t). This method is an alternative to the importance sampling.

Algorithm 3.3.1 (MIS)

• Given the current state x(t).

• Draw y ∼ g(y).

• Simulate U ∼ Uniform[0, 1] and let

x(t+1) =

{
y, if U ≤ min

{
1, w(y)

w(x(t))

}

x(t), otherwise,
(3.23)

where w(x) = π(x)/g(x) is the usual importance sampling weight

The e�ciency of MIS depends on how close the trial density is to the target distri-
bution π(y).

Being a primitive sampling technique MIS can be applied in connection with more
sophisticated algorithms. For instance, it is possible to insert a couple of MIS steps
into Gibbs sampler iteration described in section 3.5 when correctly sampling from
a conditional distribution is di�cult. With low variances the conditional distribu-
tion di�ers virtually from zero only in a very close neighborhood of the point where
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it attains the maximum value. Therefore, drawing random numbers from the con-
ditional distribution by employing regular grids can be very ine�cient in terms of
computing time and requires for treating numbers very unequal in magnitudes. In
many Bayesian computations sampling from the conditional distribution can be per-
formed reasonably well using MIS and a Gaussian approximation of the posterior
distribution as g(y). This might be worth trying also in connection with the EIT
problem. Moreover, dealing with numbers of di�erent magnitudes is not a problem
when using MIS since (3.24) can be written as

x(t+1) =

{
y, if log(U) ≤ min

{
0, log(w(y))− log(w(x(t)))

}

x(t), otherwise,
(3.24)

3.3.2 Random-walk Metropolis

The random-walk Metropolis algorithm is based on perturbing the current con�gu-
ration x(t) by adding a random "error" so that the proposed candidate position is
y = x(t) + ε where ε ∼ gγ is identically distributed for all t. The parameter γ is the
"range" of the exploration controlled by the user.

When one does not have much information about the structure of the target distri-
bution, gγ is often chosen to be a spherically symmetric distribution. Typically, gγ

is the spherical Gaussian distribution N(0, γ2I). The algorithm is,

Algorithm 3.3.2 (Random-walk Metropolis)

• Given the current state x(t)

• Draw ε ∼ gγ and set y = x(t) + ε, where gγ ∼ N(0, γ2I). The variances γ is
chosen by the user.

• Simulate U ∼ Uniform[0, 1] and update

x(t+1) =

{
y, if U ≤ π(y)

π(x(t))

x(t) otherwise
(3.25)

It has been suggested that γ should be chosen so that a 25% to 35% acceptance rate
is maintained. Despite of the fact that the Metropolis-Hastings algorithm (3.2.1)
allows one to use asymmetric proposal functions, a simple random-walk proposal is
still most frequently seen in practice, since �nding a good proposal transition kernel
is rather di�cult. However, in order to achieve an adequate acceptance rate, one is
often bound to use very small step-size in the proposal transition, which will easily
result in exceedingly slow movement of the corresponding Markov chain. In such
case, convergence rate of the algorithm would arguably be very slow.

3.3.3 Multiple-Try Metropolis (MTM)

Multiple-Try Metropolis (MTM) is a generalization of the Metropolis-Hastings' tran-
sition rule allowing the sampler to take larger jumps without lowering the acceptance
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rate. The idea is to generate weighted samples by de�ning a weight function

w(x, y) = π(x)T (x, y)λ(x, y), (3.26)

where T (x, y) is an arbitrary proposal transition function and λ(x, y) is a non-
negative symmetric function that can be chosen by the user. A modest requirement
is that both T (y, x) > 0 and λ(x, y) > 0 whenever T (x, y) > 0.

Algorithm 3.3.3 (MTM)

• Given the current state x(t)

• Draw k independent trial proposals y1, . . . , yk, from T (x(t), ·). Compute

w(yj , x
(t)) = π(x(t))T (x(t), yj)λ(x(t), yj) (3.27)

• Select y among the trial set {y1, . . . , yk} with probability proportional to w(yj , x
(t)),

j = 1, . . . , k. Then, produce a "reference set" by drawing x∗1, . . . , x
∗
k−1 from the

distribution T (y, ·). Let x∗k = x(t).

• Accept y with probability

rg = min
{

1,
w(y1, x

(t)) + · · ·+ w(yk, x
(t))

w(x∗1, y) + · · ·+ w(x∗k, y)

}
(3.28)

and reject it with probability 1 − rg. The quantity rg is called the generalized
M-H ratio.

A straightforward (but boring) calculation shows that the method ful�ls the detailed
balance condition. λj is often chosen to be a constant function, but it is also usual
to give larger weights to larger j's in order to increase the step-size. For symmetric
T (x, y), one can choose λ(x, y) = T−1(x, y). Then, w(x, y) = π(x). The resulting
algorithm is known as orientational bias Monte Carlo (OBMC).

Algorithm 3.3.4 (OBMC)

• Given the current state x(t)

• Draw k trials y1, . . . , yk from a symmetric proposal function T (x(t), ·).
• Select y = yl among the y's with probability proportional to π(yj), j = 1, . . . , k;
then, draw the reference points x∗1, . . . , x

∗
k−1 from the distribution T (y, ·). Let

x∗k = x(t).

• Accept yl with probability

min
{

1,
π(y1) + · · ·+ π(yk)
π(x∗1) + ·+ π(x∗k)

}
(3.29)

and reject with the remaining probability.
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Combining MTM algorithm with Metropolized independence sampler (3.3.1) results
in multiple-trial Metropolized independence sampler (MTMIS) algorithm. Since the
trial samples are generated independently one does not need to generate another
"reference set".

Algorithm 3.3.5 (MTMIS)

• Given the current state x(t)

• Generate a trial set of i.i.d samples by drawing yj ∼ g, j = 1, . . . , k, in-
dependently, where g is a trial distribution chosen by the user. Compute
w(yj) = π(yj)/g(yj) and W =

∑k
j=1 w(yj).

• Draw y from the trial set {y1, . . . , yk} with probability proportional to w(y).

• Let x(t+1) = y with probability

min
{

1,
W

W − w(y) + w(x)

}
(3.30)

and let x(t+1) = x with the remaining probability.

3.3.4 Correlated Multipoint Proposals

A more general scheme is provided by the multipoint method. For simplicity We use
the notation

y[1:j] = (y1, . . . , yj)
y[j:1] = (yj , . . . , y1).

in the following. Multipoint method chooses the proposed move from multiple cor-
related proposals at each iteration step. Let y1 ∼ P1(·|x) and let

yj ∼ Pj(·|x, y1, . . . , yj−1), j = 2, . . . , k

Pj(y[1:j]|x) = P1(y1|x) · · ·Pj(yj |x, y[1:j−1]),

In this case, the weight function is de�ned as

wj(x, y[1:j]) = π(x)Pj(y[1:j]|x)λj(x, y[1:j]), (3.31)

where λj is a sequentially symmetric function, i.e.

λj(a, b, . . . , z) = λj(z, . . . , b, a)

The algorithm is as follows:

Algorithm 3.3.6 (Multipoint method)

• Given the current state x(t).

• Sample y from the trial set {y1, . . . , yk} with probability of yl proportional to
w(y[l:1], x

(t)). Suppose yj is chosen.
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• Create a reference set by letting x∗l = yj−l for l = 1, . . . , j − 1, x∗j = x(t), and
drawing

x∗m ∼ Pm(·|y, x∗[1:m−1]), (3.32)
for m = j + 1, . . . , k.

• Let x(t+1) = y with probability

rmp = min
{

1,

∑k
l=1 w(y[l:1], x)

∑k
l=1 w(x∗[l:1], y)

}
, (3.33)

and let x(t+1) = x(t) with the remaining probability.

A particular case of the multipoint method is the random grid Monte Carlo algorithm.

Algorithm 3.3.7 (Random grid method)

• Given the current state x(t).

• Randomly generate a direction e ∈ Rn and a grid size r ∈ R.
• Construct the candidate set as

yl = x + l · r · e, (3.34)

for l = 1, . . . , k.

• Draw y = yj from {y1, . . . , yk} with probability proportional to w(yj) = ujπ(yj),
where uj is a constant chosen by the user (e.g. uj =

√
j).

• Construct the reference set by letting x∗l = y− l ·r ·e for l = 1, . . . , k. Therefore,
xl = yj−1 for l < j and x∗l = x(t) − (l − j) · r · e for l ≥ j.

• Accept the candidate y with probability

p = min
{

1,
k∑

l=1

π(yl)/
k∑

l=1

π(x∗l )
}

(3.35)

and reject with the remaining probability

Above, we have been able to choose λj = uj/Pj , which is a sequentially symmetric
function, since the trial set {y1, . . . , yi} determines yi+1 uniquely and the resulting
trial proposal Pj is sequentially symmetric, i.e.

Pj(y[1:j]|x) = Pj(x|y[j:1]). (3.36)
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3.4 Dynamic Weighting

The use of dynamic weighted samples (x(t), w(t)) ∈ (Rn,R+) for controlling Markov
chain simulation was introduced in [13]. The dynamic weighting scheme has proved
to be exceptionally useful as a tool for solving high dimensional integration problems.
Below, we introduce two algorithms so as to illustrate the idea of employing dynamic
weights.

Algorithm 3.4.1 (R-type move)

• Given the current state (x(t), w(t)).

• Draw y from T (x(t), y) and compute the Metropolis-Hastings ratio

r(x(t), y) =
π(y)T (y, x(t))

π(x(t))T (x(t), y)
. (3.37)

• Choose θ = θ(w(t), x(t)) > 0, and draw U from Uniform(0, 1). Then let

(x(t+1), w(t+1)) =





(y, w(t)r(x(t), y) + θ), if U ≤ w(t)r(x(t),y)

w(t)r(x(t),y)+θ(
x(t), w(t)(w(t)r(x(t),y)+θ)

θ

)
, otherwise

(3.38)

Algorithm 3.4.2 (Q-type move)

• Given the current state (x(t), w(t)).

• Propose the next state y from the proposal T (x(t), ·) and compute the Metropolis
ratio

r(xt), y) =
π(y)T (y, x(t))

π(x(t))T (x(t), y)
(3.39)

• Choose θ = θ(w(t), x(t)) > 0, and draw U ∼ Uniform(0, 1). Update (x(t), w(t))
to (x(t+1), w(t+1)) as

(x(t+1), w(t+1)) =

{
(y, max{θ, w(t)r(x(t), y)}), if U ≤ min{1, w(t)r(x(t), y)/θ}
(x(t), aw(t)), otherwise

(3.40)
where a > 1 can either be a constant or a random variable independent of all
other variables.

Instead of the Monte Carlo approximation (3.2) πf is estimated by employing the
standard importance sampling estimate

f̂n =
w(1)f(x(1)) + · · ·+ w(m)f(x(m))

w(1) + · · ·+ w(m)
≈ πf, (3.41)

The purpose of bringing importance weights into the dynamic Monte Carlo process
is to provide enable large transitions not allowable by the standard Metropolis tran-
sition rules. Firstly, w(t) tends to increase in value as far as x(t+1) = x(t), i.e. the
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proposed y is not accepted. Secondly, the probability of accepting the proposed move
increases as the value of w(t) increases. As a result, the algorithm is not as likely
stuck into local modes as the standard Metropolis would be.

Although the way of updating the weight variable allows an adjustment of the bias
induced by the non-Metropolis moves, neither R-type move nor Q-type move does not
have π as the equilibrium distribution. The above scheme is justi�ed by employing
the following two de�nitions.

De�nition 11 Random variable x is called correctly weighted by w with respect to
π if

∑
w wf(x,w) ∝ π(x), where f(x, w) is the joint distribution of (x,w).

De�nition 12 (IWIW) A transition rule is said to be invariant with respect to
importance weighting (IWIW) if it maintains the correctly weightedness of (x,w).

R-type move satis�es the IWIW property, whereas Q-type move does not. In both
cases, it is still possible that the weight variable does not have a stable distribution or
it may have an in�nite expectation, which is the case with R-type move with θ = 1.
By a general weak law of large numbers [14] the approximation (3.41) converges even
if the expectation would be in�nite, but the convergence rate in such a case would
apparently be too slow for implementing the algorithm in applications.

Generally, the theory of dynamic weighting is still rather subtle, although it has been
applied successfully in many di�cult problems.

3.5 The Gibbs Sampler

The above described algorithms are based on "trial-and-error" strategy. In contrast,
the Gibbs sampler is a conditional sampling technique no rejection being incurred
at any of its sampling steps. The Markov transition rules of the algorithm are built
upon conditional distributions derived from the target distribution.

Suppose that the random variable can be decomposed into d components, i.e. x =
(x1, . . . , xd). In Gibbs sampler, one randomly or systematically chooses a coordinate,
say xk, and then updates it with a new sample x′k drawn from the conditional distri-
bution π(·|x[−1]), where x[−A] refers to {xj , j ∈ Ac} for any subset A of the coordinate
indices. Algorithmically, we describe two types of Gibbs sampling strategy.

Algorithm 3.5.1 (Random-scan Gibbs sampler) Let x(t) = (x(t)
1 , . . . , x

(t)
d ) for

iteration t. Then, at iteration t + 1, we conduct the following steps:

• Randomly select a coordinate i from {1, . . . , d} according to a given probability
vector (α1, . . . , αd) [e.g. (1/d, . . . , 1/d)].

• Draw x
(t+1)
i from the conditional distribution π(·|x(t)

[−i]) and leave the remaining
components unchanged; that is, let

x
(t+1)
[−i] = x

(t)
[−i] (3.42)

24



Algorithm 3.5.2 (Systematic-scan Gibbs sampler) Let x(t) = (x(t)
1 , . . . , x

(t)
d ).

At the t + 1 iteration:

• We draw x
(t+1)
i from the conditional distribution

π(xi |x(t+1)
1 , . . . , x

(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
d ) (3.43)

for i = 1, . . . , d

It is easy to check that every conditional update step in the Gibbs sampler leaves π

invariant. To see this, suppose x(t) ∼ π. Then, x
(t)
[−i] follows its marginal distribution

under π. Thus,
π(x(t+1)

i |x(t)
[−i])× π(x(t)

[−i]) = π(x(t)
[−i], x

(t+1)
i ), (3.44)

which means that after one conditional update, the new con�guration still follows
distribution π.

More detailed discussion of applying the Gibbs sampler to the EIT problem can be
found in [1]. The Gibbs sampler is not implemented in this thesis, which is largely
due to the di�culties that occurred in connection with drawing random samples from
conditional distributions.

3.6 Surrogate Transitions

It is typical in Monte Carlo simulations that evaluation of π(x) involves expensive
computation, although it is cheap to obtain a relatively good approximation π∗(x).
In the EIT inverse problem, evaluation of the posterior density πpost(σ) requires for
solving the discretized forward problem, i.e. linear system of equations, the size of
which depends on the resolution of the discretion. It is, however, often su�cient to
speed up calculations simply by linearizing the mapping σ → U(σ) around the initial
guess σ0 and by approximating

U(σ) ≈ U∗(σ) = U(σ) + DU(σ0)(σ − σ0), (3.45)
πpost(σ) ≈ π∗post(σ) (3.46)

where DU(σ) is the Jacobian matrix and π∗post(σ) is the value of the posterior density
corresponding to the approximation U∗(σ). The method simpli�es considerably the
numerics and has been successfully applied in [1].

The idea of the surrogate transition method is to draw samples from the target dis-
tribution π with aid of the approximation π∗. We assume that one can conduct a
reversible Markov transition S(x, y) leaving π∗ invariant, i.e. the detailed balance

π∗(x)S(x, y) = π∗(y)S(y, x) (3.47)

is satis�ed. A valid surrogate transition can be devised by making use of the Metropo-
lis principle on π∗(x)

Algorithm 3.6.1 (Surrogate transition method)
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• Given a current sample x(t).

• Let y0 = x(t) and recursively

yi ∼ S(yi−1, ·), (3.48)

for i = 1, . . . , k.

• Update x(t+1) = yk with probability

min
{

1,
π(yk)/π∗(yk)

π(x(t))/π∗(x(t))

}
(3.49)

and let x(t+1) = x(t) with the remaining probability.

The proposal transition from y0 to yk can be written as

S(k)(y0, yk) =
∫
· · ·

∫
S(y0, y1) · · ·S(yk−1, yk)dy1 · · · dyk−1

In words, S(k)(·, ·) is the k-step transition function for the surrogate Markov chain
de�ned by S. It is easy to see that π∗(x)S(k)(x, y) = π∗(y)S(k)(y, x), Thus, the
actual transition function from x(t) to x(t+1) = y 6= x has the form

A(x, y) = S(k)(x, y) min
{

1,
π(y)/π∗(y)
π(x)/π∗(x)

}
. (3.50)

Hence,

π(x)A(x, y) = π∗(x)S(k)(x, y)min
{ π(x)

π∗(x)
,

π(y)
π∗(y)

}

= π∗(y)S(k)(y, x) min
{ π(x)

π∗(x)
,

π(y)
π∗(y)

}

= π(y)A(y, x), (3.51)

which is the detailed balance.

3.7 Simulated Annealing

Besides integration, MCMC methods can also be applied to solve high dimensional
optimization problems. In connection with EIT inverse problem an optimization
method is needed if one wants to evaluate MAP or ML estimate. As an example of
an optimization algorithm we introduce the simulated annealing (SA) method.

Suppose our task is to �nd the minimum of a target function h(x). This is equivalent
to �nding the maximum of

π(x) ∝ exp{−h(x)/T} (3.52)

at any given temperature T . Let T1 > T2 > · · · > Tk > · · · be a sequence of mono-
tone decreasing temperatures in which T1 is reasonably large and limk→∞ Tk = 0.
At each temperature Tk we run Nk steps of the Metropolis-Hastings (M-H) or
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Gibbs sampling scheme with πk(x) ∝ exp{−h(x)/Tk} as the equilibrium distri-
bution. An important mathematical observation is that for any system in which∫

exp{−h(x)/T}dx < ∞ for all T > 0, distribution πk, as k increases, puts more
and more of its probability mass into a vicinity of the global minimum of h(x) when
Tk is close to zero. Theoretically, at least, we should be able to obtain good samples
from πk if we let the number of M-H iterations Nk be su�ciently large. Decreasing
the temperature during computation can be termed as variance reduction and is
commonly used in the �eld of MCMC computing.

Algorithm 3.7.1 (SA)

• Initialize at an arbitrary con�guration x(0) and temperature level T1.

• For each k, we run Nk iterations of an MCMC scheme with πk(x) as its target
distribution. Pass the �nal con�guration of x to the next iteration.

• Increase k to k + 1.

It can be shown that the global minimum of h(x) can be reached by SA with prob-
ability 1 if the temperature variable Tk decreases su�ciently slowly.

3.8 Implementation Issues

Although MCMC algorithms are simple, there are several practical implementation
issues that need to be considered before MCMC can be applied to examine a posterior
distribution. It is commonly agreed that �nding an ideal proposal chain is an art. In
practice, one always tends to feel unsatis�ed in settling down on any proposal chain.

3.8.1 Burn-in Phase

Usually, after starting a chain a number of iteration steps have to be taken before the
chain has reached the important parts of the target distribution and starts to produce
appropriate samples. The beginning of the chain is often called a burn-in phase.
The length varies largely depending on the implemented sampling technique. A long
burn-in phase is a problem occurring especially in connection with the random-step
Metropolis algorithm and small step sizes.

3.8.2 Choosing a Sampling Plan

There are several ways to draw extesive sample enesembles through Markov chains.
At one extreme, it is possible to generate n independent realizations from the poste-
rior distribution by using n separate runs, each of length m, and retaining the �nal
states from each chain. The run length m is to be chosen large enough to ensure that
the chain has passed the burn-in phase. The other extreme is to use a single long run,
or perhaps a small number of long runs. Experience appear to favor the use of long
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runs. The major drawback of using short runs is that it is virtually impossible to tell
when a run is long enough based on such runs. Even using long runs, determining
how much the initial series is a�ected by the starting state is di�cult.

A complication that arises from the statistical dependence when using a single series
is that variances of estimates are more di�cult to obtain. One way to increase the
level of independence is to retain every rth point of a sample path. Often, behavioral
characteristics of a chain is analyzed in terms of autocorrelation curves. Below, the
level of independence is studied in terms of autocorrelation.

3.8.3 Determining the Run Length

According to the traditional form of the central limit theorem the variance of the
Monte Carlo estimate fm decays as γ2(f)/

√
m supposing that the samples are inde-

pendent and identically distributed. The Markov chain based sampling scheme was
introduced, since drawing correlated samples eases generation of sample ensembles.
However, correlation between samples usually decreases the statistical reliability of
the estimate. Thus, it seems justi�ed to argue, that the less correlated are the con-
secutive samples the faster is the convergence rate of the Monte Carlo estimate fm

and the shorter run lengths are needed. The concept of autocorrelation provides us
an advantageous way to study the algorithm e�ciency.

Let the Markov chain be such that the assumptions of the theorems 1 and 2 are
satis�ed. Suppose we have drawn samples x(1), . . . , x(m) via an MCMC sampler with
π(x) as its equilibrium distribution. Let us further assume the process has run long
enough needed for the equilibration of the chain. Then, the variance of the estimate
can be approximated as

mvar{fm} = m var
{f(x(1)) + · · ·+ f(x(m))

m

}
= γ2(f)

[
1 + 2

m−1∑

j=1

(
1− j

m

)
ρj

]

≈ γ2(f)
[
1 + 2

∞∑

j=1

ρj

]
(3.53)

where γ2(f) = var{f(x)} and ρj = corr{f(x(1)), f(x(j+1))}. We de�ne the integrated
autocorrelation time of f as

τint(f) =
1
2

+
∞∑

j=1

ρj , (3.54)

using which
mvar{fm} = 2τint(f)γ2(f). (3.55)

In e�ect, this variance is equal to that of an estimator with m/[2τint(f)] independent
random samples. Thus, we call m/2τint(f) the e�ective sample size.

Often, ρj decays exponentially. Therefore, we can model the autocorrelation curve
as

|ρj | ∝ exp
{
− j

τexp(f)

}
, (3.56)
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where
τexp(f) = lim sup

j→∞
j

− log |ρj | (3.57)

is known as exponential autocorrelation time. When τexp(f) is large, the integrated
autocorrelation time can be expressed as

τint(f) ≈
∞∑

j=0

e−j/τexp(f) − 1
2

=
1

1− e− 1/τexp(f)
− 1

2
≈ τexp(f) (3.58)

The relaxation time of the system is de�ned as

τexp = sup
h∈L2(π)

τexp(f) (3.59)

As an example showing that the concepts of autocorrelation and relaxation time
are closely related to the convergence rate, suppose the state space of the Markov
chain is �nite and let f be an eigenfunction corresponding to an eigenvalue λ of the
transition matrix, then it can be shown that ρj(f) = λj . Thus,

τint(f) =
1 + λ

2(1− λ)
, τexp(f) = − 1

log |λ| , (3.60)

and the relaxation time is
τexp = − 1

log |λ2| , (3.61)

where λ2 is the second largest eigenvalue of the transition matrix, which re�ects
the convergence rate of the Markov chain also on the basis of the theory of Markov
Chains [2].
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Chapter 4

Linear Algebra

The computational work load required for evaluation of the posterior density πpost(σ)
is mainly concentrated in solving the discretized forward problem (2.19). Thus,
the convergence rate of the implemented MCMC algorithm depends highly on the
e�ciency of applied linear algebra in terms of CPU time.

In this section, we introduce some linear algebra methods that can be applied to
(2.19). Since the appropriateness of a method depends on both the prior informa-
tion and the implemented sampling scheme, we give only fairly rough trendsetting
estimates of the computational e�ciency. Generally, the goal in discovering an e�ec-
tive method is to derive bene�t from the property that the sampler typically perturbs
σ only in a relatively small-dimensional subspace of Hh.

Determining the minimal computational e�ort needed for solving a linear system is
an interesting issue. For instance, suppose a n × n system is such that the set of
multiplying constants in each equation can be obtained by permuting the multipliers
of an other equation and suppose the right hand sides of the equations are equals.
Then, due to the symmetry argument we can deduce that the set of unknowns satisfy
x1 = x2 = . . . = xn. Provided that the symmetry property is known solving the
system requires for dividing the right hand side by the sum of the multipliers. This
takes O(cn) �oating point operations. Apparently, the knowledge of symmetry di-
minishes drastically the computational e�ort which otherwise would be of magnitude
O(cn3). Still, it is also apparent that there is no sense in checking the symmetry
condition if there is no reason to believe that symmetry exists.

4.1 Updating the System Matrix

In order to simplify the notation, we denote the total number of the degrees of
freedom as Ns = Nn + L− 1 in further discussion. Let t ∈ R and d ∈ RM such that

di =

{
1, for i ∈ I

0, otherwise
(4.1)

where the number of entries in I is equal to k, which is the dimension of the �nite
element mesh underlying the support of the Hh function corresponding to d. Suppose
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the conductivity distribution is updated as

σ → σ + td. (4.2)

The corresponding update to the system matrix Aσ ∈ RNs×Ns can be written as

Aσ+td = Aσ + tVdΛdV
T
d , (4.3)

where Vd ∈ RNs×k, Vd =
(
e1 e2 . . . ek,

)
, where ith column is the Iith standard

basis vector, i.e.

(ei)j =

{
1, for j = Ii

0, otherwise
, (4.4)

and Λd ∈ Rk×k is symmetric and positive de�nite matrix of the form

(Λd)ij =

{∫
Ω∇ϕi · ∇ϕj dx, i, j ∈ I

0, otherwise
. (4.5)

On the basis of (4.3) it is clear that the rank of the update is k. Often, k is a
relatively small number. For instance, k = 3 in a two dimensional case, where the
update is d = (0, . . . , 1, . . . , 0), the local-basis functions of Hh are the characteristic
functions of FEM elements and the basis of FEM mesh is piecewise linear. In the
following sections, we show that the system (2.19) is especially easily solved in the
case of low-rank updates.

4.2 The Residual Form

Suppose the Xσ is known and the task is to solve Xσ+td. Thus, we may write
Xσ+td = Xσ + Rσ+td, where Rσ+td is the solution of a residual form of the equation
Aσ+tdXσ+td = F and can be written as

(Aσ + tVdΛV T
d )Rσ+td = −tVdΛdV

T
d Xσ (4.6)

Additionally, it is convenient to de�ne

Rσ+td = −tZd,t
σ ΛdV

T
d Xσ, (4.7)

where Zd,t
σ is found as a solution of the equation

(Aσ + tVdΛdV
T
d )Zd,t

σ = Vd. (4.8)

Zd,t
σ ∈ RNs×k, since k being the dimension of the update is independent of the

number of current patterns L−1. When k is small enough the number of columns in
Zd,t

σ is smaller than the number of columns in Xσ+td. Thus, it is favorable to apply
(4.8). The residual form is especially important when using an iterative solver, since
in that case the computational workload depends usually linearly on the number of
load vectors.

In the section (4.6) we will show that the residual form is useful if the sampler
operates only in a small subset of Ω.

31



4.3 Choleski factorization

The linear system (2.19) is symmetric and positive de�nite. Thus, the system matrix
can be factorized as A = LLT , which is the well-known Choleski factorization. The
lower triangular matrix L can be calculated as

for j = 1 : n

Ljj =
√

Aii −
∑j−1

j=1 L2
ij

for i = j + 1 : n
Lij = (Aij −

∑j−1
k=1 LjkLik)/Ljj

end
end.

which can be easily veri�ed in a straightforward manner. The standard process
of solving a symmetric and positive linear system Ax = b employs the Choleski
factorization as follows:

Factorization Factor the matrix A into LLT .

Triangular solution Solve Ly = b and LT x = y.

The process of solving Ly = b is known as backward substitution and is written as

for i = 1 : n
zi = (bi −

∑i−1
j=1 Lijzj)/Lii

end

4.3.1 Computational Work Load

We can approximate the number of �oating-point operations needed for computing
L as

∝
n∑

j=1

n∑

i=j+1

2j =
n∑

j=1

(n− j)j = 2
(
n

n∑

j=1

j −
n∑

j=1

j2
)

= 2
(n2(n + 1)

2
− n(n + 1)(2n + 1)

6

)

∝ 2
(n3

2
− n3

3

)
=

n3

3
, (4.9)

since both the jth outer and the jth inner loop perform both j multiplications and
j summations. With similar arguments we conclude that the backward substitution
takes approximately

∝
n∑

i=1

2i =
2n(n + 1)

2
∝ n2 (4.10)
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�oating-point operations. Thus, solving an arbitrary symmetric and positive de�nite
linear system takes O(n3/3) operations as a whole.

4.4 Choleski Factorization of a Sparse Matrix

The system (2.19) is sparse meaning that the matrix consists largely of zeros. Sparse-
ness can be taken into account in the computational process the entire manoeuvre
being

Ordering Find a "good" ordering (permutation P ) for the given matrix A.

Storage allocation Determine the necessary information about the Choleski factor
L of PAP T to ensure correct data structures. This is known as symbolic
factorization.

Factorization Factor the permuted matrix PAP T into LLT .

Triangular solution Solve Ly = b and LT z = y. Then set x = P T z.

The �rst two phases are so called symbolic part. The second phase, symbolic fac-
torization, is discussed more closely in [8]. In this thesis, we discuss only the �rst
phase.

The purpose of permuting the system matrix before factoring is to decrease the
number of nonzero elements in L. Generally, the number of nonzeros is largely
predetermined by the bandwith of the system matrix, which we de�ne as

De�nition 13 We call d ≥ 0 the bandwidth of the matrix A ∈ Rn×n provided that

Ak,` = 0, ∀ |k − `| > d, 1 ≤ k, ` ≤ n (4.11)

Suppose that A ∈ Rn×n is a symmetric and positive de�nite matrix having a band-
width d. Then, the �rst column of its Choleski factor L is

L11 =
√

A11

Li1 = Aij/L11, for i = 2, . . . n,

since Ak,1 = 0 for all |1 − k| > d. Thus, L1+d+`,1 = 0 for all 1 ≤ ` ≤ n − d − 1.
Assuming that

Lk+d+`,k = 0, ∀1 ≤ k < j, 1 ≤ ` ≤ n− d− k, (4.12)

we have

Lj+d+`,j = (0 +
j−1∑

k=1

Lj,kLj+d+`,k)/Lj,j =
1

Lj,j

j−1∑

k=1

Lj,kL(j−1)+d+(`+1),k

=
1

Lj,j

j−1∑

k=1

Lj,k · 0 = 0, ∀ 1 ≤ ` ≤ n− d− j. (4.13)
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and we can inductively deduce that

Lk,` = 0, for all |`− k| > d (4.14)

Thus, the bandwidth of L is ≤ d.

In practice, it is reasonable to assume that the bandwidth of A is equal to the
bandwidth of L, since it is justi�ed to assume that the element of L is nonzero as
far as it cannot be shown to be zero. However, on the basis of (4.14) we see that the
Choleski factor L can be obtained as

for j = 1 : n

Ljj =
√

Aii −
∑j−1

j=max{1,j−d} L2
ij

for i = j + 1 : min{j + d, n}
Lij = (Aij −

∑j−1
k=max{1,j−d} LjkLik)/Ljj

end
end,

and the corresponding backward substitution can be written as

for i = 1 : n
zi = (bi −

∑i−1
j=max{1,i−d} Lijzj)/Lii.

end

4.4.1 Computational Work Load

In this case, the inner loop depends on d. Thus, the number of �oating-point oper-
ations is approximated as

∝
n∑

j=1

j+d∑

i=j+1

2(d + 1) =
n∑

j=1

d(d + 1) ∝ nd2 (4.15)

and the number of �oating-point operations taken by the backward substitution is
simply

∝
n∑

i=1

d = nd ∝ O(dn). (4.16)

indicating that the number of operation needed for solving a sparse system is prede-
termined by the factorization. Thus, the total number of operations is of magnitude
O(nd2).

Bandwidth of the System Matrix

Excluding the boundary conditions we can approximate the bandwidth of the matrix
(2.22) supposing that

Aij =
∫

Ω
σ∇ϕi · ∇ϕj dx, (4.17)
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which is the standard FEM sti�ness matrix. Since we use piecewise linear basis
functions ϕ, Aij di�ers from zero, if and only if both ϕi and ϕj are connected to the
same triangle. Hence, if we want to constrict the bandwidth as small as possible, the
system has to be ordered (permuted) so that all the degrees of freedom connected to
an arbitrarily chosen triangle are numbered close to each other.

It can be shown that the bandwidth corresponding to an optimal numbering is in
one dimensional case of magnitude d ∝ 1, in two dimensional case d ∝ √

n and in
three dimensional case d ∝ n2/3. This is motivated by the �gure (4.1). Hence, we
can estimate the number of �oating-point operations required for sparse Choleski
factorization as

1D : O(cn)
2D : O(cn2)
3D : O(cn7/3)

n

n n n

.

.

.

.

.

.

n

1 . . . . . . . . . n2

1 2 . . . . . . . . .

+1 +2 2. . . . . . . . .

. . . . . .

(n−1)

n

Figure 4.1: The square shaped lattice is
numbered so that the distance between any
two degrees of freedom connected to an ar-
bitrarily chosen triangle is of magnitude√

n. The corresponding distance in the one
dimensional lattice does not depend on n.

4.5 Sherman-Morrison-Woodbury �formula

Let A ∈ Rn×n be invertible, U1, U2 ∈ Rn×k and let I+UT
2 A−1U1 be invertible. Then,

[4]
(A + U1U

T
2 )−1 = A−1 −A−1U1(I + UT

2 A−1U1)−1UT
2 A−1. (4.18)
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Thus, rank k correction to the matrix A causes a rank k correction to its inverse.

The equation (4.18) is known as the Sherman-Morrison-Woodbury �formula. The
validity can be proven in a straightforward manner simply by expanding the product

(A + U1U
T
2 )−1(A + U1U

T
2 )

=
(A−1 −A−1U1(I + UT

2 A−1U1)−1UT
2 A−1)(A + U1U

T
2 ) . (4.19)

Suppose that d, σ ∈ Hh and t ∈ R is chosen so that also σ+td is admissible. We apply
(4.18) to updating the inverse matrix of (2.22) by choosing A = Aσ, U1 = tVdΛd and
U2 = Vd. Then, A + U1U

T
2 = Aσ + tVdΛdV

T
d and

I + UT
2 A−1U1 = I + tV T

d A−1
σ VdΛd, (4.20)

is invertible, which can be shown as follows.

Since σ + td is admissible, the matrix Aσ+td is positive de�nite. Moreover, we can
choose s > max{−t, 0} so that the condition

0 < c ≤ (σ − sd)(x) ≤ C < ∞ ∀x ∈ Ω.

is satis�ed. Thus, σ − sd is also admissible and we may write

Aσ+td = Aσ−sd + (s + t)VdΛdV
T
d , (4.21)

where Aσ+td, Aσ−sd and Λd are positive de�nite matrixes. As a consequence, Λ−1
d

and Aσ−sel
exist and are positive de�nite. Hence, we have

xT (Λ−1
d + tV T

d A−1
σ Vd)x = xT (Λ−1

d + (t + s)VdA
−1
σ−sdVd)x

= xT Λ−1
d x + (t + s)(Vdx)T A−1

σ−sd(Vdx) > 0 (4.22)

for all x 6= 0, since s was chosen so that s + t > 0, from which we see that
Λ−1

d + tV T
d A−1

σ Vd is positive de�nite and invertible and we may write

(I + tV T
d A−1

σ VdΛd)−1 = Λ−1
d (Λ−1

d + tV T
d A−1

σ Vd)−1. (4.23)

As a result, we conclude that the inverse of Aσ+td can be written as

A−1
σ+td = (Aσ + tVdΛdV

T
d )−1

=
A−1

σ − tA−1
σ VdΛd(I + tV T

d A−1
σ VdΛd)−1V T

d A−1
σ . (4.24)

4.5.1 Computational Work Load

Supposing that the dimension of the update k is much smaller than the dimension of
the whole system, i.e. k << Ns. Then, it is preferable to compute �rst the inverse of
the full k×k -matrix Λd(I+tV T

d A−1Vd), which is known to take not more than O(k3)
�oating point operations. Taking into account that A−1

σ Vd represent just picking the
columns I from A−1

σ we conclude that the product

K1

k ×Ns

= [Λd(I + tV T
d A−1

σ VdΛd)−1]
k × k

[V T
d A−1

σ ]
k ×Ns

(4.25)
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requires for evaluating k2Ns separate multiplications of �oating-point values and
k(k − 1)Ns additions, thus, O(k(2k − 1)Ns) �ops as a whole. Similarly, computing
the product

K2

Ns ×Ns

= t [A−1
σ Vd]

Ns × k

[K1]
k ×Ns

(4.26)

requires for O((2k − 1)N2
s ) operations. In the summation

(Aσ + tVdΛdV
T
d )−1

Ns ×Ns

= A−1
σ

Ns ×Ns

+ K2

Ns ×Ns
(4.27)

N2
s elements are added together taking O(N2

s ) operations.

Hence, computational work load of updating the inverse matrix by employing the
Sherman-Morrison-Woodbury �formula (4.24) is of magnitude

O(k3) + O(k(2k − 1)Ns) + O((2k − 1)N2
s ) + O(N2

s ) = O(2kN2
s ) (4.28)

Comparing this to the work load required for the Choleski factorization, we see that
there is no sense in updating the whole inverse of (2.22). However, supposing that
we do updates only in a small subspace of RNs , the Sherman-Morrison-Woodbury
�formula provides a fast solution method, which is shown in the following section.

4.6 Restriction to a Submatrix

Multiplying the equation (4.24) from right by Vd gives

A−1
σ+tdVd = A−1

σ Vd − tA−1
σ VdΛd(I + tV T

d A−1
σ VdΛd)−1V T

d A−1
σ Vd. (4.29)

Employing the notation introduced in section (4.2) and denoting Zd
σ = Zd,0

σ this is

Zσ+td = Zd
σ − tZd

σ(I + tV T
d Zd

σΛd)−1V T
d Zd

σ. (4.30)

Thus, supposing that Zd
σ is known the solution of (4.8) can be obtained very easily.

Again, multiplying (4.24) from right gives

Xσ+td = Xσ − tZd
σ(I + tV T

d Zd
σΛd)−1V T

d Xσ. (4.31)

and we see that by knowing Zd
σ one is able to directly correct the solution Xσ.

More generally, suppose that we do contiguous updates; that is,

σ1 → σ1 + t1d1 = σ2 → σ2 + t2d2 = σ3 → . . . , (4.32)

such that di ∈ W ⊂ RNs for all di, where the dimension of W is NW . Let W be a
matrix consisting of the standard basis vectors of W

W =
(
eW1 eW2 . . . eWNW

)
(4.33)

Multiplying the equation (4.24) corresponding to the update σi → σi + tidi from
right and by denoting ZW

σi+1
= ZW

σi+tidi
= A−1

σi+tidi
W we have

ZW
σi+1

= ZW
σi
− tZd

σi
(I + tV T

di
Zd

σi
Λdi)

−1V T
di

ZW
σi

. (4.34)
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By noting that W is a submatrix of identity matrix we see that ZW
σi

is a submatrix
of A−1

σi
. Again, Vdi

is a submatrix of W indicating that Zd
σi

is submatrix of ZW
σi
.

Hence, we obtain ZW
σi+1

, if we know ZW
σi
.

To summarize, if the updates are restricted to the subspaceW, it is enough to correct
only NW columns of A−1

σ ; that is, the matrix A−1
σ W .

To give an example, the MCMC sampling strategies are based either on acceptance-
rejection strategy or sampling from conditional distributions, due to which it is,
apparently, possible to construct an algorithm in which a number of t− or d− values
have to be tested before one is accepted. In such a case, we could proceed as

Algorithm 4.6.1

• Start with σ and a proposed update σ → σ + td ∈ Hh, d ∈ W.

• Solve Xσ+td employing (4.31) and, then, evaluate the posterior density.

• If the proposed update is accepted, solve ZW
σ+td using (4.34) and set σ = σ + td.

Above, the idea is each time to update as small number of columns as possible.
Generally, (4.31) is cheaper operation than (4.34). However, ZW

σ+td has to be solved
before setting σ = σ + td, since Zσ is needed in (4.31).

4.6.1 Computational Work Load

Evidently, updating each column of A−1
σ with Sherman-Morrison-Woodbury �formula

requires for a similar computational e�ort, since the columns can be updated inde-
pendently from each other. Thus, supposing that

α =
NW
Ns

. (4.35)

it seems justi�ed to estimate the computational work load of (4.34) as

O(2αkN2
s ) (4.36)

on the basis of (4.28). Hence, the e�ciency seems to depend linearly on the ratio α.

4.7 Domain Decomposition

When the updates σ → σ + td are not restricted to a small dimensional subset the
Sherman-Morrison-Woodbury is not a workable method. Generally, in the case of
global updates there is no faster direct method of solving the forward problem than
the sparse Choleski factorization. However, it is possible that the structure of the
global updates can be taken into account when determining a method of solution.
To give an example of such a case we introduce the idea of domain decomposition
methods.
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Let the polygonal domain Ω̂ be decomposed so that Ω̂ = ∪N
i=1{Ω̂i}, where the sub-

domains Ω̂i satisfy Ω̂i ∩ Ω̂j = ∅, for all i 6= j and Ω̂i = {T (i)
k }Ni

k=1, T
(i)
k ∈ Th, i.e. each

subdomain Ω̂ is polygonal and coincides with some subset of the triangulation Th.

Suppose �rst that conductivity distribution has a cylindrical structure illustrated in
�gure ?? the decomposition being Ω̂ = ∂Ω̂1 ∪ ∂Ω̂2. The value of conductivity is
constant in both Ω̂1 and Ω̂2. Then, the matrix (2.22) can be partitioned as

A =




(1 + t1)A
(1)
II 0 (1 + t1)A

(1)
IB

0 (1 + t2)A
(2)
II (1 + t2)A

(2)
IB

(1 + t1)A
(1)
BI (1 + t2)A

(2)
BI (1 + t1 + t2)A

(1)
BB + (1 + t1 + t2)A

(2)
BB


 (4.37)

where t1, t2 ∈ R, B refers to the set of nodes lying on ∂Ω̂1 ∩ ∂Ω̂2 and I refers
to other degrees of freedom related to the subdomain indicated by the superior
index. To update the system matrix is to update either t1 or t2. A straightforward
multiplication shows that A can be written as

A = LDLT = LD1D2L
T (4.38)

where L and D are sparse block matrices of the form

L =




I 0 0
0 I 0

A
(1)
BI(A

(1)
II )−1 A

(2)
BI(A

(2)
II )−1 I


 , (4.39)

D1 =




(1 + t1)A
(1)
II

(1 + t2)A
(2)
II

I


 , (4.40)

D2 =




I
I

S(1) + S(2)


 . (4.41)

S(1) and S(2) are Schur complements of the form

S(1) = (1 + t1 + t2)A
(1)
BB − (1 + t1)A

(1)
BI(A

(1)
II )−1A

(1)
IB, (4.42)

S(2) = (1 + t1 + t2)A
(2)
BB − (1 + t2)A

(2)
BI(A

(2)
II )−1A

(2)
IB. (4.43)

Denoting

x =




x
(1)
I

x
(2)
I

xB


 , f =




f
(1)
I

f
(2)
I

fB


 (4.44)

In terms of (4.38) the equation Ax = f can be equivalently written as D2L
T x =

D−1
1 L−1f , i.e.




I 0 (A(1)
II )−1A

(1)
IB

0 I (A(2)
II )−1A

(2)
IB

0 0 S(1) + S(2)







x
(1)
I

x
(2)
I

xB


 =




((1 + t1)A
(1)
II )−1 0 0

0 ((1 + t2)A
(2)
II )−1 0

0 0 I


× (4.45)




I 0 0
0 I 0

−A
(1)
BI(A

(1)
II )−1 −A

(2)
BI(A

(1)
II )−1 I







f
(1)
I

f
(2)
I

fB


 ,
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a block wise backward substitution yields the solution. Since matrices A
(i)
II and A

(i)
IB

are now independent of σ, the computational e�ort of solving (4.46) after updating
the conductivity distribution is largely determined by the undermost equation

(S(1) + S(2))xB = fB −A
(1)
BI(A

(1)
II )−1f

(1)
I −A

(2)
BI(A

(2)
II )−1f

(2)
I (4.46)

A similar treatment applies to the general case. Suppose that the number of sub-
domains is N and let R̃i be a restriction matrix such that R̃iu corresponds to the
nodes lying on the boundary ∂Ωi. Denoting uB =

∑N
i=1 R̃T

i u
(i)
B the generalization of

(4.46) can be written as

( N∑

i=1

R̃T
i S(i)R̃i

)
uB = fB −

N∑

i=1

R̃T
i A

(i)
BI(A

(i)
II )−1f

(i)
I (4.47)

4.7.1 Computational Work Load

Apparently, the computational work load is a function of the length of
⋃N

i=1 ∂Ω̂i.
The Schur complement S(i) is practically always a full matrix, since (A(i)

II )−1 is full
as an inverse matrix. Thus, the workability of the method decreases rapidly as
the boundaries ∂Ω̂i lengthen. Therefore, it is not evident whether the method is
applicable in practice.

Ω
1
, σ = σ

1

Ω
2
, σ = σ

2

B
12

Figure 4.2: A circular domain Ω that has
been decomposed in Ω1 and Ω2. σ is as-
sumed to be constant in each subdomain.
The red circle indicates the boundary B12.

4.8 Conjugate Gradients (CG)

According to the well-known discrepancy principle, due to the noise in the measure-
ments one cannot expect an approximate solution U∗(σ) ≈ U(σ) yield a smaller
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residual error than what is the measurement error; that is, an approximation U∗(σ)
can be considered to be accurate enough provided that

||U∗(σ)− U(σ)|| ≤ ε, (4.48)

where ε is an overall estimate of the noise level. Thus, in some cases it might
be su�cient just to �nd an approximate solution X∗

σ of (2.19). Therefore, it seems
possible that some iterative linear algebraic method could turn out to be a preferable
way to solve the forward problem.

To give an example of an iterative method, we introduce the conjugate gradient (CG)
method, which is one of the most often used iterative methods applied for solving
symmetric and positive de�nite linear systems.

4.8.1 Quadratic Function J

To be able to motivate the idea behind conjugate gradients, we introduce �rst some
concepts of crucial importance.

Let J : Rn → R be a quadratic function,

J(y) =
1
2
yT Ay − yT b. (4.49)

Let A ∈ Rn×n be a symmetric and positive de�nite matrix and let Ax = b. Then, J
attains its minimum at x = A−1b.

This is easily veri�ed by writing

J(x + y) =
1
2
(x + y)T A(x + y)− (x + y)T b

=
1
2
(xT Ax + 2xT Ay + yT Ay)− (x + y)T b

=
1
2
(bT A−1b + 2bT y + yT Ay)− bT A−1b− yT b

=
1
2
yT Ay − 1

2
bT A−1b

≥ −1
2
bT A−1b = J(x + 0) = J(x). (4.50)

J is a convex function (i.e. J(λx+(1−λ)y) ≤ J(λx)+J((1−λ)y), for all 0 ≤ λ ≤ 1),
since it is convex in all directions p ∈ Rn, which we see by writing

d2

dt2
J(x0 + tp) =

d2

dt2
[
1
2
(x0 + tp)T A(x0 + tp)− (x0 + tp)T b] =

1
2
pT Ap. (4.51)

Therefore, the minimum
ρk = arg min

t∈R
J(xk + tpk), (4.52)

is attained provided that

d2

dt
[
1
2
(xk + αkpk)T A(xk + αkpk)− (xk + αkpk)T b] = 0 (4.53)
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implying that αkp
T
k A(xk + αkpk) = pT

k b, which is equivalent to

αk =
pT

k (b−Axk)
pT

k Apk
(4.54)

Please note that unlike solution of the complete linear system, the minimum of
J(xk + tpk) with respect to t, since computing αk requires only for evaluating the
matrix-vector product Apk, summation of two vectors plus evaluation of two inner
products.

The gradient of J(xk) is

∇J(xk) = Axk − b = −rk. (4.55)

Thus, the residual rk = b−Axk is the direction in which J decreases most rapidly.

4.8.2 CG Algorithm

In the conjugate gradient method, the solution of a symmetric and positive de�nite
system Ax = b, A ∈ Rn×n is found based on the idea of updating the candidate
solution xk as

xk+1 = xk + αkpk, (4.56)
where αk is chosen as in (4.54) and p0, . . . , pk are so-called conjugate directions; that,
is

pkApj = 0, for all j = 1, . . . , k − 1. (4.57)
Consequently, kth step minimizes J in the direction pk and due to the e�ective way
of choosing the consecutive directions the exact solution of the complete system is
reached in not more than n steps. Moreover, evaluation of αk is computationally
cheap operation and each conjugate direction pk can easily be computed from the
gradient rk−1.

Algorithm 4.8.1 (Conjugate Gradient Method)
x0 = 0, r−1 = r0 = b, p−1 = 0
for k = 0, 1, 2, . . .
µk = ||rk||2/||rk−1||
pk = µkpk−1 + rk

αk = ||rk||2/pT
k Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

end

The following result states the validity of the algorithm.

Theorem 3 Let A ∈ Rn×n be symmetric and positive de�nite and let Ax = b. Then,
the conjugate gradient method satis�es

1. xk+1, pk, rk lie in the Krylov-space Kn, i.e.

xk+1, pk, rk ∈ Kk+1 := span{b, Ab, . . . , Akb}, (4.58)
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2. The residuals are orthogonal, i.e. rT
k rj = 0, for all k 6= j and the directions

pj are A-orthogonal, i.e. pT
k Apj = 0 for all k 6= j. Moreover, provided that

rk 6= 0,
span{r1, . . . , rk} = span{p1, . . . , pk} = Kk (4.59)

3. Let
|| · ||A : Rn → R, ||y||A =

√
yT Ay. (4.60)

The function g(y) = ||x− y||2A satis�es g(y) ≥ g(xk) for all y ∈ Kk.

4. The algorithm converges to the exact solution in not more than n steps; that
is, rk = 0 for some k ≤ n. Consequently,

rdim(Kn) = 0. (4.61)

Proof.

1. Since p0 = µ0p−1 + r0 = r0 and x1 = x0 + α0p0 = α0r0, we can assume
that (4.58) holds for some k. Then, rk+1 = rk − αkApk. Thus, xk+1 ∈ Kk+1.
Because pk+1 = µk+1pk + rk+1 and xk+2 = xk+1 + αk+1pk+1, we have also
xk+2, pk+1 ∈ Kk+1.

2. Since r0 = p0, a straightforward calculation gives

rT
0 r1 = rT

0 (r0 − α0Ap0) = pT
0 (p0 − ||p0||2

pT
0 Ap0

Ap0)

= ||p0||2 − ||p0||2 = 0 (4.62)

Additionally, r0 − r1 = Ap0/α0 implying that

pT
1 Ap0 =

1
α0

pT
1 (r0 − r1) =

1
α0

(µ1r0 + r1)T (r0 − r1)

=
1
α0

(µ1||r0||2 − ||r1||2) = 0 (4.63)

Suppose both rT
i rj = 0 and pT

i Apj = 0 for all j < i ≤ k. Apparently, this is
true with k = 1. Moreover,

rT
k+1rk = (rk − αkApk)T rk = ||rk||2 − ||rk||2

pT
k Apk

(pk − µkpk−2)T

= ||rk||2 − ||rk||2 = 0 (4.64)
rT
k+1rj = (rk − αkApk)T rj = αkp

T
k Arj = αkp

T
k A(pj − µjpj−1)

= 0, j < k. (4.65)

Thus, rT
i rj = 0 for all j < i ≤ k + 1 implying that rT

k rj = 0 for all k 6= j.
Particularly, the residuals are linearly independent.
Since rj ∈ Kj for all j ≤ k, we have span{r0, r1, . . . , rk} ⊂ Kk. Again,
dim(Kk) ≤ k and due to the linear independence dim(span{r1, . . . , rk}) = k.
Thus, we can deduce

span{r1, . . . , rk} = Kk. (4.66)
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Consequently, pj ∈ Kj ⊥ rk, i.e. rT
k pj = 0 for all j < k. Hence,

pT
k+1Apk =

1
αk

(µk+1pk + rk+1)T (rk − rk+1)

=
1
αk

(µk+1(µkpk−1 + rk) + rk+1)T (rk − rk+1)

=
1
αk

(µk+1||rk||2 − ||rk+1||2) = 0 (4.67)

pT
k+1Apj = pT

j Apk+1 =
1
αk

(µjpj−1 + rj)T (rk+1 − rk+2) = 0 j ≤ k,(4.68)

which is pT
i Apj = 0 for all j < i ≤ k + 1. Thus, pT

k Apj = 0 for all k 6= j. The
positive de�niteness of A implies the linear independence:

k∑

j=1

βjpj = 0 ⇒ pT
i A

k∑

j=1

βjpj = βi||pi||2A = 0 ⇒ βi = 0 (4.69)

Again, we have
span{p1, . . . , pk} = Kk (4.70)

3. On the basis of (4.59), we can write

y0 := argminy∈K1
||x− y||2A = argminy∈span{p0}||x− y||2A

= ||A−1b− β0p0||2A = β2
0pT

0 Ap0 − 2β0b
T p0 + bT A−1b, (4.71)

which is a polynomial of order two with respect ro β0. Thus,

β0 =
bT p0

pT
0 Ap0

=
||r0||2
pT
0 Ap0

= αk (4.72)

where we have used the identity b = p0 = r0. Hence, we have y0 = α0p0 =
x0 + α0p0 = x1.
Now, let yk = xk for some k, i.e. we suppose that xk minimizes the func-
tion g(y) = ||x − y||A in Kk. On the basis of (4.59) and A-orthogonalization
span{pk+1} = Kk+1 \ Kk and pT

k+1y = 0 for all y ∈ Kk+1. Hence,

yk+1 = argminy∈Kk+1
||x− y||A = zk + βk+1pk+1

||x− yk+1||A = ||x− zk||2A + 2βk+1p
T
k+1A(A−1b− zk) + β2

k+1||pk+1||2A
= ||x− zk||2A + 2βk+1p

T
k+1b + β2

k+1||pk+1||2A. (4.73)

Since g(y) ≥ g(xk) for all y ∈ Kk+1, we have ||x − xk||A ≤ ||x − zk||. Thus,
zk = xk. Again, βk+1 is obtained as

βk+1 =
bT pk+1

pk+1Apk+1
=

(b−Axk)T pk+1

pk+1Apk+1
=

rT
k (µk+1(µkpk−1 + rk) + rk+1)

pk+1Apk+1

=
µk+1||rk||2
pk+1Apk+1

=
||rk+1||2

pk+1Apk+1
= αk+1. (4.74)

As a result,
yk+1 = xk + αk+1pk+1 = xk+1 (4.75)

Now, an inductive deduction implies that yk = xk for all k.
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4. Provided that r0 6= 0, . . . , rn−1 6= 0, we have dim(span{r0, . . . , rn}) = n. Thus,
x ∈ span{r0, . . . , rn} = Kn. Consequently,

xn = argminy∈Kn
||x− y||2A = ||x− x||A = 0 (4.76)

from which we see that the �nding the exact solution takes not more than ≤ n
steps. The equation (4.59) indicates that

dim(span{r0, . . . , rk}) ≤ dim(Kn) (4.77)

for all k ≤ n. Due to the orthogonality we conclude that

rdim(Kn) = 0. (4.78)

4.8.3 Convergence Rate

Since (3) states that xk ∈ Kk, we have xk = pk−1(A)b, where pk−1 ∈ Pk−1 is a
polynomial of order k − 1 at the utmost. Again, (3) implies that

||x− xk||A = min
y∈Kk

||x− y||A = min
p∈Pk−1

||x− p(A)b||A
= min

p∈Pk−1

||x−Ap(A)A−1b||A = min
p∈Pk−1

||x−Ap(A)x||A
= min

p∈Pk,p(0)=1
||p(A)x||A (4.79)

Since A being a symmetric and positive de�nite n × n-matrix has n orthonormal
eigenvectors, we can write A = ZT ΛZ, where Z is an orthogonal matrix. Thus,

||p(A)x||2A = xT p(A)Ap(A)x = xT Zp(Λ)Λp(Λ)ZT x

=
n∑

j=1

|p(λj)|2λj |(ZT x)j |2 ≤ max
1≤i≤n

|p(λi)|2
n∑

j=1

λj |(ZT x)j |2

= max
1≤i≤n

|p(λi)|2||x||2A ≤ max
λ∈[λmin,λmax]

|p(λ)|2||x||2A (4.80)

Additionally, it not very di�cult to show that

min
p∈Pk,p(0)=1

max
λ∈[λ1,λn]

|p(λ)| = tk
(λmax + λmin

λmax − λmin

)−1

= tk
(κ + 1
κ− 1

)−1 ≤ 2
(√κ− 1√

κ + 1

)k
, (4.81)

where tk is a Tshebytsev polynomial of order k and λ1, . . . , λn are the eigenvalues of
A. Hence,

||x− xk||A ≤ 2
(√

κ(A)− 1√
κ(A) + 1

)k
||x− x0||A, (4.82)

where κ(A) = λmax/λmin = ||A−1||||A|| is the so-called condition number of A.
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4.8.4 Computational Work Load

Let Ω be a two dimensional domain. It can be shown [3] that there are constants c1

and c2 independent from the mesh size h such that

c1h
−2 ≤ κ(A) ≤ c2h

−2, (4.83)

for a system matrix corresponding to any H1(Ω)-elliptic, problem discretized by
using FEM. Assuming that Ω is a two dimensional domain and the triangulation is
regular, we can, apparently, estimate the mesh size as h ∝ 1/n2. Thus, we have

K ≤ c
√

κ(A) ≤ ch−1 ≤ c
√

n (4.84)

Taking into account that the condition number is likely to be >> 1 we obtain the
following approximation

√
κ− 1√
κ + 1

=
1− 1/

√
κ

1 + 1/
√

κ
= (1− 1√

κ
)

1
1 + 1/

√
κ
≈ (1− 1√

κ
)2 ≈ 1− 2√

κ
, (4.85)

since 1/(1+ t) ≈ 1− t and t2 ≈ 0 for small t. Again, log(1+ t) ≈ t for small t. Hence,

log
||x− xk||A
||x− xk||A ≥ ck log

(√
κ(A)− 1√
κ(A) + 1

)
≥ ck log

(
1− 2√

κ

)
≥ k

c√
κ

. (4.86)

Thus, supposing that the convergence criterium is of the form ||x−xN ||/||x−x0|| < ε,
i.e. we qualify xN for a solution provided that the relative residual is < e, we have

N ≤ c
√

κ ≤ c
√

n (4.87)

In conjugate gradient method, the work load required for taking one step is largely
predetermined by the product Apk. In a regular triangulation the number of neigh-
boring triangles is proportional to some constant implying that every column of A
has a standard number of non-zeros. Thus, it seems justi�ed to estimate the num-
ber of �oating-point operations required for Apk to be of magnitude O(cn). This
together with (4.87) indicates that the exact solution is found in not more than

O(cn
√

n) (4.88)

�oating-point operations.

4.8.5 Di�usion of Information

So as to give an mental picture of the structure of the Krylov-space

Kn = span{b, Ab, . . . , An−1b},
we assume that the system matrix is of the simple form

A

n× n

=




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2 −1
−2 2




. (4.89)
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and the load vector is b = e1 =
(
1 0 . . . 0

)T . Then, the exact solution x =
A−1b = (1, . . . , 1)T and the basis of the Krylov-space is constructed as

Ab =




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2 −1
−2 2







1
0
0
0
...
0
0
0




=




2
−1
0
0
...
0
0
0




A2b = A(Ab) =




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

. . . . . . . . .
−1 2
−1 2 −1

−2 2







2
−1
0
0
...
0
0
0




=




5
0
1
0
...
0
0
0




A3b = A(A2b) = . . .

... (4.90)

indicating that
(Akb)i = 0, for all i > k. (4.91)

Thus, (1, . . . , 1)T = x /∈ Kk for k < n. In this case, the conjugate gradient iteration
cannot reach the exact solution in less than n steps, since xk ∈ Kk according to (3).

The above described phenomenon occurs when the conjugate gradient method is
applied to the problem (2.19). In order to demonstrate this, suppose that we want
to solve the residual Zσ+td.

Since CG algorithm is based on computing products Apk, each column of Zσ+td has
to be solved separately. Restricting ourselves to one single column we can write the
system (4.8) as

Ax = e. (4.92)
where e = (0, . . . , 1, . . . , 0)T . Thus the problem related Krylov-space is

Kn = span{e,Ae, A2e, . . . , An−1e}.
Since Aij is nonzero, if and only if the measure of the set supp{ϕi} ∩ supp{ϕj} is
strictly positive, i.e. the degrees of freedom i and j are close to each other, we have
to take a few iteration steps before the every element of the candidate solution xk

di�ers from zero. This is illustrated by the �gure 1. Generalizing, provided that
Aij = 0 updating the value of (xk)i does not a�ect the value of (xk+l)j for l < ld,
where ld depends on the distance between i and j. In terms of nodes the diameter of
Ω can be approximated as ∝ 1/h ∝ √

n. Thus, supposing that the convergence rate
is predetermined by the diameter the number of �oating-point operations is again

∝ n
√

n (4.93)
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Figure 4.3: The Qh-counterpart of e dif-
fers from zero in the dark region. The
nested circles represent the regions, where
Qh counterparts of the residuals r0, r1, r2

and r3 di�er from zero. The arrows show
the direction of the di�usion.

The phenomenon can be interpreted as di�usion of information. The system matrix
A in (2.22) can be considered as a discretized di�usion operator. Operating with A
causes di�usion, which we see by writing

∂tu−∇ · (σ∇u) = 0 (4.94)

and by approximating

xt+h − xt

h
−Axt = 0 ⇒ xt+h = xt + hAxt (4.95)

Thus, it seems that we can equate {x0, x1, . . . , xK} with a di�usion process equi-
librium of which is the exact solution x = A−1e and the convergence rate of the
iteration is predetermined by the rate of the di�usion.

Practically all the iterative linear algebraic methods are one way or other based on
computing matrix-vector products. Therefore, the problem with di�usion is likely to
occur also in connection with other methods.

4.8.6 Preconditioned Conjugate Gradients (PCG)

The preconditioned conjugate gradient method is simply the conjugate gradient
method applied to the trinity x̃ = Sx, x̃k = Sxk, b̃ = S−1b and Ã = S−1AS−1,
where S is a symmetric and positive de�nite matrix. We denote M = S2 and call
M a preconditioner. The algorithm can be written as
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Algorithm 4.8.2 (Preconditioned Conjugate Gradients)
x0 = 0, r−1 = r0 = b, p−1 = 0
for k = 0, 1, 2, . . .
Mzk = rk

µk = rT
k zk/rT

k−1zk−1

pk = µkpk−1 + zk

αk = rT
k zk/pT

k Apk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

end

By writing

(S−1AS−1)Z = ΛZ ⇔ ΛS−1Z = S−1(S−1AS−1)Z = (M−1A)S−1Z (4.96)

we see that M−1A has same eigenvalues as Ã. Thus, κ(Ã) = κ(M−1A). A straight-
forward calculation shows that equation (3) applied to PCG states that

xk+1 ∈ spanS−1{b̃, Ãb̃, . . . , Ãk b̃}
= {M−1b, (M−1A)M−1b, . . . , (M−1A)kM−1b} (4.97)

Apparently, the convergence rate can be estimated as

||x− x̃k||A ≤ 2
(√

κ(M−1A)− 1√
κ(M−1A) + 1

)k
||x− x̃0||A (4.98)

Thus, the number of iterations can is approximated as

K ≤ c
√

κ(M−1A) (4.99)

It is easy to show that the better M−1 estimates A−1 the smaller is the value of
κ(M−1A). Again, M−1 can be interpreted as a di�usion operator and the precondi-
tioned iteration as a di�usion process the convergence rate of which is the faster the
closer M−1 is to A.

In applications, PCG is usually preferred to CG.

4.8.7 Complete Preconditioning

The matrix M = Aσ a complete preconditioner. By denoting Cd := A−1
σ VdΛdV

T
d ,

we have

M−1Aσ+td = A−1
σ (Aσ + tVdΛdV

T
d ) = I + tA−1

σ VdΛdV
T
d = I + tCd, (4.100)

using which gives

(Zσ+td)k ∈ span{M−1Vd, (M−1Aσ+ted
)M−1Vd, . . . , (M−1Aσ+td)k−1M−1Vd}

= span{Cd, C
2
d , . . . , Ck

d}VdΛ−1
d (4.101)

Since rank(Λd) = m, we see that rank(C) = m. Thus,

dim(span{Cl, C
2
l , . . . , Ck

l }) ≤ m, ∀k = 0, 1, . . . , n. (4.102)
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This together with (3) implies, that using Aσ as a preconditioner causes PCG to
converge to the exact solution in not more than ≤ m steps.

Even though m is often a relatively small number, complete preconditioning does
not ensure a fast solution in terms of CPU time, since computing

Mzk = Aσzk = rk (4.103)

requires for relatively heavy computation. Clearly, it is possible to factorize Aσ as
Aσ = LσLT

σ in advance, in which case computing zk = L−T L−1rk is the only required
operation. Thus, on the basis of (4.10) we can approximate the computational work
load of complete preconditioning to be of magnitude O(cNs

√
Ns). Employing Aσ as

a preconditioner is studied more closely in [15].

4.8.8 SSOR preconditioning

One of the most often used ways of preconditioning is SSOR, where

M = [ω(2− ω)]−1(Dσ − ωLσ)D−1
σ (Dσ − ωLT

σ ), (4.104)

where 0 < ω < 2 is the relaxation parameter, Dσ is the diagonal of Aσ and Lσ is a
lower triangular part of Aσ. It can be shown [3] that with optimal value of ω, the
condition number is κ(M−1A) ∝ 1/h ∝ √

n. Thus, on the basis of (4.99), it seems
that

K ≤ cn1/4 (4.105)
indicating that the SSOR preconditioned PCG demands for

≤ cn5/4 (4.106)

�oating-point operations. Again, due to the problem with di�usion we cannot expect
much faster convergence.
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Chapter 5

Numerical Experiments

In this chapter, we demonstrate how the introduced methods are applied to the
EIT problem. We are not interested in simulating any realistic application but just
describing some general phenomena. For simplicity, the computations are performed
in the unit disc

Ω = B(0, 1) ⊂ R2. (5.1)
Voltages are measured with six electrodes (i. e. L = 6) evenly distributed along
the boundary curve. The contact impedances are assumed to be equal to one, i.e.
z1 = z2 = . . . = z2 = 1, and the noise in the measured electrode potentials to be
independent. In this model, the impedances are known exactly. Thus, we use L−1 =
5 current patterns of the form (2.31) so as to get the best possible distinguishability
in the sense of (2.30).

5.1 Small Perturbations

We seek a small circular perturbation (anomaly) from Ω. That is, the exact conduc-
tivity distribution σex ∈ A(Ω) is a priori assumed to be of the form,

σex(x) = σex
bg (x) + δex(x), (5.2)

σex
bg (x) = 1, for all x ∈ Ω, (5.3)

δex(x) = 1 + t, for all x ∈ B(c, r), (5.4)

where c = (c1, c2) ∈ R2, t, r ∈ R are unknown constants. The task is to �nd out the
quadruple r, t, c1, c2. We denote

σex=̂




r
t
c1

c2


 ∈ R4. (5.5)

Please note that in the computations the conductivity distribution is a pixelwise
constant function. Thus, it is not feasible to exactly implement this model, but the
circular objects are approximated in the framework of the triangulation.
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An imaginable real life application analogous to this scheme could be detecting a
tumor from breast tissue, where the background conductivity is close to a constant.
We explore both the least-squares approximation and statistical modelling.

5.1.1 Setup

The triangulation Th = {Tm}M
m=1 that is used in the following computations is il-

lustrated in (�gure 5.1). A uniform triangulation is used, i.e. all the triangles are
nearly equal in size. The variation of the potential distribution is fastest near to the
boundary, due to which the triangular mesh is often re�ned towards the boundary
in order to make the discretion error small. However, the number of electrodes is in
this case so small that no re�nement is made.

In the computations, the true conductivity distribution is

σex=̂
(
0.125 −0.9 0.5 0.2

)T (5.6)

Since only discrete problems can be solved numerically, we generate the measure-
ment data V by approximating σex with a function that is pixelwise constant in a
re�ned triangulation (�gure 5.1) denoted as Th/2. This is obtained simply by divid-
ing each triangle of Th into four subtriangles. Depending on the connection, we use
the super index ex to refer either to a A(Ω) function de�ned by (5.2)-(5.4), to its
Hh/2-approximation or to a vector in R4M . The Hh/2-approximation of the exact
conductivity distribution is illustrated in �gure 5.2. The data V is obtained by solv-
ing the forward problem (2.19) corresponding to the approximation. We add to the
measurements gaussian zero mean random noise N ∼ N(0, 10−6I) so that

||N ||fro
maxi,j Vij

≈ 0.1%,
||N ||fro

||U(σex)− U(σex
bg )||fro

≈ 6.5% (5.7)

The data is generated with the aid of the re�ned mesh, since otherwise the solver
would be likely to �nd 'too good' candidate solutions. Using the same mesh in both
generating the data and solving the inverse problem is known as committing an
inverse crime. The discretion error is measured as

||U(σbg)− U(σex
bg )||fro

||U(σex)− U(σex
bg )||fro

≈ 35%, (5.8)

5.2 Least-Squares Approximation

In order to get some idea how accurate solutions can obtained through the least-
squares approximation, we explore the NOSER method

σ(1) = σ(0) + (H + αdiag(H))−1g, (5.9)

and a simple Gauss-Newton reconstruction, which is obtained by performing one step
of Gauss-Newton iteration. Since the measurements are assumed to be independent

52



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.1: The triangulation Th (left) and the re�ned mesh
Th/2 (right), which is used when generating the data V.

we choose W = I and the algorithm is written as

σ(1) = σ(0) − λ(H(0)
α )−1g(0),

H(0)
α = (J (0))T J (0) +

1
2
αD2A(σ(0)),

g(0) = (J (0))T (U(σ(0))−V) +
1
2
αDA(σ(0)). (5.10)

In general, taking more than just one step seldom leads to considerably better esti-
mates. In this connection, taking one step seems to be enough.

5.2.1 Computation of the Jacobian Matrix

Both algorithms are based on the use of the Jacobian matrix

J =




U(1)

∂σ1
· · · ∂U(1)

∂σM... . . . ...
U(K)

∂σ1
· · · ∂U(K)

∂σM
,


 (5.11)

which is obtained by writing Bi,j of (2.23) as

Bi,j =
M∑

m=1

σmK
(m)
i,j +

L∑

`=1

1
z`

∫

e`

ϕiϕj dS, (5.12)

K
(m)
i,j =

∫

Ω
χm∇ϕi · ∇ϕj dxdy. (5.13)

Di�erentiation of equation (2.19) with respect to σm results in

∂A

∂σm
F + A

∂F

∂σm
= 0. (5.14)
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Figure 5.2: Hh/2-approximation of the exact conductivity
distribution σex=̂(0.125,−0.9, 0.5, 0.2)T . The red circle de-
notes the right size and location.

Using the relation X = A−1F , we obtain

∂F

∂σm
= −A−1 ∂A

∂σm
F, (5.15)

∂A

∂σm
=

(−σ2
mK(m) 0
0 0

)
. (5.16)

The electrode voltages U (k) are obtained as in (2.27);that is

U (k) =
(
0 C) f (k) (5.17)

Di�erentiating this and using (5.15) yields

∂U (k)

∂σm
= − (

0 C) A−1 ∂A

∂σm
f (k), (5.18)

Since there is no sense in evaluating a whole inverse matrix the Jacobian is attained in
practice by �rst solving A−1

(
0 CT

)T and A−1F after which the partial derivatives
are given by (5.18).

5.2.2 Smoothness Regularization

In the Gauss-Newton reconstruction we use A(σ) of the form

A(σ) = |||σ|||2γ,k = σT Bk
γσ (5.19)

where γ > 0, k ∈ N and Bk
γ is the kth exponent of the matrix Bγ ∈ RM×M which is

obtained as
(Bγ)ij =

∫

Ω
∇ϕd

i · ∇ϕd
j dxdy + γδij , (5.20)

where δij is the Kronecker's delta and {ϕd
1, . . . , ϕ

d
M} is the piecewise linear nodal

basis of a delaunay triangulation T d
h ( i.e. a set of triangles such that no data points
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are contained in any triangle's circumcircle ) that is generated with respect to the
nodal basis formed by the set of circumcenters of the triangulation Th (�gure 5.3).
Additionally, we de�ne

Sd
h = span{ϕd

1, . . . , ϕ
d
M} (5.21)

Apparently, Bγ is symmetric and positive de�nite. Each σ ∈ Hh has an uniquely
determined piecewise linear counterpart σd ∈ Sd

h such that σ−σd vanishes in the set
of circumcenters {P1, . . . , PM} of the triangulation Th. Thus, by identifying σ and
σd as vectors in RM we have σ = (σ1, . . . , σM ) = (σd

1 , . . . , σd
M ) and

|||σ|||γ,1 = σT Bγσ =
M∑

i,j=1

σiσj∇ϕd
i · ∇ϕd

j dxdy + γ||σ||2

=
M∑

i,j=1

σd
i σd

j∇ϕd
i · ∇ϕd

j dxdy + γ||σd||2

= ||∇σd||2 + γ||σd||2. (5.22)

Hence, we see that A(σ) is small provided that the Sd
h counterpart σd is smooth

in the sense of the norm ||∇σd||. Moreover, decreasing the value of γ increases the
importance of smoothness. We call 5.19 smoothness regularization. By noticing that
|||σ|||2γ,1 ≥ γ||σ|| and by writing

|||σ|||2γ,k =
(∑

i

cizj

)T ( ∑

j

ciλ
k
i zi

)
=

∑

l

λk
l c

2
l = |||σ|||2γ,k/2, (5.23)

where λl is an eigenvalue of Bγ , zl is the corresponding eigenvector and cl is some
constant, we can deduce that

γ−t/2|||σ|||γ,t ≥ γ−s/2|||σ|||γ,s, for t ≥ s. (5.24)

Hence, we see that |||σ|||γ,k increases while k increases. The larger is the value of k
the stronger is the smoothing e�ect of the regularization.

In order to demonstrate the structures generated by the regularization method, we
draw so-called white noise random samples W ∈ RM ,W ∝ N (0, I) and set X =
B
−k/2
γ W . Then,

||W ||2 = W T W = XT Bk/2
γ Bk/2

γ X = XT Bk
γX = |||X|||2γ,k, (5.25)

i.e. the white noise regularization and the smoothness regularization are of equal
order. The random draws are plotted in �gures 5.4 and 5.5, �rst columns of which
are identical. The random structures in the 4th column of 5.4 are of same size but
much smoother that in the 2nd column of 5.5. Thus, it seems that by varying the
value of γ we can control the size of the structures whereas varying k seems to have
greater e�ect on the level of smoothness.

The measured voltages are much less sensitive to the values of σ in the central parts
of Ω than to the values close to the boundary ∂Ω. In other words, the sensitivity
of the EIT reconstruction to the measurement noise increases when moving towards
the center of Ω. That is why increasing noise level arises a need to decrease the
order of regularization towards the center. Achieving feasible results with high noise
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Figure 5.3: The set of circumcenters of the triangulation Th

(left) and the corresponding delaunay triangulation T d
h

levels seems to require for increasing 'sti�ness' of the regularization in the vicinity
of the boundary. Therefore, in the computations, we let the boundary block of Bγ

be identity, i.e.
Bij = δij , for {i, j | dist(Pij , ∂Ω̂) < ε}, (5.26)

where Pij denotes a circumcenter of the triangle Tij .

5.2.3 Results

Both NOSER and Gauss-Newton reconstruction yield very similar results. Both
methods seem to give rather credible information about the location of the anomaly
but the exact size and value of conductivity remain uncertain. The reconstructions
are plotted in �gure (5.6). On the basis of the �gure the output of NOSER algorithm
can be ranked as less regular. This is, apparently, due to its not so sophisticated
regularization method, which does not assume anything of the structure of the tri-
angulation.

Since least-squares reconstructions are easily computed and seem to localize the
anomaly relatively con�dentially, we use least-squares approximation as a method of
determining a so-called region of interest, i.e. a subsetRpr ⊂ Ω̂ in which the anomaly
lies with high reliability. The idea is to fasten the convergence of more complicated
methods.

We determine the region of interest in a heuristic way.

Rpr = {x ∈ Ω̂ | |σ(1)(x)− σ(0)(x)| ≥ κ std{σ(1)}}, (5.27)

where σ(0) is the initial guess, σ(1) the least squares solution, std{σ(1)} its standard
deviation and κ > 0 some real-valued constant. This appeared to work pretty well
in practice.
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Figure 5.4: Four realizations of W (1th column) and the
realizations of X = B−k

1 W corresponding to k = 2 (2nd
column), k = 4 (3rd column) and k = 8 (4th column).

5.3 Statistical Solution

In this section, the anomaly is sought by employing the Bayesian model and MCMC
integration. Statistical solution refers in this case to a Monte Carlo approximation
of the conditional expectation

σm =
σ(1) + · · ·+ σ(m)

m
≈

∫

RM

σπpost(σ) dσ (5.28)

The idea is both to develop an e�cient sampling technique and to compare statistical
solutions with least-squares solutions.

In practice, achieving an reasonably accurate Monte Carlo estimate requires for heavy
computation compared to least-squares approximation. Therefore, statistical solu-
tions should be at least in some sense more precise than the corresponding least-
squares solutions. Again, the applied sampling technique and linear algebra have a
signi�cant e�ect on the convergence rate and thereby the usability of the statistical
approach.

The convergence of the statistical algorithms is studied both on the basis of auto-
correlation series and by plotting estimates of the conditional expectation.
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Figure 5.5: Four realizations of W (1th column) and the
realizations of X = B−2

γ W corresponding to γ = 0.1 (2nd
column), γ = 0.01 (3rd column) and γ = 0.001 (4th column).

5.3.1 Prior and Posterior Densities

We suppose that the anomaly is a priori known to be of the form (5.2) and lies some-
where in the region of interest Rpr that is determined based on the Gauss-Newton
reconstruction as in (5.27). In other words, we hypothesize that the conductivity
distribution can be written as in (5.5), i.e.

σ=̂
(
r t c1 c2

)T
, (5.29)

where r, c and t are realizations of random variables R,C and T . We do not as-
sume anything particular of the shape of the prior distribution (e.g. Gaussian
distribution), but let R, C and T be independent and uniformly distributed, i.e.
R ∼ Uniform[0, diam(Rpr)], C ∼ Uniform{Rpr}, T ∼ Uniform(−1, 1] and

πpr(σ) ∝ π+(σ)χ[0,diam(Rpr)](r)χRpr(c)χ(−1,1](t), (5.30)

where π+(σ) is a positivity prior de�ned in (2.58). In the computations, each sampled
conductivity distribution is a Hh-function. Since there are no exactly circular shaped
objects in Hh, we cannot draw samples exactly distributed as πpr, since circles have
to be approximated in the sense of Hh. Two Hh-approximations of random draws
from πpr are plotted in �gure (5.8).

The posterior density is of the form (2.60), where the covariance matrix C = γ2I,
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Figure 5.6: The NOSER approximation (top left), where α =
1.5·10−6 and the Gauss-Newton reconstruction (bottom left),
where α = 0.15, A(·) = || · ||4

B6
0.02

. In both cases, the region
of interest is determined as in (5.27) with κ = 2.2. (right
column).

since the electrode potentials are assumed to be independent. Thus, we have

π(σ |V) ∝ πpr exp
(
− 1

2γ2
(U(σ)−V)T (U(σ)−V)

)
. (5.31)

Since the problem is restricted as (5.30), the integration task (5.28) is only four di-
mensional. Therefore, MCMC integration is not necessarily needed in this particular
case. However, a similar approach is workable also in more complex cases where the
background conductivity σbg has to be included into the statistical model (e.g. some
shell structured σbg).

5.3.2 Linear Algebra

As the computations are restricted to the region of interest we know a priori that
the perturbations are small. Hence, each sampled conductivity can be represented
as σ = σbg + td so that the number of non-zeros in d is small. Thus, on the basis
of discussion in sections 4.5 and 4.6 it is advantageous to solve the forward problem
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Figure 5.7: Two Hh-approximations of random draws from
πpr. The red circle shows the exact size and shape.

through the Sherman-Morrison-Woodbury -formula as

Xσ = Xσbg
− tZd

σbg
(I + tV T

d Zd
σbg

Λd)−1V T
d Xσbg

. (5.32)

Since we correct each time the background solution Xσbg
, the computational workload

can be diminished by directly correcting the potential values as

U(σ) = U(σbg)− t
(
0 C) Zd

σbg
(I + tV T

d Zd
σbg

Λd)−1V T
d Xσbg

, (5.33)

where the product
(
0 C) Zd

σbg
can be calculated in advance. It is easy to see that

in this case the computational e�ort is largely determined by the e�ort of evaluating
(I + tV T

d Zd
σbg

Λd)−1 ∈ Rk×k.

5.3.3 The Sampling Plan

The sampling plan is excessively straightforward. We choose

σ(0) = σbg = 1. (5.34)

Since σbg is known to be close to the exact distribution, we neglect the burn-in
phase. The samples {σ(1), . . . , σ(m)} are generated in a single long run accepting all
the generated samples.

The statistical e�ciency is analyzed on the basis of values σ(j)(x♠), σ(j)(x♦), σ(j)(x∗),
σ(j)(x♥) and σ(j)(x♣), j = 1, 2, . . . ,m, where m is the size of the sample. The points
x♠, x♦, x∗, x♥ and x♣ are plotted in �gure (5.3.3).

Autocorrelation of the sample ensemble is estimated as

ρj(x) = corr{σ(1)(x), σ(j+1)(x))} ≈ ρ̃j(x) = γ̃j(x)/γ̃0(x) (5.35)

where γ̃j(x) is an estimator of the autocovariance calculated as

γ̃j(x) =
1
m

m−j∑

i=1

(σ(i)(x)− σm(x))(σ(i+j)(x)− σm(x)). (5.36)
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Figure 5.8: Locations of points x♠, x♦, x∗, x♥ and x♣.

So as to be able to compare the algorithm e�ciencies we approximate the integrated
autocorrelation time as

τint(σ) ≈ 1
2

+
∞∑

j=1

|ρ̃j | (5.37)

5.3.4 Metropolized Independence Sampler (MIS)

At �rst, we apply the MIS sampling method introduced in section 3.3.1, since it
is easily implemented and all the proposed moves are independent. The proposal
distribution is chosen to be

g(·) = πpr(·), (5.38)
where πpr is as in (5.30). Performing one step of the algorithm is simply to draw σ
from prior distribution and to check the acceptance-rejection condition.

5.3.5 Random-walk Metropolis

Another implemented algorithm is the random-walk Metropolis, one of the most
often used MCMC algorithms. Since we do not have much information about the
structure of the posterior density, the proposal is chosen to be spherically symmetric
Gaussian distribution similarly as in algorithm 3.3.2.

gvar ∼ N(0, γ2I), (5.39)
where I is identity matrix in R4×4. In the random-walk Metropolis, the proposed
moves are not independent from each other. The advance of the method is that by
varying the step size user can e�ciently control the acceptance rate.

5.3.6 Correlated Multipoint Proposals

To give an example of slightly more complicated algorithm based on the Metropolis
transition rule, we implement the multipoint method, i.e. algorithm 3.3.6, applied
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for two proposal functions. Again, we employ spherically symmetric Gaussian dis-
tributions as proposals; that is, we draw

ε1 ∼ N(0, γ2
1I) (5.40)

ε2 ∼ N(0, γ2
2D), (5.41)

where D = diag(1, 1, 0, 0) and set y1 = x + ε1, y2 = x + sign(ε2)||ε2||. The weight
functions λ1 and λ2 are constants. The idea is to propose two moves of di�erent
sizes on each step. Due to the shape of the posterior distribution the longer moves
are restricted to the �rst and third quadrant of the rt-plane. The probability of
accepting a large move is increased by choosing λ2 >> λ1.

5.3.7 Surrogate Transitions

The workability of surrogate transition method is also experimented by examining
the accurateness of the approximation

U(σ) ≈ U∗(σ) = U(σ) + DU(σ0)(σ − σ0) (5.42)

In this demonstrative case, the Sherman-Morrison-Woodbury -formula functions so
well, that applying (5.42) is not reasonable. In cases, where the sampler perturbs
the conductivity distribution more globally, the surrogate transition method can,
however, be of great importance.

5.3.8 Results

Although the proposed samples in MIS are independent, the acceptance ratio is
exceedingly low. Apparently, this is because the variance of the posterior density is
small compared to the variance of the prior density. Convergence of the method is
plotted in �gure (5.9).

The random-walk metropolis algorithm was implemented by choosing γ2 = 0.02,
that resulted in acceptance rate of 29%. Although the acceptance rate is feasible
the overall level of movement remains slow, which is illustrated by the �gure (5.10).
The autocorrelation curves indicate that the convergence is exceptionally slow close
to the most important parts of the distribution. This can be explained to be due to
the awkward shape of πpost.

The posterior distribution is banana shaped in the rt-plane ( i.e. the plane, where the
center of the anomaly is �xed ) and su�ers from local minima, which is illustrated by
the �gure (5.17). According to [2], the random-walk metropolis commonly fails in ba-
nana shaped distributions. Finding an appropriate step size is often impossible, since
small enough step sizes tend result in slow movement of the chain. Banana structure
results from nonlinearity of the map U(·) and low variance of ||V − U(·)||. Local
minima are due to the fact that the inverse problem is outstandingly ill-conditioned
in the rt-plane; that is, various combinations of r- and t-values result in electrode
voltages very close to the measured voltage values. Figure (5.18) shows how two
concentric anomalies unequal in size perturb the potential distribution in a similar
way.
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Multipoint method was implemented in order to allow random-walk to take larger
steps in rt-plane and thereby increase the level of general movement. The parameters
were chosen as

γ2
1 = 0.02 λ1 = 1

γ2
2 = 0.1 λ2 = 1000.

(5.43)

In the implementation the acceptance rate was 30% 7% of all the accepted moves
being longer moves. Figure (5.11) illustrates that the level of global movement
is indeed increased compared to the simple random walk. Autocorrelation curves
indicate more balanced behavior. It is also clearly seen that the algorithm does not
converge to the exact solution. Monte Carlo estimates after 10000 and 50000 are
plotted in the �gure (5.3.8). The images are close to identical. Thus, it seems that
10000 is a large enough sample size.

Interestingly, the random walk metropolis yields fairly reasonable solutions and rapid
convergence rates provided that either r or t is �xed to its true value. This is illus-
trated by �gures (5.12), (5.13) and (5.3.8). Yet, accuracy of the obtained estimates
diminishes remarkably if the forward problem is solved only approximately through
the linearization (5.42).
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Figure 5.9: MIS. The acceptance rate is extremely low. From
top to bottom, values σ(j)(x♠), σ(j)(x♦), σ(j)(x∗), σ(j)(x♥)
and σ(x♣), j = 1, . . . , 10000 (left) and the corresponding
autocorrelation curves (right).
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Figure 5.10: Random walk metropolis. Due to the shape of
the posterior distribution choosing a feasible step size is dif-
�cult. In this case, the acceptance rate is su�cient but the
overall movement of the chain is relatively slow. The au-
tocorrelation curves indicate that the level of independency
remains low. From top to bottom, values σ(j)(x♠), σ(j)(x♦),
σ(j)(x∗), σ(j)(x♥) and σ(j)(x♣), j = 1, . . . , 10000 (left) and
the corresponding autocorrelation curves (right).
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Figure 5.11: Multipoint method. The overall movement is
faster than i random walk algorithm, which is indicated by the
autocorrelation curves. It is clearly seen, that the estimate
does not approach the exact solution due to the inadequate
a priori information. From top to bottom, values σ(j)(x♠),
σ(j)(x♦), σ(j)(x∗), σ(j)(x♥) and σ(j)(x♣), j = 1, . . . , 10000
(left) and the corresponding autocorrelation curves (right).
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Figure 5.12: Random walk metropolis. The radius of the
anomaly is �xed to the exact value r = 0.125 due to which
the algorithm converges rapidly. From top to bottom, val-
ues σ(j)(x♠), σ(j)(x♦), σ(j)(x∗), σ(j)(x♥) and σ(j)(x♣),
j = 1, . . . , 10000 (left) and the corresponding autocorrelation
curves (right).
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Figure 5.13: Random walk metropolis. t is �xed to the ex-
act value t = −0.9. Again, the algorithm converges rapidly.
From top to bottom, values σ(j)(x♠), σ(j)(x♦), σ(j)(x∗),
σ(j)(x♥) and σ(j)(x♣), j = 1, . . . , 10000 (left) and the corre-
sponding autocorrelation curves (right).
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Figure 5.14: Surrogate Markov chain generated through the
approximation (3.45). From top to bottom, values σ(j)(x♠),
σ(j)(x♦), σ(j)(x∗), σ(j)(x♥) and σ(j)(x♣), j = 1, . . . , 10000
(left) and the corresponding autocorrelation curves (right).
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Figure 5.15: Monte Carlo estimates after 10000 samples
(left) and 50000 samples (right). The algorithms from top to
bottom: MIS, random walk metropolis, multipoint method.
MIS estimates (1st row) di�er noticeably from each other,
which indicates that the algorithm has not yet converged. In
contrast, estimates attained through multipoint method (3rd
row) are nearly indentical.
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Figure 5.16: Monte Carlo estimates after 10000 samples
(left) and 50000 samples (right). From top to bottom: ran-
dom walk metropolis with r �xed, random walk metropolis
with t �xed, random walk conditional mean estimate based
on a surrogate Markov chain produced by the linearization
(3.45). Upper two random walks produce rather substantial
estimates. When the forward problem is solved using (3.45)
(3rd row) the anomaly is mislocated.
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Figure 5.17: Contour plot of the posterior distribution
πpost(σ), σ=̂{r, (0.5; 0.2), t}, i.e. the center of the anomaly
is �xed to its exact value. Radius (x-axis) and the value of
conductivity (y-axis) are varied. The distribution is banana-
shaped (left) and su�ers from local minima (right) which ex-
plains the slow movement of the random walk sampler.
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Figure 5.18: Two illustrations of how the potential distri-
bution corresponding to σ = σbg is perturbed after adding a
circular anomaly. Although the added anomalies are of dif-
ferent size both cases yield very similar electrode potentials.
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Chapter 6

Discussion

In the numerical examples, both least-squares approximation and Bayesian modeling
succeed rather well in locating the anomaly, i.e. in �nding c, but the two other sought
quantities r and t remain uncertain. In cases where either r or t is �xed to the true
value the conditional mean estimate is fairly close to the exact solution in eyeball
norm. Yet, modifying the statistical model by solving the discrete forward problem
approximately through (3.45) diminishes the accuracy remarkably.

It seems that the more one has a priori knowledge of σ the more preferable is the
statistical approach. A priori information can more easily be decoded into a prior dis-
tribution than into a regularizing functional, since implementing the Gauss-Newton
algorithm by applying any regularization method favoring discontinuous conductivi-
ties, such as anomalies of certain size and shape, is problematic, since Gauss-Newton
is based on di�erentiability of the map σ → A(σ). Again, obtaining any con�dence
intervals of the Gauss-Newton reconstruction is di�cult since there is no strict statis-
tical interpretation of the method. Therefore, achieving a practicable least-squares
estimate is more or less an art of �xing the free-�oating parameters so that the out-
come is close to the optimal. The result is often a compromise between smoothness
and resolution. In the demonstrated cases, the numerical least-squares estimates are
rather comparable to their counterparts obtained through the statistical modelling
as far as both r and t are to be solved. Only assuming either of the quantities to
be given caused a distinct di�erence between least-squares and conditional mean
estimates.

Although the statistical problem is restricted to seeking the anomaly from a reason-
ably small region of interest Rpr ⊂ Ω, applied MCMC algorithm has a strong e�ect
on the converge rate of the Monte Carlo estimate. The explanation is the awkward
characteristics of the target distribution. In the demonstrations, the posterior dis-
tribution su�ers from low variance, generic shape of a banana as well as a number
of local minima. On the basis of the results it is clear that all of these properties
have to be taken into account so as to construct an e�cient proposal function; that
is, the sampler has to be adapted to follow both the local and global dynamics of
the target distribution. Due to the nonlinearity and strong ill-conditioned nature
of the inverse problem it is apparent that the posterior distribution is more com-
plex in cases where σbg is not a constant function. Thus, also the structure of the
background conductivity sets requirements for the sampler.
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Since the conductivity distribution is updated only in the region of interest, the
exact solution of the forward problem is easily obtained by employing the Sherman-
Morrison-Woodbury �formula. More global updates would require for more costly
linear algebra. Since computational cost of the linear approximation (3.45) is inde-
pendent from the structure of σ, it is interesting to study whether it is possible to
use it as a substitute for the exact solution or in generating surrogate Markov chains
introduced in section 3.6. The numerical experiments indicate that employing the
linearization as a pure substitute diminishes the accuracy of the conditional mean
estimate considerably. The anomaly is distinctly mislocated even though its size is
given. Due to the clear mislocation applying the approximation to generate surro-
gate Markov chains does not seem a reasonable idea: each time the actual chain
would come close to the true location, the surrogate chain would be likely to drift
away from it. Therefore, the most e�cient way to derive bene�t from (3.45) appears
to be using it as a pure substitute for the solution while running the burn-in phase,
yet, performing the actual sampling through rigorous linear algebra.

In the experiments, conception of the anomaly is analogous to an electromagnetic
dipole with unknown length and charge within a vacuum cavity. Writing the equation
(2.1) as

∇ · (σbg + δ)∇(ubg + uδ) = 0 (6.1)
and noting that ∇ · σbg∇ubg = 0 yields

∇ · (σbg + δ)∇uδ = −∇ · δ∇ubg. (6.2)

Since the support of the perturbation δ is small it seems reasonable to assume that
adding δ to the background conductivity does not a�ect greatly the directions of the
currents within Ω. Thus, we estimate ∇uδ ≈ c∇ubg, where c is some scalar-valued
function. Substitution to (6.2) plus a slight manipulation gives

∆uδ ≈ −1 + c

σbg
∇ · δ∇ubg, (6.3)

where σbg has been treated as a scalar-valued constant. Accordingly, the potential
�eld uδ is approximately induced by a small supported electromagnetic �eld δ∇uδ.
Therefore, the inverse problem can be considered to be parallel to �nding an electro-
magnetic dipole with unknown length and charge within a vacuum cavity based on
voltage measurements on the boundary. The problem is ill-conditioned, since both
varying the length and varying the charge results in very similar changes far from the
dipole. Contrary to the charge, the length has a slight e�ect on the shape of the po-
tential distribution on the boundary. To be able to �nd out the solution, one has to
be able to distinguish these changes. Certainly, this is not possible if the number of
voltage measurements is too small. Again, the number of injected currents is closely
related to the oscillation frequency of ∇ubg, that on the basis of the right hand side
of (6.3) re�ects the resolution of the installation. Hence, despite the simplicity of the
demonstrative problem the number of electrodes, apparently a�ects considerably the
accuracy of the estimates.

The error due to discretion is relatively large and much less random than the error
due to the noise in the measurements. Apparently, the statistical solutions would be
more accurate if the discretion error was somehow taken into account in the a priori
distribution.
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Most of the Real life applications would undoubtedly utilize more than six electrodes.
However, inserting electrodes to the model, would arise a need for re�ning the tri-
angulation Th so as to keep the discretization error at the same level, since injecting
more currents to Ω would make ∇u to oscillate more frequently. The limited memory
capacity of the available computer hardware did not allow signi�cant re�nements.
Therefore, the in�uence of increasing the number of measurements is not studied in
this thesis.

6.1 Summary and Conclusions

The �ndings and conclusions of this thesis can be formulated as follows.

• In addition to the traditional least-squares approach, the EIT problem can be
formulated in terms of Bayesian statistics.

• The Bayesian statistics treat all sorts of uncertainty as random variables, which
enables inclusion of the measurement noise into the mathematical model and
e�ective utilization of all available a priori knowledge about the conductivity
distribution.

• Numerical implementation of the Bayesian model results in need for e�ective
high dimensional integration or optimization method.

• Monte Carlo sampling techniques o�er a versatile collection of statistical in-
tegration and optimization methods, the convergence rate of which do not
depend on the dimension but on how well the sampler is adapted to follow the
posterior probability distribution.

• The numerical forward problem can be solved through various methods work-
ability of which depends on the available information of the structure of the
conductivity distribution, the applied sampling tehcnique and the level of mea-
surement noise.

• Due to the strong ill-conditioned nature and non-linearity of the inverse prob-
lem it is often di�cult to obtain any appropriate numerical solutions.

• Workability of the least-squares approach depends on the applied regularization
method. It was found that a regularization method favoring smooth solutions
can be produced e�ectively with the aid of the �nite element method as de-
scribed in secion (5.2.2). It is, yet, di�cult to construct regularization method
favoring arbitrary structures, e.g. strongly discontinuous conductivities.

• The statistical model is preferable to the least-squares approach only if there
is accurate enough a priori knowledge available; In the numerical examples,
statistical model was superior only if either the size or the value of conductivity
of the anomaly was given.

• Since even the seemingly primitive demonstrative problem described in the
numerical experiments chapter turned out to be di�cult, further analysis of
the EIT problem would be a natural continuation of the study.
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